[Home] [Table] [Glossary]
[Families]
On this page are computer-accessible forms for the graph C4[ 256, 62 ] =
UG(ATD[256,100]).
(I) Following is a form readable by MAGMA:
g:=Graph<256|{ {38, 39}, {60, 61}, {100, 102}, {200, 202}, {168, 170}, {1, 2},
{96, 99}, {120, 123}, {1, 5}, {234, 238}, {233, 237}, {232, 236}, {80, 84}, {3,
7}, {2, 6}, {73, 76}, {210, 215}, {208, 213}, {178, 183}, {75, 78}, {97, 100},
{112, 117}, {114, 119}, {121, 124}, {137, 143}, {144, 150}, {145, 151}, {74,
77}, {209, 214}, {177, 182}, {113, 118}, {149, 157}, {198, 207}, {4, 14}, {244,
254}, {67, 73}, {5, 15}, {146, 152}, {147, 153}, {84, 95}, {211, 216}, {179,
184}, {101, 110}, {132, 143}, {4, 8}, {243, 255}, {242, 254}, {241, 253}, {22,
27}, {180, 185}, {55, 58}, {54, 59}, {23, 26}, {2, 12}, {243, 253}, {241, 255},
{212, 218}, {181, 187}, {3, 13}, {134, 136}, {48, 63}, {176, 191}, {148, 155},
{143, 159}, {207, 222}, {229, 244}, {235, 249}, {239, 252}, {32, 52}, {239,
251}, {73, 92}, {230, 243}, {200, 221}, {75, 94}, {6, 16}, {168, 190}, {7, 17},
{8, 31}, {167, 176}, {74, 93}, {43, 60}, {135, 144}, {67, 91}, {169, 177}, {134,
158}, {5, 28}, {201, 208}, {198, 223}, {7, 30}, {100, 125}, {8, 18}, {79, 85},
{9, 19}, {101, 127}, {6, 29}, {235, 240}, {171, 176}, {111, 116}, {192, 220},
{110, 115}, {234, 247}, {232, 245}, {160, 189}, {10, 20}, {11, 21}, {38, 57},
{233, 246}, {41, 54}, {40, 55}, {150, 182}, {151, 183}, {152, 184}, {153, 185},
{154, 186}, {155, 187}, {156, 188}, {157, 189}, {215, 246}, {217, 248}, {222,
252}, {140, 175}, {218, 249}, {214, 245}, {203, 232}, {141, 174}, {88, 124},
{132, 160}, {158, 186}, {72, 109}, {223, 250}, {222, 251}, {221, 248}, {206,
235}, {204, 233}, {80, 118}, {220, 250}, {192, 230}, {81, 119}, {135, 161}, {24,
63}, {205, 234}, {138, 173}, {139, 172}, {9, 32}, {27, 50}, {25, 48}, {20, 61},
{18, 59}, {16, 57}, {15, 38}, {13, 36}, {11, 34}, {68, 110}, {219, 241}, {218,
240}, {195, 233}, {82, 120}, {69, 111}, {133, 175}, {10, 33}, {71, 108}, {26,
49}, {24, 51}, {21, 62}, {17, 58}, {14, 37}, {128, 171}, {64, 108}, {196, 232},
{87, 123}, {86, 122}, {85, 121}, {69, 105}, {79, 98}, {223, 242}, {199, 234},
{129, 172}, {131, 174}, {70, 104}, {220, 242}, {197, 235}, {12, 35}, {216, 247},
{68, 107}, {66, 109}, {19, 60}, {130, 173}, {66, 114}, {212, 228}, {211, 227},
{210, 226}, {209, 225}, {208, 224}, {130, 178}, {64, 113}, {133, 180}, {88,
106}, {221, 239}, {193, 243}, {89, 107}, {129, 179}, {144, 162}, {145, 163},
{148, 166}, {86, 101}, {156, 169}, {70, 112}, {217, 239}, {216, 238}, {87, 97},
{86, 96}, {71, 113}, {131, 181}, {146, 164}, {147, 165}, {15, 56}, {24, 47},
{16, 39}, {136, 176}, {137, 177}, {138, 178}, {139, 179}, {140, 180}, {141,
181}, {10, 51}, {82, 107}, {77, 116}, {25, 32}, {23, 46}, {21, 44}, {19, 42},
{17, 40}, {14, 55}, {12, 53}, {72, 114}, {215, 237}, {214, 236}, {13, 54}, {78,
117}, {68, 127}, {22, 45}, {18, 41}, {219, 231}, {149, 168}, {202, 244}, {20,
43}, {76, 115}, {128, 191}, {61, 124}, {29, 89}, {56, 125}, {62, 120}, {159,
217}, {29, 90}, {57, 126}, {136, 192}, {137, 193}, {16, 90}, {58, 112}, {30,
84}, {28, 81}, {45, 96}, {191, 241}, {46, 97}, {53, 122}, {31, 79}, {53, 101},
{48, 98}, {59, 105}, {58, 104}, {49, 99}, {59, 111}, {150, 194}, {151, 195},
{62, 107}, {157, 200}, {50, 100}, {183, 225}, {182, 224}, {159, 201}, {61, 106},
{158, 198}, {191, 231}, {25, 64}, {188, 229}, {31, 70}, {29, 68}, {27, 66},
{184, 226}, {185, 227}, {26, 65}, {190, 229}, {189, 230}, {30, 69}, {152, 196},
{153, 197}, {154, 198}, {155, 199}, {56, 102}, {57, 103}, {28, 67}, {187, 228},
{172, 205}, {189, 220}, {187, 218}, {185, 216}, {183, 214}, {36, 71}, {186,
217}, {182, 213}, {175, 204}, {173, 206}, {40, 77}, {190, 219}, {174, 203},
{170, 207}, {50, 87}, {48, 85}, {42, 79}, {33, 71}, {53, 83}, {38, 65}, {188,
219}, {167, 192}, {49, 86}, {41, 78}, {160, 200}, {169, 193}, {166, 206}, {165,
205}, {164, 204}, {163, 203}, {34, 72}, {47, 69}, {35, 73}, {33, 74}, {161,
202}, {39, 76}, {42, 70}, {52, 88}, {36, 74}, {37, 75}, {44, 67}, {184, 215},
{35, 83}, {164, 212}, {163, 211}, {178, 195}, {180, 197}, {181, 199}, {177,
194}, {186, 201}, {43, 95}, {166, 210}, {165, 209}, {40, 93}, {170, 223}, {41,
94}, {179, 196}, {34, 90}, {35, 91}, {56, 65}, {39, 92}, {175, 212}, {171, 208},
{47, 84}, {43, 80}, {161, 221}, {162, 222}, {37, 88}, {174, 211}, {172, 209},
{46, 83}, {44, 81}, {45, 82}, {173, 210}, {63, 64}, {52, 75}, {96, 236}, {97,
237}, {51, 171}, {72, 238}, {9, 162}, {90, 238}, {65, 247}, {66, 249}, {82,
236}, {83, 237}, {127, 190}, {3, 193}, {126, 188}, {34, 225}, {92, 159}, {89,
154}, {63, 252}, {11, 206}, {91, 158}, {1, 199}, {49, 247}, {9, 207}, {102,
160}, {103, 161}, {32, 231}, {54, 254}, {62, 246}, {8, 194}, {94, 148}, {55,
253}, {46, 228}, {50, 249}, {1, 205}, {78, 130}, {77, 129}, {76, 128}, {14,
194}, {4, 202}, {93, 147}, {45, 227}, {11, 197}, {95, 145}, {85, 133}, {87,
134}, {115, 162}, {117, 164}, {23, 196}, {95, 140}, {91, 136}, {80, 131}, {47,
252}, {118, 165}, {123, 168}, {22, 195}, {94, 139}, {92, 137}, {81, 132}, {127,
170}, {93, 138}, {116, 163}, {126, 169}, {37, 253}, {22, 204}, {44, 246}, {36,
254}, {125, 167}, {23, 203}, {122, 167}, {33, 255}, {89, 135}, {121, 166}, {2,
226}, {106, 138}, {4, 229}, {125, 156}, {24, 250}, {121, 155}, {109, 142}, {116,
151}, {31, 251}, {104, 140}, {105, 141}, {3, 230}, {115, 150}, {122, 156}, {123,
157}, {5, 226}, {108, 139}, {18, 251}, {60, 213}, {102, 143}, {103, 142}, {20,
255}, {28, 240}, {99, 142}, {117, 152}, {119, 154}, {110, 128}, {111, 129}, {98,
141}, {118, 153}, {10, 250}, {98, 146}, {119, 135}, {126, 142}, {17, 224}, {112,
130}, {113, 131}, {6, 245}, {19, 231}, {21, 225}, {13, 248}, {99, 149}, {114,
132}, {103, 144}, {27, 227}, {108, 148}, {109, 149}, {12, 245}, {104, 145},
{106, 147}, {124, 133}, {51, 201}, {105, 146}, {26, 228}, {30, 224}, {120, 134},
{7, 248}, {42, 213}, {15, 240}, {25, 256}, {52, 256}, {242, 256}, {244, 256}
}>;
(II) A more general form is to represent the graph as the orbit of {38, 39}
under the group generated by the following permutations:
a: (1, 2, 6, 16, 39, 76, 115, 150, 182, 213, 42, 70, 104, 140, 175, 204, 22, 27,
50, 87, 123, 157, 189, 220, 242, 254, 36, 71, 108, 139, 172, 205)(3, 10, 25, 41,
77, 118, 155, 184, 214, 238, 15, 35, 68, 103, 137, 171, 9, 8, 17, 43, 85, 117,
151, 185, 218, 237, 82, 109, 102, 136, 170, 202)(4, 7, 20, 48, 78, 116, 153,
187, 215, 236, 72, 56, 91, 127, 161, 193, 51, 32, 18, 40, 80, 121, 152, 183,
216, 240, 83, 107, 142, 143, 176, 207)(5, 12, 29, 57, 92, 128, 162, 194, 224,
60, 79, 112, 145, 180, 212, 233, 45, 66, 100, 134, 168, 200, 230, 250, 256, 54,
74, 113, 148, 179, 209, 234)(11, 26, 44, 86, 119, 156, 186, 219, 239, 253, 47,
88, 105, 138, 174, 206, 23, 21, 49, 81, 122, 154, 188, 217, 241, 252, 37, 69,
106, 141, 173, 203)(13, 33, 64, 94, 129, 165, 199, 226, 245, 90, 38, 73, 110,
144, 177, 208, 19, 31, 58, 95, 133, 164, 195, 227, 249, 97, 120, 149, 160, 192,
223, 244)(14, 30, 61, 98, 130, 163, 197, 228, 246, 96, 114, 125, 158, 190, 221,
243, 24, 52, 59, 93, 131, 166, 196, 225, 247, 28, 53, 89, 126, 159, 191,
222)(34, 65, 67, 101, 135, 169, 201, 231, 251, 55, 84, 124, 146, 178, 211, 235,
46, 62, 99, 132, 167, 198, 229, 248, 255, 63, 75, 111, 147, 181, 210, 232) (III) Last is Groups&Graphs. Copy everything between (not including)
the lines of asterisks into a plain text file and save it as "graph.txt". Then
launch G&G (Groups&Graphs) and select Read Text from the File menu.
**************
&Graph **************
b: (2, 5)(3, 9)(6, 15)(7, 19)(8, 14)(10, 24)(11, 23)(12, 28)(13, 32)(16, 38)(17,
42)(18, 37)(20, 47)(21, 46)(25, 36)(26, 34)(27, 45)(29, 56)(30, 60)(31, 55)(33,
63)(35, 67)(40, 79)(41, 75)(43, 84)(44, 83)(48, 74)(49, 72)(50, 82)(52, 54)(53,
81)(58, 70)(59, 88)(61, 69)(62, 97)(64, 71)(65, 90)(66, 96)(68, 102)(76, 92)(77,
85)(86, 114)(87, 120)(89, 125)(93, 98)(99, 109)(100, 107)(101, 132)(103,
126)(105, 106)(110, 143)(111, 124)(115, 137)(116, 133)(117, 130)(118, 131)(119,
122)(121, 129)(127, 160)(128, 159)(135, 156)(136, 158)(138, 146)(139, 148)(140,
145)(141, 147)(144, 169)(150, 177)(151, 175)(152, 173)(153, 174)(154, 167)(155,
172)(157, 168)(161, 188)(162, 193)(163, 180)(164, 178)(165, 181)(166, 179)(170,
189)(171, 201)(176, 186)(183, 212)(184, 210)(185, 211)(187, 209)(190, 200)(191,
217)(192, 198)(195, 204)(196, 206)(197, 203)(199, 205)(202, 229)(207, 230)(213,
224)(214, 218)(219, 221)(220, 223)(222, 243)(225, 228)(231, 248)(232, 235)(236,
249)(237, 246)(238, 247)(239, 241)(240, 245)(251, 253)(252, 255)(254, 256)
c: (2, 199)(5, 205)(6, 155)(7, 230)(8, 229)(10, 201)(12, 181)(13, 193)(14,
202)(15, 172)(16, 148)(17, 189)(18, 188)(19, 207)(20, 186)(21, 197)(24, 171)(25,
115)(26, 196)(27, 195)(28, 165)(29, 121)(30, 192)(31, 190)(32, 162)(33, 159)(34,
206)(35, 131)(36, 137)(37, 161)(38, 139)(39, 108)(40, 160)(41, 126)(42, 170)(43,
158)(44, 153)(45, 204)(46, 203)(47, 176)(48, 110)(49, 152)(50, 151)(52, 144)(53,
141)(54, 169)(55, 200)(56, 129)(57, 94)(58, 157)(59, 156)(60, 198)(61, 154)(62,
180)(63, 128)(64, 76)(65, 179)(66, 178)(67, 118)(68, 85)(69, 167)(70, 168)(71,
92)(72, 173)(73, 113)(74, 143)(75, 103)(77, 102)(78, 142)(79, 127)(80, 91)(81,
147)(82, 175)(83, 174)(84, 136)(86, 146)(87, 145)(88, 135)(89, 124)(90, 166)(93,
132)(95, 134)(96, 164)(97, 163)(98, 101)(99, 117)(100, 116)(104, 123)(105,
122)(106, 119)(107, 133)(109, 130)(111, 125)(112, 149)(114, 138)(120, 140)(150,
256)(177, 254)(182, 242)(183, 249)(184, 247)(185, 246)(187, 245)(191, 252)(194,
244)(208, 250)(209, 240)(210, 238)(211, 237)(212, 236)(213, 223)(214, 218)(215,
216)(217, 255)(219, 251)(220, 224)(221, 253)(222, 231)(225, 235)(226, 234)(227,
233)(228, 232)(239, 241)(243, 248)
C4[ 256, 62 ]
256
-1 199 2 5 205
-2 1 12 6 226
-3 13 193 7 230
-4 14 202 8 229
-5 1 15 28 226
-6 2 245 16 29
-7 3 17 248 30
-8 4 18 194 31
-9 19 162 207 32
-10 33 51 250 20
-11 34 206 21 197
-12 2 35 245 53
-13 3 36 248 54
-14 55 4 37 194
-15 56 5 38 240
-16 57 90 6 39
-17 58 224 7 40
-18 59 8 41 251
-19 231 60 9 42
-20 255 61 10 43
-21 11 44 225 62
-22 45 27 204 195
-23 46 26 203 196
-24 47 51 63 250
-25 256 48 64 32
-26 23 49 228 65
-27 22 66 50 227
-28 67 81 5 240
-29 89 68 90 6
-30 69 224 7 84
-31 79 70 8 251
-32 231 25 52 9
-33 255 71 74 10
-34 11 90 225 72
-35 12 91 83 73
-36 254 13 71 74
-37 88 253 14 75
-38 57 15 39 65
-39 92 16 38 76
-40 55 77 93 17
-41 78 94 18 54
-42 79 70 213 19
-43 80 60 95 20
-44 67 81 246 21
-45 22 82 227 96
-46 23 83 228 97
-47 24 69 84 252
-48 25 63 85 98
-49 99 26 247 86
-50 100 27 249 87
-51 24 201 171 10
-52 88 256 75 32
-53 12 122 101 83
-54 254 13 59 41
-55 253 14 58 40
-56 102 15 125 65
-57 103 16 38 126
-58 55 112 104 17
-59 111 105 18 54
-60 213 61 19 43
-61 124 60 106 20
-62 246 107 21 120
-63 24 48 64 252
-64 25 113 63 108
-65 56 26 38 247
-66 114 27 249 109
-67 44 91 28 73
-68 110 127 29 107
-69 111 47 105 30
-70 112 104 31 42
-71 33 36 113 108
-72 34 114 238 109
-73 67 35 92 76
-74 33 77 36 93
-75 78 37 94 52
-76 115 39 73 128
-77 116 40 74 129
-78 117 41 75 130
-79 85 31 42 98
-80 84 118 43 131
-81 44 132 28 119
-82 45 236 107 120
-83 35 46 237 53
-84 47 80 95 30
-85 121 133 79 48
-86 122 101 49 96
-87 123 134 50 97
-88 124 37 106 52
-89 154 135 29 107
-90 34 16 29 238
-91 67 35 136 158
-92 137 159 39 73
-93 147 138 40 74
-94 148 139 41 75
-95 145 84 140 43
-96 99 45 236 86
-97 100 46 237 87
-98 79 146 48 141
-99 49 149 96 142
-100 102 125 50 97
-101 110 127 53 86
-102 143 56 100 160
-103 144 57 161 142
-104 145 58 70 140
-105 69 146 59 141
-106 88 147 61 138
-107 89 68 82 62
-108 71 148 139 64
-109 66 72 149 142
-110 68 101 115 128
-111 69 59 116 129
-112 58 70 117 130
-113 71 118 64 131
-114 66 132 72 119
-115 110 150 162 76
-116 77 111 151 163
-117 78 112 152 164
-118 165 80 113 153
-119 154 135 81 114
-120 123 134 82 62
-121 155 166 124 85
-122 156 167 53 86
-123 157 168 87 120
-124 88 121 133 61
-125 56 100 156 167
-126 188 57 169 142
-127 68 101 190 170
-128 110 191 171 76
-129 77 111 179 172
-130 78 112 178 173
-131 80 113 181 174
-132 143 81 114 160
-133 124 180 85 175
-134 136 158 87 120
-135 89 144 161 119
-136 176 134 91 192
-137 143 177 92 193
-138 178 93 106 173
-139 179 94 172 108
-140 180 104 95 175
-141 181 105 174 98
-142 99 103 126 109
-143 132 102 137 159
-144 135 103 150 162
-145 104 95 151 163
-146 105 152 98 164
-147 165 93 106 153
-148 155 166 94 108
-149 99 157 168 109
-150 144 115 182 194
-151 145 116 183 195
-152 146 117 184 196
-153 147 118 185 197
-154 198 89 119 186
-155 121 187 199 148
-156 122 188 125 169
-157 123 189 200 149
-158 198 134 91 186
-159 143 201 92 217
-160 132 189 200 102
-161 221 135 103 202
-162 144 222 115 9
-163 145 211 203 116
-164 146 212 204 117
-165 209 147 205 118
-166 121 210 148 206
-167 176 122 125 192
-168 123 190 170 149
-169 177 156 126 193
-170 168 223 127 207
-171 176 51 128 208
-172 209 139 205 129
-173 210 138 206 130
-174 211 203 141 131
-175 133 212 204 140
-176 167 136 191 171
-177 169 137 182 194
-178 138 183 195 130
-179 139 129 184 196
-180 133 140 185 197
-181 187 199 141 131
-182 177 213 224 150
-183 178 214 225 151
-184 179 215 226 152
-185 180 216 227 153
-186 154 201 158 217
-187 155 181 228 218
-188 156 126 229 219
-189 220 157 160 230
-190 168 127 229 219
-191 176 231 128 241
-192 220 167 136 230
-193 243 3 169 137
-194 177 14 150 8
-195 22 178 233 151
-196 23 232 179 152
-197 11 180 235 153
-198 154 223 158 207
-199 1 155 234 181
-200 221 157 202 160
-201 159 51 186 208
-202 200 244 4 161
-203 23 232 163 174
-204 22 233 164 175
-205 165 1 234 172
-206 11 166 235 173
-207 198 222 170 9
-208 201 213 224 171
-209 165 214 225 172
-210 166 215 226 173
-211 216 227 163 174
-212 228 218 164 175
-213 60 182 42 208
-214 209 245 236 183
-215 210 246 237 184
-216 211 247 238 185
-217 159 248 239 186
-218 187 212 249 240
-219 231 188 190 241
-220 242 189 192 250
-221 200 248 161 239
-222 162 207 251 252
-223 198 242 170 250
-224 17 182 30 208
-225 209 34 183 21
-226 210 2 5 184
-227 45 211 27 185
-228 187 46 212 26
-229 188 244 190 4
-230 243 189 3 192
-231 191 19 32 219
-232 245 203 236 196
-233 246 204 237 195
-234 199 247 205 238
-235 249 206 240 197
-236 232 82 214 96
-237 233 83 215 97
-238 90 234 72 216
-239 221 217 251 252
-240 15 235 28 218
-241 253 255 191 219
-242 220 254 223 256
-243 253 255 193 230
-244 254 256 202 229
-245 12 232 214 6
-246 44 233 215 62
-247 234 49 216 65
-248 221 13 7 217
-249 66 235 50 218
-250 220 24 223 10
-251 222 18 239 31
-252 222 47 63 239
-253 55 243 37 241
-254 242 244 36 54
-255 33 243 20 241
-256 242 244 25 52
0