[Home] [Table] [Glossary]
[Families]
On this page are computer-accessible forms for the graph C4[ 256, 63 ] =
UG(ATD[256,103]).
(I) Following is a form readable by MAGMA:
g:=Graph<256|{ {12, 13}, {214, 215}, {192, 193}, {94, 95}, {80, 81}, {26, 27},
{100, 101}, {160, 161}, {60, 62}, {117, 119}, {1, 2}, {81, 82}, {45, 46}, {132,
135}, {1, 5}, {3, 7}, {2, 6}, {131, 134}, {83, 85}, {58, 61}, {243, 244}, {130,
133}, {155, 156}, {37, 45}, {230, 238}, {199, 207}, {38, 47}, {229, 236}, {55,
62}, {115, 122}, {118, 124}, {80, 91}, {182, 189}, {2, 14}, {243, 255}, {81,
93}, {4, 8}, {3, 15}, {148, 152}, {167, 171}, {165, 168}, {198, 203}, {197,
200}, {86, 88}, {87, 89}, {99, 109}, {166, 169}, {241, 254}, {211, 220}, {179,
188}, {239, 254}, {41, 59}, {76, 94}, {4, 16}, {13, 25}, {12, 24}, {7, 19}, {6,
18}, {5, 17}, {141, 153}, {140, 153}, {237, 248}, {43, 61}, {225, 247}, {34,
53}, {234, 253}, {36, 60}, {39, 63}, {32, 57}, {204, 213}, {172, 181}, {79, 86},
{70, 92}, {77, 87}, {137, 147}, {33, 58}, {226, 249}, {8, 20}, {224, 252}, {11,
23}, {10, 22}, {9, 21}, {98, 126}, {38, 56}, {227, 253}, {68, 90}, {42, 52},
{132, 154}, {161, 191}, {128, 159}, {224, 255}, {193, 222}, {146, 178}, {218,
250}, {217, 249}, {64, 97}, {208, 241}, {79, 110}, {155, 186}, {93, 127}, {215,
245}, {213, 247}, {212, 246}, {203, 233}, {202, 232}, {194, 224}, {7, 36}, {216,
251}, {213, 246}, {207, 236}, {198, 229}, {11, 40}, {136, 171}, {151, 180}, {13,
41}, {212, 240}, {209, 245}, {192, 228}, {78, 106}, {76, 104}, {66, 102}, {23,
51}, {22, 50}, {21, 49}, {20, 48}, {15, 43}, {14, 42}, {138, 174}, {139, 175},
{6, 35}, {206, 235}, {195, 230}, {76, 105}, {64, 101}, {137, 172}, {148, 177},
{157, 184}, {150, 176}, {221, 251}, {204, 234}, {159, 185}, {5, 34}, {221, 250},
{219, 252}, {194, 229}, {72, 111}, {31, 56}, {28, 52}, {30, 55}, {94, 116},
{216, 242}, {145, 187}, {71, 108}, {24, 52}, {195, 239}, {73, 101}, {25, 53},
{142, 162}, {146, 190}, {147, 191}, {8, 37}, {92, 113}, {67, 110}, {27, 54},
{10, 39}, {129, 172}, {133, 168}, {135, 170}, {147, 190}, {196, 234}, {201,
231}, {9, 38}, {215, 248}, {205, 226}, {77, 98}, {20, 59}, {134, 169}, {141,
189}, {138, 187}, {149, 164}, {156, 173}, {159, 174}, {69, 119}, {219, 233},
{192, 242}, {75, 121}, {73, 123}, {133, 183}, {136, 186}, {75, 127}, {199, 243},
{72, 125}, {222, 235}, {84, 97}, {131, 182}, {29, 43}, {73, 126}, {130, 181},
{139, 188}, {152, 175}, {78, 118}, {142, 182}, {214, 239}, {27, 33}, {210, 232},
{74, 112}, {71, 124}, {220, 231}, {145, 170}, {16, 44}, {68, 120}, {19, 47},
{18, 46}, {17, 45}, {143, 179}, {21, 40}, {208, 237}, {141, 176}, {31, 33},
{223, 225}, {218, 228}, {211, 237}, {205, 243}, {134, 184}, {135, 185}, {143,
177}, {153, 166}, {209, 238}, {203, 244}, {154, 165}, {58, 122}, {57, 122}, {48,
116}, {51, 119}, {50, 118}, {49, 117}, {44, 105}, {41, 111}, {61, 123}, {44,
106}, {149, 210}, {183, 240}, {39, 110}, {14, 68}, {15, 69}, {27, 80}, {38,
109}, {152, 211}, {29, 81}, {30, 82}, {40, 101}, {188, 241}, {53, 120}, {35,
108}, {54, 121}, {63, 111}, {19, 66}, {55, 102}, {150, 199}, {17, 67}, {62,
109}, {151, 196}, {51, 103}, {149, 192}, {16, 70}, {54, 96}, {25, 79}, {24, 78},
{17, 71}, {26, 77}, {49, 102}, {184, 224}, {187, 227}, {185, 225}, {50, 107},
{56, 97}, {155, 194}, {18, 72}, {62, 100}, {42, 112}, {28, 70}, {23, 77}, {22,
76}, {19, 73}, {158, 196}, {57, 98}, {154, 193}, {18, 78}, {186, 230}, {47,
115}, {46, 114}, {45, 113}, {58, 103}, {190, 227}, {20, 74}, {61, 99}, {48,
110}, {21, 75}, {157, 195}, {158, 193}, {190, 225}, {189, 226}, {166, 198},
{175, 207}, {174, 206}, {173, 205}, {172, 204}, {168, 200}, {169, 201}, {170,
202}, {171, 203}, {162, 195}, {184, 217}, {176, 209}, {34, 65}, {162, 198},
{163, 199}, {14, 107}, {191, 218}, {35, 70}, {32, 69}, {160, 197}, {180, 210},
{189, 219}, {182, 208}, {177, 214}, {34, 74}, {183, 223}, {181, 221}, {44, 68},
{164, 204}, {144, 249}, {180, 221}, {48, 90}, {178, 216}, {63, 85}, {53, 95},
{52, 94}, {49, 91}, {57, 82}, {181, 222}, {176, 220}, {188, 209}, {6, 104}, {51,
93}, {50, 92}, {41, 71}, {36, 75}, {187, 212}, {35, 83}, {37, 85}, {36, 84},
{165, 213}, {167, 214}, {170, 216}, {171, 217}, {54, 69}, {186, 201}, {183,
196}, {177, 194}, {163, 208}, {160, 212}, {175, 219}, {174, 218}, {191, 202},
{46, 88}, {47, 89}, {42, 86}, {185, 197}, {178, 206}, {43, 87}, {63, 65}, {179,
205}, {173, 211}, {169, 215}, {106, 236}, {25, 144}, {66, 200}, {107, 231},
{103, 232}, {103, 247}, {104, 254}, {107, 252}, {104, 244}, {82, 246}, {65,
231}, {66, 228}, {64, 235}, {37, 144}, {65, 244}, {31, 168}, {64, 247}, {67,
254}, {67, 252}, {30, 222}, {114, 178}, {115, 179}, {60, 253}, {83, 146}, {56,
250}, {87, 148}, {91, 152}, {32, 228}, {93, 153}, {10, 207}, {95, 154}, {86,
147}, {60, 251}, {125, 180}, {74, 129}, {3, 206}, {90, 151}, {88, 149}, {4,
201}, {11, 197}, {59, 245}, {79, 128}, {89, 150}, {12, 220}, {15, 223}, {3,
210}, {85, 132}, {83, 130}, {114, 160}, {127, 173}, {10, 217}, {91, 136}, {80,
131}, {33, 242}, {30, 202}, {29, 200}, {95, 138}, {92, 137}, {116, 161}, {59,
236}, {84, 131}, {117, 162}, {124, 164}, {125, 165}, {126, 166}, {127, 167},
{72, 145}, {40, 242}, {121, 163}, {84, 143}, {120, 164}, {123, 167}, {32, 253},
{90, 135}, {88, 133}, {124, 161}, {126, 163}, {39, 248}, {89, 134}, {9, 232},
{11, 234}, {112, 145}, {1, 226}, {12, 239}, {117, 150}, {1, 229}, {13, 233},
{121, 157}, {28, 249}, {29, 251}, {108, 138}, {111, 137}, {24, 255}, {55, 223},
{105, 129}, {28, 245}, {105, 128}, {26, 240}, {100, 142}, {102, 140}, {120,
146}, {5, 238}, {96, 139}, {96, 140}, {23, 250}, {97, 140}, {99, 141}, {112,
158}, {113, 159}, {113, 158}, {100, 148}, {123, 139}, {7, 246}, {26, 235}, {109,
156}, {118, 132}, {114, 129}, {122, 142}, {4, 241}, {116, 130}, {8, 255}, {22,
238}, {119, 143}, {9, 240}, {16, 233}, {2, 248}, {96, 155}, {108, 151}, {115,
136}, {31, 227}, {125, 128}, {98, 156}, {99, 157}, {106, 256}, {144, 256}, {230,
256}, {237, 256} }>;
(II) A more general form is to represent the graph as the orbit of {12, 13}
under the group generated by the following permutations:
a: (2, 226)(3, 247)(5, 229)(6, 189)(7, 225)(8, 201)(9, 202)(11, 228)(13,
239)(14, 205)(15, 213)(16, 241)(17, 198)(18, 141)(19, 185)(20, 186)(21, 191)(22,
207)(23, 192)(24, 220)(25, 214)(26, 222)(27, 181)(28, 237)(29, 168)(30, 240)(31,
251)(32, 234)(33, 221)(34, 194)(35, 182)(36, 190)(37, 169)(38, 170)(39, 217)(40,
218)(41, 195)(42, 173)(43, 165)(44, 188)(45, 166)(46, 153)(47, 135)(48, 136)(49,
161)(50, 199)(51, 149)(52, 211)(53, 177)(54, 172)(55, 212)(56, 216)(57, 196)(58,
180)(59, 230)(60, 227)(61, 125)(62, 187)(63, 184)(64, 206)(65, 224)(66, 197)(67,
203)(68, 179)(69, 204)(70, 208)(71, 162)(72, 99)(73, 159)(74, 155)(75, 147)(76,
175)(77, 193)(78, 176)(79, 167)(80, 130)(81, 133)(82, 183)(83, 131)(84, 146)(85,
134)(86, 127)(87, 154)(88, 93)(89, 132)(90, 115)(91, 116)(92, 163)(94, 152)(95,
148)(96, 129)(97, 178)(98, 158)(100, 138)(101, 174)(102, 160)(103, 210)(104,
219)(105, 139)(106, 209)(107, 243)(108, 142)(109, 145)(110, 171)(111, 157)(112,
156)(113, 126)(114, 140)(117, 124)(118, 150)(119, 164)(120, 143)(121, 137)(122,
151)(123, 128)(144, 215)(223, 246)(231, 255)(233, 254)(236, 238)(242, 250)(244,
252)(245, 256)(248, 249) (III) Last is Groups&Graphs. Copy everything between (not including)
the lines of asterisks into a plain text file and save it as "graph.txt". Then
launch G&G (Groups&Graphs) and select Read Text from the File menu.
**************
&Graph **************
b: (1, 2)(3, 23)(4, 8)(5, 248)(6, 229)(7, 11)(9, 247)(10, 22)(12, 13)(14,
226)(15, 250)(16, 255)(17, 215)(18, 198)(19, 197)(20, 241)(21, 213)(24, 233)(25,
220)(26, 235)(27, 222)(28, 252)(29, 228)(30, 33)(31, 55)(32, 251)(34, 237)(35,
194)(36, 234)(37, 201)(38, 225)(39, 238)(40, 246)(41, 239)(42, 189)(43, 218)(44,
243)(45, 169)(46, 166)(47, 185)(48, 188)(49, 165)(50, 217)(51, 210)(52, 219)(53,
211)(54, 181)(56, 223)(57, 216)(58, 202)(59, 254)(60, 253)(61, 191)(62, 227)(63,
230)(64, 240)(65, 256)(66, 200)(67, 245)(68, 205)(69, 221)(70, 224)(71, 214)(72,
162)(73, 160)(74, 208)(75, 204)(76, 207)(77, 206)(78, 203)(79, 176)(80, 193)(81,
192)(82, 242)(83, 155)(84, 196)(85, 186)(86, 141)(87, 174)(88, 153)(89, 159)(90,
179)(91, 154)(92, 184)(93, 149)(94, 175)(95, 152)(96, 130)(97, 183)(98, 178)(99,
147)(100, 187)(101, 212)(102, 168)(103, 232)(104, 236)(105, 199)(106, 244)(107,
249)(108, 177)(109, 190)(110, 209)(111, 195)(112, 182)(113, 134)(114, 126)(115,
135)(116, 139)(117, 125)(118, 171)(119, 180)(120, 173)(121, 172)(122, 170)(123,
161)(124, 167)(127, 164)(128, 150)(129, 163)(131, 158)(132, 136)(133, 140)(137,
157)(138, 148)(142, 145)(143, 151)(144, 231)(146, 156)
c: (2, 5)(4, 12)(6, 17)(7, 15)(8, 24)(9, 26)(11, 31)(13, 16)(14, 34)(18, 45)(19,
43)(20, 52)(21, 27)(22, 39)(23, 56)(25, 44)(28, 59)(29, 66)(32, 60)(33, 40)(35,
71)(36, 69)(37, 78)(38, 77)(41, 70)(42, 74)(47, 87)(48, 94)(49, 80)(50, 63)(51,
97)(53, 68)(54, 75)(55, 82)(57, 62)(58, 101)(61, 73)(64, 103)(65, 107)(67,
104)(72, 113)(76, 110)(79, 105)(81, 102)(83, 124)(84, 119)(85, 118)(86, 129)(88,
114)(90, 95)(92, 111)(93, 140)(96, 127)(98, 109)(99, 126)(100, 122)(106,
144)(115, 148)(117, 131)(125, 159)(130, 161)(133, 160)(134, 150)(135, 154)(136,
152)(138, 151)(139, 167)(141, 166)(145, 158)(146, 164)(147, 172)(149, 178)(155,
173)(157, 163)(162, 182)(165, 185)(168, 197)(169, 176)(170, 193)(171, 175)(174,
180)(177, 179)(181, 191)(183, 212)(184, 199)(186, 211)(187, 196)(188, 214)(189,
198)(190, 204)(192, 216)(194, 205)(195, 208)(201, 220)(202, 222)(203, 219)(206,
210)(207, 217)(209, 215)(213, 225)(218, 221)(223, 246)(224, 243)(226, 229)(227,
234)(228, 251)(230, 237)(232, 235)(236, 249)(238, 248)(239, 241)(244, 252)
C4[ 256, 63 ]
256
-1 2 5 226 229
-2 1 14 6 248
-3 210 15 7 206
-4 201 16 8 241
-5 1 34 17 238
-6 2 35 104 18
-7 3 36 246 19
-8 255 4 37 20
-9 232 38 240 21
-10 22 39 217 207
-11 23 234 40 197
-12 220 13 24 239
-13 12 233 25 41
-14 2 68 107 42
-15 3 69 223 43
-16 44 233 4 70
-17 45 67 5 71
-18 78 46 6 72
-19 66 47 7 73
-20 48 59 8 74
-21 49 40 9 75
-22 50 238 10 76
-23 11 77 51 250
-24 12 78 255 52
-25 144 13 79 53
-26 77 235 27 240
-27 33 80 26 54
-28 245 70 249 52
-29 200 81 251 43
-30 55 222 202 82
-31 33 56 168 227
-32 253 57 69 228
-33 242 58 27 31
-34 5 74 53 65
-35 70 6 83 108
-36 60 7 84 75
-37 45 144 8 85
-38 56 47 9 109
-39 110 248 63 10
-40 11 242 101 21
-41 111 13 59 71
-42 112 14 52 86
-43 15 61 29 87
-44 68 16 105 106
-45 46 113 37 17
-46 88 45 114 18
-47 89 38 115 19
-48 110 90 116 20
-49 91 102 117 21
-50 22 92 107 118
-51 23 103 93 119
-52 24 28 94 42
-53 34 25 95 120
-54 121 69 27 96
-55 102 223 62 30
-56 38 250 31 97
-57 122 82 32 98
-58 33 122 103 61
-59 245 236 41 20
-60 253 36 62 251
-61 99 123 58 43
-62 55 100 60 109
-63 111 39 85 65
-64 101 235 247 97
-65 231 34 244 63
-66 200 102 19 228
-67 110 254 17 252
-68 44 90 14 120
-69 15 119 32 54
-70 35 92 16 28
-71 124 17 41 108
-72 111 145 125 18
-73 101 123 126 19
-74 34 112 129 20
-75 121 36 127 21
-76 22 104 94 105
-77 23 26 87 98
-78 24 18 106 118
-79 110 25 128 86
-80 91 81 27 131
-81 80 82 93 29
-82 57 81 246 30
-83 35 146 85 130
-84 143 36 97 131
-85 132 37 83 63
-86 88 79 147 42
-87 77 89 148 43
-88 133 46 149 86
-89 134 47 150 87
-90 68 135 48 151
-91 80 136 49 152
-92 113 70 137 50
-93 81 127 51 153
-94 116 95 52 76
-95 154 94 138 53
-96 155 139 140 54
-97 56 84 140 64
-98 77 57 156 126
-99 157 61 141 109
-100 101 148 62 142
-101 100 40 73 64
-102 55 66 49 140
-103 232 58 247 51
-104 254 244 6 76
-105 44 128 129 76
-106 44 78 256 236
-107 231 14 50 252
-108 35 71 138 151
-109 99 156 38 62
-110 67 79 48 39
-111 137 72 41 63
-112 145 158 74 42
-113 45 92 158 159
-114 46 178 160 129
-115 122 47 179 136
-116 48 94 161 130
-117 49 150 162 119
-118 132 78 124 50
-119 143 69 51 117
-120 68 146 53 164
-121 157 75 163 54
-122 57 58 115 142
-123 167 61 73 139
-124 71 161 118 164
-125 165 180 72 128
-126 166 73 163 98
-127 167 93 173 75
-128 79 125 159 105
-129 114 105 172 74
-130 133 181 83 116
-131 134 80 182 84
-132 154 135 85 118
-133 88 168 183 130
-134 89 169 184 131
-135 132 90 170 185
-136 91 115 171 186
-137 111 92 147 172
-138 187 95 108 174
-139 188 123 96 175
-140 102 96 97 153
-141 99 176 189 153
-142 100 122 182 162
-143 177 179 84 119
-144 25 256 37 249
-145 187 112 170 72
-146 178 190 83 120
-147 190 191 137 86
-148 100 177 152 87
-149 88 210 192 164
-150 176 89 199 117
-151 90 180 108 196
-152 211 91 148 175
-153 166 93 140 141
-154 132 165 193 95
-155 156 194 96 186
-156 155 173 98 109
-157 99 121 184 195
-158 112 113 193 196
-159 113 128 174 185
-160 212 114 161 197
-161 124 191 116 160
-162 198 117 195 142
-163 121 199 126 208
-164 124 149 204 120
-165 154 168 125 213
-166 198 169 126 153
-167 123 214 127 171
-168 165 133 200 31
-169 166 134 201 215
-170 145 135 202 216
-171 167 136 203 217
-172 137 181 204 129
-173 156 211 127 205
-174 159 138 206 218
-175 139 152 207 219
-176 209 220 150 141
-177 143 148 214 194
-178 146 114 216 206
-179 143 188 115 205
-180 210 221 125 151
-181 221 222 172 130
-182 189 131 142 208
-183 133 223 196 240
-184 134 157 224 217
-185 135 159 225 197
-186 155 201 136 230
-187 145 212 138 227
-188 209 179 139 241
-189 182 226 141 219
-190 146 147 225 227
-191 147 202 161 218
-192 242 149 193 228
-193 154 222 158 192
-194 155 177 224 229
-195 157 162 239 230
-196 234 158 183 151
-197 11 200 160 185
-198 166 203 162 229
-199 243 150 163 207
-200 66 168 29 197
-201 231 4 169 186
-202 232 191 170 30
-203 198 233 244 171
-204 234 213 172 164
-205 243 179 226 173
-206 178 3 235 174
-207 199 236 10 175
-208 182 237 163 241
-209 176 188 245 238
-210 232 3 180 149
-211 220 237 173 152
-212 187 246 160 240
-213 165 246 247 204
-214 177 167 215 239
-215 245 169 214 248
-216 242 178 170 251
-217 171 249 184 10
-218 191 228 250 174
-219 189 233 175 252
-220 176 231 12 211
-221 180 181 250 251
-222 235 181 193 30
-223 55 15 225 183
-224 255 194 184 252
-225 190 223 247 185
-226 1 189 205 249
-227 187 253 190 31
-228 66 192 218 32
-229 198 1 236 194
-230 256 238 195 186
-231 220 201 107 65
-232 210 103 202 9
-233 13 16 203 219
-234 11 253 204 196
-235 222 26 206 64
-236 59 106 207 229
-237 211 256 248 208
-238 22 209 5 230
-239 12 254 214 195
-240 212 26 183 9
-241 188 254 4 208
-242 33 192 40 216
-243 199 244 255 205
-244 243 104 203 65
-245 209 59 28 215
-246 212 213 82 7
-247 103 213 225 64
-248 2 39 215 237
-249 144 28 226 217
-250 23 56 221 218
-251 221 60 29 216
-252 67 224 107 219
-253 234 60 227 32
-254 67 104 239 241
-255 243 24 224 8
-256 144 237 106 230
0