C4graphGraph forms for C4 [ 256, 71 ] = UG(ATD[256,125])

[Home] [Table] [Glossary] [Families]

On this page are computer-accessible forms for the graph C4[ 256, 71 ] = UG(ATD[256,125]).

(I) Following is a form readable by MAGMA:

g:=Graph<256|{ {76, 78}, {180, 182}, {1, 5}, {186, 190}, {178, 182}, {90, 94}, {74, 78}, {90, 95}, {186, 191}, {3, 5}, {248, 254}, {161, 167}, {161, 166}, {248, 255}, {1, 9}, {242, 250}, {194, 202}, {130, 138}, {4, 13}, {1, 11}, {196, 206}, {34, 40}, {116, 126}, {1, 13}, {192, 204}, {36, 40}, {112, 126}, {244, 250}, {196, 202}, {132, 138}, {112, 127}, {193, 206}, {113, 126}, {160, 176}, {239, 255}, {234, 250}, {168, 184}, {8, 25}, {238, 255}, {234, 251}, {12, 29}, {66, 80}, {199, 213}, {36, 55}, {198, 213}, {143, 156}, {5, 17}, {224, 244}, {68, 80}, {9, 29}, {139, 159}, {139, 158}, {143, 154}, {7, 17}, {33, 55}, {226, 245}, {79, 87}, {78, 87}, {164, 190}, {226, 248}, {5, 25}, {162, 190}, {9, 21}, {97, 124}, {9, 23}, {168, 182}, {99, 124}, {11, 43}, {148, 180}, {16, 49}, {20, 53}, {11, 41}, {73, 106}, {17, 53}, {82, 118}, {24, 61}, {76, 106}, {146, 180}, {21, 61}, {212, 253}, {221, 244}, {65, 107}, {82, 120}, {132, 174}, {208, 251}, {212, 255}, {13, 33}, {203, 231}, {86, 122}, {156, 176}, {86, 123}, {15, 33}, {201, 231}, {86, 120}, {158, 176}, {68, 107}, {87, 120}, {129, 174}, {92, 108}, {198, 246}, {140, 188}, {11, 57}, {142, 188}, {156, 174}, {10, 57}, {17, 37}, {135, 179}, {142, 186}, {135, 178}, {206, 251}, {157, 168}, {19, 37}, {92, 106}, {138, 188}, {21, 45}, {21, 47}, {202, 240}, {157, 166}, {217, 226}, {13, 49}, {204, 240}, {217, 228}, {93, 99}, {198, 248}, {93, 98}, {23, 87}, {61, 125}, {131, 195}, {137, 201}, {36, 101}, {172, 237}, {40, 105}, {140, 205}, {141, 204}, {23, 85}, {63, 125}, {129, 195}, {139, 201}, {36, 103}, {137, 205}, {166, 226}, {141, 201}, {153, 221}, {32, 101}, {166, 227}, {48, 117}, {153, 223}, {152, 223}, {159, 216}, {150, 223}, {159, 213}, {37, 105}, {171, 231}, {53, 121}, {149, 217}, {171, 230}, {55, 121}, {149, 219}, {34, 109}, {3, 83}, {51, 99}, {50, 99}, {185, 232}, {3, 81}, {34, 112}, {20, 70}, {134, 212}, {27, 72}, {51, 103}, {188, 232}, {187, 239}, {134, 210}, {51, 102}, {186, 239}, {53, 96}, {150, 192}, {151, 192}, {20, 76}, {178, 234}, {56, 96}, {45, 117}, {29, 69}, {25, 65}, {48, 105}, {178, 235}, {27, 65}, {41, 115}, {31, 69}, {130, 217}, {172, 247}, {20, 72}, {174, 242}, {172, 240}, {48, 108}, {50, 111}, {175, 242}, {59, 102}, {18, 76}, {169, 247}, {27, 69}, {130, 220}, {134, 216}, {44, 115}, {57, 102}, {50, 109}, {135, 216}, {157, 194}, {160, 194}, {183, 212}, {128, 229}, {142, 235}, {23, 113}, {183, 209}, {22, 113}, {128, 231}, {33, 73}, {37, 77}, {35, 73}, {59, 81}, {42, 64}, {39, 77}, {43, 64}, {183, 219}, {182, 219}, {189, 208}, {3, 109}, {2, 109}, {191, 208}, {59, 84}, {41, 89}, {45, 93}, {156, 237}, {189, 204}, {15, 125}, {45, 95}, {41, 91}, {32, 82}, {32, 83}, {153, 237}, {49, 68}, {163, 214}, {147, 230}, {8, 126}, {51, 68}, {25, 97}, {187, 195}, {29, 101}, {148, 237}, {170, 211}, {164, 221}, {60, 70}, {187, 193}, {144, 235}, {163, 216}, {147, 232}, {148, 239}, {154, 230}, {161, 221}, {28, 97}, {155, 230}, {57, 70}, {172, 211}, {8, 136}, {94, 222}, {100, 228}, {16, 146}, {74, 200}, {110, 236}, {16, 147}, {114, 241}, {101, 225}, {110, 234}, {100, 225}, {114, 244}, {8, 128}, {95, 215}, {4, 141}, {104, 225}, {116, 253}, {78, 196}, {95, 213}, {106, 224}, {110, 228}, {4, 143}, {107, 224}, {46, 162}, {74, 198}, {46, 163}, {6, 136}, {15, 128}, {31, 144}, {114, 253}, {127, 240}, {91, 203}, {117, 229}, {52, 165}, {90, 203}, {127, 238}, {31, 141}, {54, 164}, {55, 164}, {92, 207}, {7, 147}, {80, 196}, {79, 219}, {61, 169}, {49, 165}, {42, 190}, {112, 228}, {79, 218}, {90, 207}, {104, 253}, {7, 145}, {54, 160}, {118, 224}, {56, 160}, {83, 203}, {118, 238}, {83, 202}, {119, 238}, {120, 229}, {38, 134}, {67, 227}, {43, 139}, {43, 138}, {38, 132}, {67, 225}, {18, 177}, {102, 197}, {18, 180}, {86, 241}, {24, 176}, {111, 199}, {118, 222}, {26, 179}, {88, 241}, {110, 199}, {26, 177}, {40, 132}, {62, 146}, {122, 214}, {104, 197}, {122, 215}, {38, 136}, {39, 151}, {108, 220}, {38, 151}, {7, 181}, {60, 142}, {2, 177}, {60, 143}, {54, 133}, {6, 181}, {46, 154}, {4, 177}, {47, 154}, {24, 173}, {108, 218}, {47, 151}, {84, 236}, {121, 193}, {71, 254}, {47, 149}, {116, 206}, {123, 193}, {116, 207}, {27, 167}, {26, 167}, {54, 136}, {82, 236}, {96, 222}, {19, 211}, {69, 133}, {65, 129}, {62, 254}, {58, 250}, {28, 220}, {12, 205}, {63, 254}, {19, 209}, {71, 133}, {67, 129}, {52, 246}, {12, 207}, {91, 152}, {88, 155}, {52, 247}, {48, 243}, {97, 162}, {19, 215}, {77, 137}, {18, 215}, {14, 200}, {79, 137}, {58, 252}, {26, 220}, {100, 162}, {22, 222}, {85, 157}, {81, 153}, {75, 131}, {22, 223}, {60, 246}, {85, 159}, {81, 155}, {73, 131}, {30, 210}, {75, 135}, {62, 242}, {58, 246}, {103, 171}, {127, 179}, {62, 243}, {103, 170}, {28, 210}, {91, 149}, {85, 155}, {75, 133}, {125, 179}, {28, 211}, {44, 252}, {64, 146}, {74, 152}, {75, 152}, {124, 175}, {35, 247}, {66, 150}, {107, 191}, {67, 150}, {98, 183}, {35, 245}, {42, 252}, {105, 191}, {121, 175}, {98, 181}, {16, 200}, {119, 175}, {115, 170}, {88, 130}, {119, 173}, {88, 131}, {113, 170}, {123, 167}, {46, 243}, {96, 189}, {123, 165}, {39, 199}, {93, 189}, {89, 185}, {77, 173}, {24, 249}, {72, 169}, {39, 197}, {115, 145}, {10, 233}, {72, 171}, {114, 145}, {12, 233}, {92, 185}, {30, 251}, {14, 235}, {117, 144}, {14, 233}, {30, 249}, {119, 144}, {50, 218}, {64, 169}, {6, 236}, {59, 209}, {42, 192}, {31, 245}, {30, 245}, {58, 209}, {15, 227}, {14, 227}, {84, 185}, {44, 194}, {52, 218}, {6, 233}, {84, 187}, {63, 208}, {44, 195}, {22, 249}, {56, 200}, {124, 140}, {32, 210}, {63, 205}, {34, 214}, {35, 214}, {94, 168}, {122, 140}, {66, 181}, {89, 161}, {10, 243}, {66, 184}, {89, 163}, {100, 158}, {2, 249}, {94, 165}, {10, 241}, {111, 148}, {98, 158}, {56, 197}, {80, 173}, {2, 252}, {70, 184}, {111, 145}, {71, 184}, {71, 256}, {104, 256}, {229, 256}, {232, 256} }>;

(II) A more general form is to represent the graph as the orbit of {76, 78} under the group generated by the following permutations:

a: (3, 4)(5, 13)(6, 14)(7, 16)(8, 15)(17, 49)(18, 50)(19, 52)(20, 51)(21, 23)(22, 24)(25, 33)(26, 34)(27, 36)(28, 35)(31, 32)(37, 165)(38, 166)(39, 168)(40, 167)(41, 43)(42, 44)(45, 87)(46, 88)(47, 85)(48, 86)(53, 68)(54, 67)(55, 65)(56, 66)(59, 60)(61, 113)(62, 114)(63, 116)(64, 115)(69, 101)(70, 102)(71, 104)(72, 103)(73, 97)(74, 98)(75, 100)(76, 99)(77, 94)(78, 93)(79, 95)(80, 96)(81, 143)(82, 144)(83, 141)(84, 142)(89, 138)(90, 137)(91, 139)(92, 140)(105, 123)(106, 124)(107, 121)(108, 122)(109, 177)(110, 178)(111, 180)(112, 179)(117, 120)(118, 119)(125, 126)(129, 164)(130, 163)(131, 162)(132, 161)(133, 225)(134, 226)(135, 228)(136, 227)(145, 146)(149, 159)(150, 160)(151, 157)(152, 158)(153, 156)(154, 155)(169, 170)(173, 222)(174, 221)(175, 224)(176, 223)(181, 200)(182, 199)(183, 198)(184, 197)(185, 188)(186, 187)(189, 196)(190, 195)(191, 193)(192, 194)(201, 203)(202, 204)(205, 207)(206, 208)(209, 246)(210, 245)(211, 247)(212, 248)(213, 219)(214, 220)(215, 218)(216, 217)(235, 236)(241, 243)(242, 244)(253, 254)
b: (1, 5, 17, 37, 77, 137, 201, 231, 171, 103, 51, 99, 93, 45, 21, 9)(2, 6, 18, 38, 78, 138, 202, 232, 172, 104, 52, 100, 94, 46, 22, 10)(3, 7, 19, 39, 79, 139, 203, 230, 170, 102, 50, 98, 95, 47, 23, 11)(4, 8, 20, 40, 80, 140, 204, 229, 169, 101, 49, 97, 96, 48, 24, 12)(13, 25, 53, 105, 173, 205, 141, 128, 72, 36, 68, 124, 189, 117, 61, 29)(14, 26, 54, 106, 174, 206, 142, 127, 71, 35, 67, 123, 190, 118, 62, 30)(15, 27, 55, 107, 175, 208, 144, 125, 69, 33, 65, 121, 191, 119, 63, 31)(16, 28, 56, 108, 176, 207, 143, 126, 70, 34, 66, 122, 192, 120, 64, 32)(41, 81, 145, 209, 199, 219, 159, 91, 155, 115, 59, 111, 183, 213, 149, 85)(42, 82, 146, 210, 200, 220, 160, 92, 156, 116, 60, 112, 184, 214, 150, 86)(43, 83, 147, 211, 197, 218, 158, 90, 154, 113, 57, 109, 181, 215, 151, 87)(44, 84, 148, 212, 198, 217, 157, 89, 153, 114, 58, 110, 182, 216, 152, 88)(73, 129, 193, 186, 238, 254, 245, 227, 167, 164, 224, 242, 251, 235, 179, 133)(74, 130, 194, 185, 237, 253, 246, 228, 168, 163, 223, 241, 252, 236, 180, 134)(75, 131, 195, 187, 239, 255, 248, 226, 166, 161, 221, 244, 250, 234, 178, 135)(76, 132, 196, 188, 240, 256, 247, 225, 165, 162, 222, 243, 249, 233, 177, 136)
c: (1, 2)(3, 4)(5, 177)(6, 178)(7, 180)(8, 179)(9, 249)(10, 250)(11, 252)(12, 251)(13, 109)(14, 110)(15, 112)(16, 111)(17, 18)(19, 20)(21, 22)(23, 24)(25, 26)(27, 28)(29, 30)(31, 32)(33, 34)(35, 36)(37, 76)(38, 75)(39, 74)(40, 73)(41, 42)(43, 44)(45, 222)(46, 221)(47, 223)(48, 224)(49, 50)(51, 52)(53, 215)(54, 216)(55, 214)(56, 213)(57, 58)(59, 60)(61, 113)(62, 114)(63, 116)(64, 115)(65, 220)(66, 219)(67, 217)(68, 218)(69, 210)(70, 209)(71, 212)(72, 211)(77, 78)(79, 80)(81, 143)(82, 144)(83, 141)(84, 142)(85, 176)(86, 175)(87, 173)(88, 174)(89, 190)(90, 189)(91, 192)(92, 191)(93, 94)(95, 96)(97, 167)(98, 168)(99, 165)(100, 166)(101, 245)(102, 246)(103, 247)(104, 248)(105, 106)(107, 108)(117, 118)(119, 120)(121, 122)(123, 124)(125, 126)(127, 128)(129, 130)(131, 132)(133, 134)(135, 136)(137, 196)(138, 195)(139, 194)(140, 193)(145, 146)(147, 148)(149, 150)(151, 152)(153, 154)(155, 156)(157, 158)(159, 160)(161, 162)(163, 164)(169, 170)(171, 172)(181, 182)(183, 184)(185, 186)(187, 188)(197, 198)(199, 200)(201, 202)(203, 204)(205, 206)(207, 208)(225, 226)(227, 228)(229, 238)(230, 237)(231, 240)(232, 239)(233, 234)(235, 236)(241, 242)(243, 244)(253, 254)(255, 256)
d: (1, 3, 32, 29)(2, 236, 31, 57)(4, 59, 30, 233)(5, 83, 101, 9)(6, 141, 102, 249)(7, 240, 104, 61)(8, 231, 103, 113)(10, 177, 84, 245)(11, 109, 82, 69)(12, 13, 81, 210)(14, 143, 209, 251)(15, 230, 211, 116)(16, 237, 212, 63)(17, 202, 225, 21)(18, 187, 226, 243)(19, 206, 227, 154)(20, 44, 228, 117)(22, 136, 201, 51)(23, 25, 203, 36)(24, 181, 204, 197)(26, 185, 35, 241)(27, 41, 34, 120)(28, 207, 33, 155)(37, 196, 67, 47)(38, 137, 68, 223)(39, 173, 66, 192)(40, 87, 65, 91)(42, 199, 119, 184)(43, 50, 118, 133)(45, 53, 194, 100)(46, 215, 193, 166)(48, 76, 195, 217)(49, 153, 134, 205)(52, 244, 135, 188)(54, 139, 99, 222)(55, 85, 97, 90)(56, 176, 98, 189)(58, 234, 235, 60)(62, 180, 239, 248)(64, 111, 238, 71)(70, 252, 110, 144)(72, 115, 112, 229)(73, 88, 220, 92)(74, 174, 219, 191)(75, 138, 218, 224)(77, 80, 150, 151)(78, 129, 149, 105)(79, 107, 152, 132)(86, 167, 89, 214)(93, 96, 160, 158)(94, 164, 159, 124)(95, 121, 157, 162)(106, 131, 130, 108)(114, 179, 232, 247)(122, 123, 161, 163)(125, 147, 172, 253)(126, 128, 171, 170)(127, 256, 169, 145)(140, 165, 221, 216)(142, 246, 250, 178)(146, 148, 255, 254)(156, 183, 208, 200)(168, 190, 213, 175)(182, 186, 198, 242)
e: (2, 233)(3, 29)(4, 57)(5, 9)(6, 249)(7, 61)(8, 113)(10, 177)(11, 13)(12, 109)(14, 252)(15, 115)(16, 64)(17, 21)(18, 243)(19, 117)(20, 154)(22, 136)(23, 25)(24, 181)(26, 241)(27, 155)(28, 120)(30, 236)(31, 59)(33, 41)(34, 207)(35, 185)(36, 203)(37, 45)(38, 222)(39, 189)(40, 90)(42, 200)(43, 49)(44, 227)(46, 76)(47, 53)(48, 215)(50, 205)(51, 201)(52, 188)(54, 223)(55, 91)(56, 192)(58, 235)(62, 180)(63, 111)(65, 85)(66, 176)(67, 194)(68, 139)(69, 81)(70, 143)(71, 237)(72, 230)(73, 89)(74, 190)(75, 221)(77, 93)(78, 162)(79, 124)(80, 158)(82, 210)(83, 101)(84, 245)(86, 220)(87, 97)(88, 167)(92, 214)(94, 132)(95, 105)(96, 151)(98, 173)(99, 137)(100, 196)(102, 141)(103, 231)(104, 240)(106, 163)(107, 159)(108, 122)(110, 251)(112, 116)(114, 179)(118, 134)(119, 183)(121, 149)(123, 130)(125, 145)(127, 253)(128, 170)(129, 157)(131, 161)(133, 153)(135, 244)(138, 165)(140, 218)(142, 246)(144, 209)(147, 169)(148, 254)(150, 160)(152, 164)(156, 184)(166, 195)(168, 174)(172, 256)(175, 219)(178, 250)(182, 242)(186, 198)(187, 226)(191, 213)(193, 217)(197, 204)(199, 208)(202, 225)(206, 228)(211, 229)(212, 238)(216, 224)(232, 247)(239, 248)

(III) Last is Groups&Graphs. Copy everything between (not including) the lines of asterisks into a plain text file and save it as "graph.txt". Then launch G&G (Groups&Graphs) and select Read Text from the File menu.

**************

&Graph
C4[ 256, 71 ]
256
-1 11 13 5 9
-2 177 249 109 252
-3 81 5 83 109
-4 143 177 13 141
-5 1 3 25 17
-6 233 136 181 236
-7 145 147 181 17
-8 25 136 126 128
-9 1 23 29 21
-10 243 57 233 241
-11 1 57 41 43
-12 233 29 205 207
-13 33 1 4 49
-14 200 233 235 227
-15 33 125 128 227
-16 200 146 147 49
-17 37 5 7 53
-18 177 180 215 76
-19 209 211 37 215
-20 70 72 53 76
-21 45 47 61 9
-22 222 113 223 249
-23 113 85 9 87
-24 176 61 249 173
-25 5 8 97 65
-26 220 177 167 179
-27 167 69 72 65
-28 220 210 211 97
-29 12 101 69 9
-30 210 245 249 251
-31 144 69 245 141
-32 210 101 82 83
-33 55 13 15 73
-34 112 214 40 109
-35 245 214 247 73
-36 55 101 103 40
-37 77 17 105 19
-38 132 134 136 151
-39 77 199 151 197
-40 132 34 36 105
-41 11 89 91 115
-42 190 192 64 252
-43 11 138 139 64
-44 115 194 195 252
-45 93 95 117 21
-46 154 243 162 163
-47 154 149 151 21
-48 243 105 117 108
-49 165 13 68 16
-50 99 111 218 109
-51 99 68 102 103
-52 165 246 247 218
-53 121 17 96 20
-54 133 136 160 164
-55 33 121 36 164
-56 200 160 96 197
-57 11 102 70 10
-58 209 246 250 252
-59 209 102 81 84
-60 143 70 246 142
-61 24 125 169 21
-62 242 243 254 146
-63 254 125 205 208
-64 146 169 42 43
-65 25 27 107 129
-66 80 181 150 184
-67 225 150 227 129
-68 80 49 51 107
-69 133 27 29 31
-70 57 60 184 20
-71 133 254 256 184
-72 169 27 171 20
-73 33 35 106 131
-74 198 78 200 152
-75 133 135 152 131
-76 78 18 106 20
-77 37 137 39 173
-78 74 196 76 87
-79 137 218 87 219
-80 66 68 173 196
-81 155 3 59 153
-82 236 118 32 120
-83 3 202 203 32
-84 187 59 236 185
-85 23 155 157 159
-86 122 123 120 241
-87 23 78 79 120
-88 155 130 131 241
-89 161 41 163 185
-90 203 94 95 207
-91 203 149 41 152
-92 106 108 185 207
-93 99 45 189 98
-94 165 90 222 168
-95 45 90 213 215
-96 56 189 222 53
-97 25 124 28 162
-98 158 93 181 183
-99 124 93 50 51
-100 158 225 162 228
-101 36 225 29 32
-102 57 59 51 197
-103 36 170 171 51
-104 253 256 225 197
-105 37 48 191 40
-106 92 224 73 76
-107 68 191 224 65
-108 220 48 92 218
-109 34 2 3 50
-110 199 234 236 228
-111 199 145 148 50
-112 34 126 127 228
-113 22 23 126 170
-114 253 145 244 241
-115 44 145 170 41
-116 253 126 206 207
-117 45 144 48 229
-118 222 224 82 238
-119 144 238 173 175
-120 82 86 229 87
-121 55 193 53 175
-122 214 215 140 86
-123 165 167 193 86
-124 99 140 97 175
-125 179 15 61 63
-126 112 113 116 8
-127 112 179 238 240
-128 231 15 8 229
-129 67 195 174 65
-130 88 220 138 217
-131 88 73 195 75
-132 38 138 40 174
-133 69 71 75 54
-134 210 212 38 216
-135 178 179 216 75
-136 38 6 8 54
-137 77 79 201 205
-138 132 188 130 43
-139 201 158 159 43
-140 122 188 124 205
-141 201 4 204 31
-142 188 235 60 186
-143 154 156 4 60
-144 235 117 31 119
-145 111 114 115 7
-146 180 16 62 64
-147 232 16 7 230
-148 111 180 237 239
-149 47 91 217 219
-150 66 67 223 192
-151 47 38 192 39
-152 91 223 74 75
-153 221 223 81 237
-154 143 46 47 230
-155 88 81 85 230
-156 143 176 237 174
-157 166 168 194 85
-158 176 100 139 98
-159 213 139 216 85
-160 176 56 194 54
-161 89 166 221 167
-162 100 46 190 97
-163 89 46 214 216
-164 55 221 190 54
-165 123 49 94 52
-166 157 226 161 227
-167 123 26 27 161
-168 157 94 182 184
-169 247 61 72 64
-170 211 113 103 115
-171 231 103 72 230
-172 211 247 237 240
-173 77 24 80 119
-174 132 242 156 129
-175 121 242 124 119
-176 24 156 158 160
-177 2 4 26 18
-178 135 234 235 182
-179 135 26 125 127
-180 146 148 182 18
-181 66 6 7 98
-182 178 168 180 219
-183 209 212 98 219
-184 66 168 70 71
-185 89 232 92 84
-186 190 191 239 142
-187 193 84 195 239
-188 232 138 140 142
-189 93 204 96 208
-190 162 42 164 186
-191 105 107 186 208
-192 204 150 151 42
-193 121 187 123 206
-194 44 157 202 160
-195 44 187 129 131
-196 78 80 202 206
-197 56 102 104 39
-198 213 246 248 74
-199 110 111 213 39
-200 56 14 16 74
-201 231 137 139 141
-202 83 194 196 240
-203 231 90 91 83
-204 189 192 141 240
-205 12 137 63 140
-206 116 193 196 251
-207 12 90 92 116
-208 189 191 63 251
-209 58 59 183 19
-210 134 28 30 32
-211 170 28 172 19
-212 253 134 255 183
-213 198 199 159 95
-214 34 122 35 163
-215 122 18 95 19
-216 134 135 159 163
-217 149 226 228 130
-218 79 50 52 108
-219 79 149 182 183
-220 26 28 108 130
-221 244 161 153 164
-222 22 94 96 118
-223 22 150 152 153
-224 244 106 107 118
-225 67 100 101 104
-226 166 245 248 217
-227 67 166 14 15
-228 110 100 112 217
-229 256 117 128 120
-230 154 155 147 171
-231 201 203 171 128
-232 188 256 147 185
-233 12 14 6 10
-234 110 178 250 251
-235 144 178 14 142
-236 110 82 6 84
-237 156 148 172 153
-238 255 127 118 119
-239 187 255 148 186
-240 202 127 204 172
-241 88 114 86 10
-242 62 250 174 175
-243 46 48 62 10
-244 221 114 224 250
-245 35 226 30 31
-246 198 58 60 52
-247 35 169 172 52
-248 198 254 255 226
-249 22 2 24 30
-250 242 244 58 234
-251 234 30 206 208
-252 44 2 58 42
-253 212 114 104 116
-254 71 248 62 63
-255 212 248 238 239
-256 232 71 104 229
0

**************