C4graphGraph forms for C4 [ 256, 76 ] = UG(ATD[256,140])

[Home] [Table] [Glossary] [Families]

On this page are computer-accessible forms for the graph C4[ 256, 76 ] = UG(ATD[256,140]).

(I) Following is a form readable by MAGMA:

g:=Graph<256|{ {12, 13}, {186, 187}, {82, 83}, {50, 51}, {44, 45}, {112, 113}, {122, 123}, {158, 159}, {36, 38}, {196, 198}, {104, 106}, {109, 111}, {116, 118}, {132, 134}, {144, 146}, {161, 163}, {1, 2}, {228, 231}, {217, 218}, {204, 207}, {89, 90}, {76, 79}, {69, 70}, {29, 30}, {1, 5}, {216, 220}, {163, 167}, {3, 7}, {2, 6}, {131, 135}, {192, 197}, {227, 230}, {35, 37}, {224, 230}, {208, 214}, {59, 61}, {115, 117}, {211, 212}, {227, 235}, {183, 190}, {193, 200}, {80, 90}, {192, 202}, {135, 141}, {214, 221}, {2, 14}, {246, 250}, {4, 8}, {3, 15}, {151, 154}, {229, 232}, {197, 200}, {181, 187}, {52, 59}, {211, 220}, {147, 156}, {203, 219}, {225, 241}, {139, 154}, {166, 180}, {4, 16}, {13, 25}, {12, 24}, {7, 19}, {6, 18}, {5, 17}, {32, 54}, {236, 250}, {47, 57}, {232, 255}, {233, 254}, {97, 121}, {128, 153}, {235, 242}, {129, 152}, {9, 18}, {33, 58}, {8, 20}, {11, 23}, {10, 22}, {9, 21}, {107, 119}, {138, 151}, {78, 80}, {237, 243}, {192, 222}, {164, 186}, {136, 150}, {226, 253}, {30, 62}, {223, 255}, {31, 63}, {141, 173}, {14, 47}, {28, 61}, {26, 59}, {24, 57}, {22, 55}, {20, 53}, {18, 51}, {16, 49}, {133, 164}, {5, 39}, {9, 43}, {8, 42}, {152, 186}, {13, 46}, {25, 58}, {21, 54}, {17, 50}, {81, 117}, {133, 161}, {76, 105}, {142, 171}, {10, 44}, {88, 126}, {11, 45}, {19, 52}, {197, 226}, {27, 60}, {155, 188}, {74, 98}, {215, 255}, {26, 51}, {72, 97}, {28, 53}, {153, 179}, {22, 61}, {214, 253}, {213, 254}, {64, 109}, {144, 189}, {6, 40}, {69, 107}, {7, 41}, {146, 188}, {23, 56}, {70, 105}, {27, 52}, {137, 166}, {140, 163}, {75, 123}, {223, 239}, {220, 236}, {213, 229}, {3, 50}, {219, 234}, {73, 120}, {71, 117}, {216, 234}, {205, 255}, {74, 121}, {140, 191}, {143, 185}, {212, 226}, {196, 242}, {69, 114}, {149, 162}, {137, 179}, {222, 228}, {194, 248}, {30, 37}, {223, 228}, {199, 252}, {221, 225}, {64, 126}, {213, 235}, {72, 118}, {65, 127}, {15, 48}, {76, 115}, {52, 117}, {176, 241}, {161, 224}, {58, 123}, {56, 121}, {54, 119}, {159, 222}, {31, 93}, {166, 228}, {63, 125}, {62, 124}, {48, 115}, {184, 251}, {183, 244}, {181, 246}, {175, 236}, {57, 122}, {53, 118}, {40, 109}, {182, 243}, {49, 116}, {42, 111}, {152, 221}, {151, 209}, {19, 84}, {185, 254}, {176, 247}, {166, 225}, {41, 110}, {39, 96}, {33, 105}, {37, 109}, {34, 106}, {145, 217}, {146, 218}, {177, 248}, {38, 108}, {175, 229}, {150, 220}, {45, 102}, {178, 249}, {168, 227}, {19, 95}, {165, 233}, {158, 210}, {16, 93}, {153, 212}, {37, 107}, {187, 245}, {180, 250}, {149, 219}, {17, 94}, {55, 120}, {172, 252}, {29, 76}, {170, 251}, {168, 249}, {27, 73}, {128, 210}, {129, 211}, {136, 218}, {149, 199}, {15, 92}, {174, 253}, {25, 77}, {14, 91}, {167, 242}, {165, 240}, {130, 212}, {142, 216}, {155, 204}, {160, 248}, {35, 122}, {148, 205}, {43, 112}, {144, 203}, {137, 213}, {188, 224}, {138, 214}, {139, 215}, {147, 207}, {157, 193}, {44, 113}, {167, 250}, {47, 114}, {132, 219}, {164, 251}, {177, 209}, {33, 64}, {35, 66}, {38, 68}, {34, 65}, {140, 232}, {145, 245}, {146, 246}, {36, 67}, {159, 247}, {161, 201}, {153, 240}, {179, 218}, {130, 232}, {62, 85}, {27, 119}, {174, 195}, {60, 82}, {142, 225}, {143, 224}, {160, 207}, {1, 113}, {46, 94}, {131, 242}, {169, 216}, {1, 115}, {44, 95}, {134, 245}, {157, 238}, {20, 96}, {39, 83}, {23, 99}, {22, 98}, {21, 97}, {40, 93}, {150, 227}, {30, 104}, {51, 69}, {49, 71}, {10, 114}, {48, 72}, {54, 79}, {189, 196}, {138, 243}, {33, 91}, {156, 230}, {157, 231}, {28, 103}, {185, 194}, {162, 217}, {24, 100}, {32, 92}, {26, 102}, {25, 101}, {5, 120}, {191, 194}, {147, 238}, {11, 116}, {46, 81}, {139, 244}, {160, 223}, {40, 169}, {42, 171}, {99, 226}, {17, 147}, {47, 173}, {46, 172}, {41, 170}, {77, 206}, {61, 190}, {105, 234}, {56, 176}, {59, 177}, {89, 211}, {100, 239}, {63, 178}, {125, 240}, {87, 217}, {103, 233}, {39, 168}, {127, 238}, {83, 193}, {94, 205}, {116, 231}, {92, 200}, {114, 230}, {101, 240}, {18, 132}, {127, 233}, {16, 136}, {55, 175}, {93, 199}, {125, 231}, {81, 202}, {56, 165}, {67, 222}, {49, 174}, {110, 241}, {60, 156}, {84, 244}, {48, 145}, {97, 192}, {99, 194}, {6, 164}, {102, 196}, {103, 197}, {11, 168}, {98, 193}, {110, 202}, {111, 203}, {9, 172}, {88, 253}, {101, 195}, {50, 154}, {66, 234}, {23, 190}, {96, 201}, {53, 156}, {102, 204}, {83, 248}, {14, 162}, {87, 251}, {55, 155}, {125, 208}, {28, 178}, {104, 198}, {124, 210}, {127, 209}, {71, 247}, {103, 215}, {95, 238}, {13, 191}, {12, 184}, {43, 158}, {89, 239}, {91, 237}, {121, 207}, {78, 249}, {62, 135}, {84, 237}, {63, 134}, {119, 206}, {77, 247}, {41, 148}, {75, 244}, {113, 206}, {42, 235}, {112, 177}, {66, 128}, {85, 151}, {67, 129}, {108, 174}, {71, 132}, {100, 167}, {2, 198}, {7, 195}, {3, 199}, {70, 131}, {68, 130}, {79, 136}, {104, 175}, {4, 204}, {24, 209}, {84, 158}, {4, 200}, {75, 135}, {74, 134}, {73, 133}, {65, 141}, {108, 160}, {96, 173}, {34, 237}, {35, 243}, {31, 206}, {36, 246}, {106, 184}, {26, 201}, {100, 183}, {101, 182}, {29, 201}, {86, 130}, {126, 170}, {31, 202}, {78, 155}, {21, 195}, {89, 143}, {38, 241}, {77, 154}, {99, 180}, {32, 249}, {87, 142}, {85, 140}, {82, 139}, {80, 137}, {68, 157}, {36, 254}, {81, 138}, {86, 141}, {57, 229}, {74, 150}, {73, 149}, {12, 210}, {108, 178}, {124, 162}, {15, 208}, {98, 189}, {94, 190}, {95, 191}, {29, 252}, {87, 182}, {72, 169}, {126, 159}, {112, 148}, {124, 152}, {106, 143}, {118, 144}, {58, 221}, {90, 189}, {78, 169}, {86, 188}, {32, 203}, {80, 187}, {92, 176}, {88, 181}, {110, 128}, {111, 129}, {34, 205}, {123, 148}, {75, 185}, {64, 179}, {68, 183}, {65, 180}, {79, 186}, {67, 182}, {10, 252}, {66, 181}, {90, 173}, {20, 236}, {91, 163}, {45, 215}, {60, 198}, {107, 145}, {43, 208}, {120, 131}, {8, 245}, {86, 171}, {70, 184}, {82, 172}, {85, 170}, {122, 133}, {88, 256}, {165, 256}, {171, 256}, {239, 256} }>;

(II) A more general form is to represent the graph as the orbit of {12, 13} under the group generated by the following permutations:

a: (2, 5)(3, 9)(4, 12)(6, 17)(7, 21)(8, 24)(10, 29)(11, 33)(13, 16)(14, 39)(15, 43)(18, 50)(19, 54)(20, 57)(22, 30)(23, 64)(25, 49)(26, 69)(28, 35)(31, 81)(32, 84)(34, 78)(37, 61)(38, 67)(40, 94)(41, 97)(42, 100)(44, 76)(45, 105)(46, 93)(47, 96)(48, 112)(52, 119)(53, 122)(55, 104)(56, 126)(58, 116)(59, 107)(60, 73)(62, 98)(63, 138)(65, 80)(66, 103)(68, 129)(70, 102)(71, 77)(72, 148)(74, 85)(75, 144)(79, 95)(82, 149)(83, 162)(86, 89)(87, 160)(88, 165)(90, 141)(91, 168)(92, 158)(99, 179)(101, 174)(106, 155)(108, 182)(109, 190)(110, 192)(111, 183)(113, 115)(114, 201)(117, 206)(118, 123)(120, 198)(121, 170)(124, 193)(125, 214)(127, 187)(128, 197)(130, 211)(131, 196)(132, 154)(133, 156)(134, 151)(135, 189)(136, 191)(137, 180)(139, 219)(140, 150)(142, 223)(143, 188)(145, 177)(146, 185)(147, 164)(152, 157)(153, 226)(159, 176)(161, 230)(163, 227)(167, 235)(169, 205)(171, 239)(172, 199)(178, 243)(181, 233)(184, 204)(186, 238)(194, 218)(200, 210)(203, 244)(207, 251)(209, 245)(213, 250)(215, 234)(216, 255)(217, 248)(220, 232)(221, 231)(222, 241)(225, 228)(229, 236)(237, 249)(240, 253)(246, 254)
b: (1, 2, 6, 18, 51, 69, 107, 119, 27, 73, 149, 199, 252, 29, 76, 115)(3, 10, 30, 79, 117, 5, 14, 40, 9, 26, 70, 145, 206, 60, 133, 219)(4, 13, 20, 58, 118, 148, 189, 170, 74, 151, 227, 243, 249, 84, 155, 210)(7, 22, 62, 136, 81, 39, 91, 169, 43, 102, 184, 245, 77, 156, 122, 203)(8, 25, 53, 123, 144, 41, 98, 85, 150, 138, 168, 237, 78, 158, 204, 12)(11, 34, 80, 159, 207, 24, 42, 101, 28, 75, 146, 110, 193, 140, 220, 214)(15, 44, 104, 186, 71, 17, 47, 109, 21, 59, 131, 217, 31, 82, 161, 234)(16, 46, 96, 33, 72, 112, 196, 251, 134, 154, 230, 35, 32, 19, 55, 124)(23, 65, 137, 222, 160, 100, 171, 240, 103, 185, 246, 241, 157, 232, 211, 253)(36, 38, 68, 130, 212, 226, 99, 180, 166, 228, 223, 239, 256, 165, 233, 254)(37, 54, 52, 120, 162, 93, 172, 201, 105, 48, 113, 198, 164, 132, 50, 114)(45, 106, 187, 247, 147, 57, 111, 195, 61, 135, 218, 202, 83, 163, 216, 208)(49, 94, 173, 64, 97, 177, 242, 87, 63, 139, 224, 66, 92, 95, 175, 152)(56, 127, 213, 67, 108, 183, 86, 153, 197, 194, 250, 225, 231, 255, 89, 88)(90, 126, 121, 209, 235, 182, 178, 244, 188, 128, 200, 191, 236, 221, 116, 205)(125, 215, 143, 181, 176, 238, 229, 129, 174, 190, 141, 179, 192, 248, 167, 142)
c: (2, 115)(3, 114)(4, 12)(5, 113)(6, 76)(7, 230)(8, 210)(9, 201)(10, 50)(11, 205)(13, 204)(14, 48)(15, 47)(16, 184)(17, 44)(18, 29)(19, 156)(20, 158)(21, 161)(22, 154)(23, 255)(24, 200)(25, 155)(26, 172)(28, 244)(30, 132)(31, 131)(32, 122)(33, 169)(34, 116)(35, 203)(37, 219)(38, 254)(39, 112)(40, 105)(41, 227)(42, 128)(43, 96)(45, 94)(46, 102)(49, 106)(51, 252)(52, 60)(53, 84)(54, 133)(55, 77)(56, 232)(57, 92)(58, 78)(59, 82)(61, 139)(62, 134)(63, 135)(64, 216)(65, 231)(66, 111)(67, 246)(68, 233)(69, 199)(70, 93)(71, 104)(72, 91)(73, 119)(74, 85)(75, 178)(79, 164)(80, 221)(81, 196)(83, 177)(86, 240)(87, 218)(88, 211)(89, 253)(90, 214)(95, 147)(97, 163)(98, 151)(99, 223)(100, 197)(101, 188)(103, 183)(107, 149)(108, 185)(109, 234)(110, 235)(117, 198)(118, 237)(120, 206)(121, 140)(123, 249)(124, 245)(125, 141)(126, 220)(127, 157)(129, 181)(130, 165)(136, 251)(137, 225)(138, 189)(142, 179)(143, 174)(144, 243)(145, 162)(146, 182)(148, 168)(150, 170)(152, 187)(153, 171)(159, 236)(160, 194)(167, 192)(173, 208)(175, 247)(176, 229)(180, 228)(190, 215)(191, 207)(193, 209)(195, 224)(202, 242)(212, 256)(213, 241)(222, 250)(226, 239)

(III) Last is Groups&Graphs. Copy everything between (not including) the lines of asterisks into a plain text file and save it as "graph.txt". Then launch G&G (Groups&Graphs) and select Read Text from the File menu.

**************

&Graph
C4[ 256, 76 ]
256
-1 2 113 5 115
-2 198 1 14 6
-3 199 15 50 7
-4 200 16 204 8
-5 1 17 39 120
-6 2 18 40 164
-7 3 19 41 195
-8 245 4 20 42
-9 18 172 21 43
-10 22 44 114 252
-11 23 45 168 116
-12 210 13 24 184
-13 12 46 25 191
-14 2 47 91 162
-15 3 48 92 208
-16 4 136 49 93
-17 147 5 50 94
-18 132 6 51 9
-19 7 84 95 52
-20 236 8 96 53
-21 195 9 97 54
-22 55 61 10 98
-23 11 99 56 190
-24 209 12 100 57
-25 77 13 101 58
-26 102 201 59 51
-27 60 73 52 119
-28 178 103 61 53
-29 201 30 76 252
-30 37 104 29 62
-31 202 93 63 206
-32 92 203 249 54
-33 58 91 105 64
-34 237 106 205 65
-35 66 122 243 37
-36 67 254 246 38
-37 35 30 107 109
-38 68 36 108 241
-39 168 5 83 96
-40 169 93 6 109
-41 110 148 170 7
-42 111 235 171 8
-43 112 158 9 208
-44 45 113 95 10
-45 11 44 102 215
-46 13 81 94 172
-47 57 14 114 173
-48 145 15 115 72
-49 16 71 116 174
-50 154 3 17 51
-51 69 26 50 18
-52 59 27 117 19
-53 156 28 118 20
-54 79 119 21 32
-55 22 155 120 175
-56 121 165 176 23
-57 122 24 47 229
-58 33 221 123 25
-59 177 26 61 52
-60 198 156 27 82
-61 22 190 59 28
-62 124 135 30 85
-63 134 178 125 31
-64 33 179 126 109
-65 34 180 127 141
-66 35 234 181 128
-67 222 36 182 129
-68 157 38 183 130
-69 70 114 51 107
-70 69 105 184 131
-71 132 49 247 117
-72 48 169 118 97
-73 133 27 149 120
-74 121 134 150 98
-75 123 244 135 185
-76 79 115 105 29
-77 154 25 247 206
-78 155 80 169 249
-79 136 54 76 186
-80 187 78 90 137
-81 46 202 138 117
-82 60 83 139 172
-83 82 39 193 248
-84 244 158 237 19
-85 170 62 140 151
-86 188 171 130 141
-87 182 217 251 142
-88 253 256 126 181
-89 143 90 211 239
-90 89 189 80 173
-91 33 14 237 163
-92 176 200 15 32
-93 199 16 40 31
-94 46 190 17 205
-95 44 191 238 19
-96 201 39 173 20
-97 121 192 72 21
-98 22 189 193 74
-99 23 180 226 194
-100 24 167 183 239
-101 25 182 195 240
-102 45 26 204 196
-103 233 28 215 197
-104 198 106 30 175
-105 33 234 70 76
-106 143 34 104 184
-107 145 69 37 119
-108 178 38 160 174
-109 111 37 40 64
-110 202 128 41 241
-111 203 129 42 109
-112 177 113 148 43
-113 44 1 112 206
-114 47 69 10 230
-115 1 48 117 76
-116 11 231 49 118
-117 81 71 115 52
-118 144 72 116 53
-119 27 107 206 54
-120 55 5 73 131
-121 56 74 97 207
-122 133 35 57 123
-123 122 58 148 75
-124 210 62 162 152
-125 231 63 240 208
-126 88 159 170 64
-127 209 233 238 65
-128 66 110 210 153
-129 67 111 211 152
-130 232 68 212 86
-131 242 135 70 120
-132 134 71 18 219
-133 122 73 161 164
-134 132 245 63 74
-135 62 75 141 131
-136 79 16 150 218
-137 166 80 179 213
-138 243 81 214 151
-139 154 244 82 215
-140 232 191 85 163
-141 135 173 86 65
-142 225 171 216 87
-143 89 224 106 185
-144 189 146 203 118
-145 245 48 107 217
-146 144 188 246 218
-147 156 17 238 207
-148 112 123 205 41
-149 199 73 162 219
-150 220 136 227 74
-151 154 209 138 85
-152 221 124 129 186
-153 179 212 128 240
-154 77 50 139 151
-155 55 78 188 204
-156 147 60 53 230
-157 231 68 193 238
-158 210 159 84 43
-159 222 158 126 247
-160 223 248 108 207
-161 133 201 224 163
-162 14 124 149 217
-163 167 91 161 140
-164 133 6 251 186
-165 56 233 256 240
-166 180 137 225 228
-167 242 100 250 163
-168 11 39 227 249
-169 78 72 40 216
-170 126 41 85 251
-171 256 42 86 142
-172 46 82 9 252
-173 90 47 96 141
-174 253 49 195 108
-175 55 104 236 229
-176 56 92 247 241
-177 209 112 59 248
-178 28 249 63 108
-179 137 64 218 153
-180 99 166 250 65
-181 66 88 187 246
-182 67 243 101 87
-183 100 68 244 190
-184 12 70 106 251
-185 143 254 194 75
-186 187 79 152 164
-187 80 245 181 186
-188 155 146 224 86
-189 144 90 196 98
-190 23 61 94 183
-191 13 95 194 140
-192 222 202 97 197
-193 200 157 83 98
-194 99 191 248 185
-195 101 7 174 21
-196 198 242 189 102
-197 200 103 192 226
-198 2 60 104 196
-199 3 93 149 252
-200 4 92 193 197
-201 26 29 161 96
-202 110 81 192 31
-203 111 144 32 219
-204 155 102 4 207
-205 34 255 148 94
-206 77 113 31 119
-207 121 147 160 204
-208 15 125 214 43
-209 177 24 127 151
-210 12 124 158 128
-211 220 89 212 129
-212 211 226 130 153
-213 254 235 137 229
-214 253 221 138 208
-215 45 255 103 139
-216 220 234 169 142
-217 145 162 218 87
-218 146 179 136 217
-219 132 234 203 149
-220 211 236 150 216
-221 58 214 225 152
-222 67 159 192 228
-223 255 160 228 239
-224 143 188 161 230
-225 166 221 142 241
-226 99 253 212 197
-227 168 235 150 230
-228 231 166 222 223
-229 232 57 213 175
-230 156 114 224 227
-231 157 125 116 228
-232 255 140 130 229
-233 165 254 103 127
-234 66 105 216 219
-235 242 213 227 42
-236 220 250 20 175
-237 34 243 91 84
-238 157 147 127 95
-239 89 100 223 256
-240 165 101 125 153
-241 110 176 38 225
-242 167 235 196 131
-243 35 138 182 237
-244 84 139 183 75
-245 187 134 145 8
-246 36 146 181 250
-247 77 176 71 159
-248 177 83 160 194
-249 78 178 168 32
-250 167 180 246 236
-251 170 184 87 164
-252 199 29 172 10
-253 88 214 226 174
-254 233 36 213 185
-255 232 223 215 205
-256 88 165 171 239
0

**************