C4graphGraph forms for C4 [ 256, 77 ] = UG(ATD[256,143])

[Home] [Table] [Glossary] [Families]

On this page are computer-accessible forms for the graph C4[ 256, 77 ] = UG(ATD[256,143]).

(I) Following is a form readable by MAGMA:

g:=Graph<256|{ {16, 17}, {254, 255}, {248, 249}, {238, 239}, {220, 221}, {216, 217}, {212, 213}, {182, 183}, {100, 101}, {86, 87}, {62, 63}, {60, 61}, {24, 25}, {110, 111}, {118, 119}, {126, 127}, {142, 143}, {152, 153}, {41, 43}, {193, 195}, {192, 194}, {160, 162}, {161, 163}, {1, 2}, {221, 222}, {185, 186}, {89, 90}, {45, 46}, {121, 122}, {128, 131}, {133, 134}, {149, 150}, {203, 207}, {233, 237}, {1, 4}, {225, 228}, {211, 214}, {67, 70}, {65, 68}, {3, 6}, {42, 44}, {154, 156}, {2, 5}, {251, 252}, {243, 244}, {235, 236}, {194, 197}, {187, 188}, {66, 69}, {40, 47}, {8, 15}, {215, 223}, {3, 10}, {82, 91}, {54, 63}, {7, 14}, {5, 12}, {103, 110}, {146, 155}, {148, 157}, {180, 190}, {245, 255}, {244, 254}, {209, 219}, {2, 9}, {246, 253}, {85, 94}, {6, 13}, {242, 254}, {16, 29}, {247, 250}, {22, 27}, {114, 124}, {179, 189}, {115, 125}, {166, 168}, {4, 11}, {71, 72}, {39, 40}, {17, 30}, {7, 8}, {38, 54}, {236, 252}, {202, 218}, {172, 188}, {171, 187}, {128, 145}, {235, 250}, {225, 240}, {6, 20}, {224, 242}, {201, 219}, {105, 123}, {11, 24}, {238, 253}, {232, 251}, {227, 240}, {226, 241}, {15, 28}, {136, 155}, {137, 154}, {100, 112}, {200, 220}, {104, 124}, {12, 25}, {233, 252}, {227, 246}, {207, 218}, {65, 84}, {14, 27}, {4, 18}, {35, 53}, {34, 52}, {9, 31}, {5, 19}, {13, 26}, {229, 242}, {170, 189}, {138, 157}, {139, 156}, {36, 60}, {224, 248}, {135, 159}, {167, 190}, {232, 241}, {37, 63}, {197, 223}, {196, 222}, {33, 61}, {228, 248}, {34, 62}, {8, 21}, {231, 250}, {10, 23}, {37, 59}, {175, 177}, {9, 22}, {234, 245}, {230, 249}, {202, 234}, {208, 240}, {203, 235}, {19, 50}, {205, 236}, {192, 225}, {25, 56}, {23, 54}, {21, 52}, {130, 163}, {132, 165}, {142, 175}, {153, 184}, {30, 60}, {90, 120}, {73, 107}, {18, 49}, {210, 241}, {206, 237}, {26, 57}, {22, 53}, {129, 162}, {68, 96}, {70, 98}, {69, 97}, {31, 58}, {28, 58}, {198, 224}, {89, 127}, {88, 126}, {29, 59}, {20, 51}, {211, 244}, {131, 164}, {80, 120}, {223, 247}, {222, 246}, {93, 117}, {151, 191}, {140, 165}, {10, 32}, {81, 123}, {78, 100}, {76, 102}, {15, 37}, {14, 36}, {11, 33}, {72, 99}, {195, 232}, {86, 125}, {82, 121}, {144, 187}, {146, 185}, {149, 190}, {92, 112}, {204, 224}, {150, 186}, {74, 103}, {216, 245}, {198, 235}, {196, 233}, {87, 122}, {145, 188}, {12, 34}, {201, 231}, {65, 111}, {64, 110}, {30, 48}, {13, 35}, {135, 169}, {147, 189}, {148, 186}, {24, 55}, {220, 243}, {197, 234}, {85, 122}, {83, 124}, {154, 170}, {18, 35}, {25, 43}, {71, 117}, {70, 116}, {67, 113}, {66, 112}, {29, 47}, {28, 46}, {128, 178}, {129, 179}, {132, 182}, {19, 32}, {151, 164}, {19, 39}, {210, 230}, {21, 33}, {134, 178}, {208, 229}, {26, 44}, {69, 115}, {68, 114}, {27, 45}, {130, 180}, {131, 181}, {138, 188}, {17, 38}, {80, 103}, {143, 184}, {73, 113}, {218, 226}, {79, 119}, {136, 176}, {158, 166}, {76, 117}, {212, 237}, {88, 98}, {213, 239}, {141, 183}, {77, 118}, {20, 40}, {211, 239}, {95, 99}, {93, 97}, {92, 96}, {137, 181}, {23, 42}, {206, 243}, {81, 108}, {139, 182}, {144, 173}, {147, 174}, {72, 118}, {83, 109}, {158, 160}, {159, 161}, {22, 41}, {209, 238}, {84, 107}, {75, 116}, {134, 199}, {139, 200}, {143, 201}, {140, 192}, {141, 194}, {59, 107}, {180, 228}, {179, 227}, {158, 206}, {159, 207}, {56, 105}, {176, 225}, {61, 108}, {183, 229}, {52, 103}, {177, 226}, {62, 109}, {57, 106}, {49, 100}, {51, 102}, {152, 205}, {31, 73}, {50, 101}, {146, 202}, {191, 231}, {152, 193}, {150, 204}, {157, 199}, {55, 104}, {185, 230}, {148, 203}, {49, 81}, {182, 214}, {50, 83}, {169, 200}, {58, 91}, {56, 89}, {162, 195}, {164, 197}, {33, 67}, {62, 92}, {60, 94}, {53, 87}, {35, 64}, {57, 90}, {165, 198}, {170, 206}, {51, 86}, {39, 65}, {177, 215}, {176, 214}, {48, 86}, {61, 90}, {63, 88}, {163, 196}, {36, 76}, {178, 218}, {53, 93}, {47, 71}, {46, 70}, {39, 79}, {38, 78}, {37, 77}, {167, 207}, {34, 75}, {54, 95}, {44, 69}, {169, 192}, {32, 74}, {40, 66}, {173, 198}, {179, 216}, {180, 217}, {186, 215}, {181, 219}, {183, 217}, {43, 68}, {55, 88}, {161, 208}, {173, 220}, {163, 210}, {165, 212}, {187, 201}, {162, 209}, {174, 221}, {58, 79}, {138, 255}, {57, 78}, {164, 211}, {48, 72}, {191, 199}, {181, 205}, {172, 212}, {56, 64}, {168, 208}, {41, 80}, {171, 210}, {45, 84}, {43, 82}, {42, 81}, {174, 213}, {46, 85}, {184, 196}, {55, 74}, {178, 204}, {191, 193}, {44, 83}, {123, 251}, {3, 137}, {16, 155}, {76, 195}, {106, 251}, {104, 253}, {36, 185}, {78, 239}, {94, 252}, {8, 171}, {77, 238}, {91, 255}, {95, 246}, {67, 232}, {17, 189}, {1, 172}, {71, 234}, {7, 168}, {107, 222}, {14, 184}, {75, 253}, {74, 242}, {7, 190}, {64, 249}, {66, 254}, {29, 160}, {16, 175}, {48, 241}, {105, 168}, {20, 215}, {101, 166}, {106, 169}, {3, 199}, {30, 219}, {111, 170}, {13, 202}, {50, 245}, {4, 204}, {21, 221}, {10, 194}, {1, 200}, {2, 203}, {77, 135}, {73, 133}, {109, 161}, {75, 134}, {93, 144}, {95, 145}, {126, 176}, {127, 177}, {79, 128}, {104, 167}, {6, 214}, {92, 143}, {124, 175}, {89, 141}, {45, 248}, {91, 142}, {112, 167}, {121, 174}, {52, 236}, {80, 136}, {114, 171}, {121, 160}, {119, 173}, {82, 137}, {94, 133}, {87, 140}, {125, 166}, {41, 247}, {85, 139}, {84, 138}, {18, 205}, {47, 240}, {115, 172}, {26, 250}, {110, 142}, {5, 228}, {98, 131}, {96, 129}, {102, 135}, {15, 237}, {59, 217}, {97, 130}, {23, 243}, {120, 158}, {38, 193}, {99, 132}, {108, 132}, {117, 156}, {114, 152}, {115, 153}, {51, 216}, {113, 154}, {118, 157}, {9, 229}, {11, 231}, {122, 151}, {49, 223}, {119, 153}, {116, 155}, {24, 233}, {96, 146}, {97, 147}, {108, 159}, {123, 136}, {32, 213}, {101, 144}, {98, 148}, {99, 149}, {102, 145}, {12, 244}, {111, 151}, {27, 226}, {31, 230}, {116, 141}, {105, 147}, {120, 130}, {42, 209}, {109, 150}, {126, 133}, {113, 140}, {127, 129}, {28, 227}, {106, 149}, {125, 256}, {156, 256}, {247, 256}, {249, 256} }>;

(II) A more general form is to represent the graph as the orbit of {16, 17} under the group generated by the following permutations:

a: (2, 4)(3, 7)(5, 11)(6, 14)(8, 10)(9, 18)(12, 24)(13, 27)(15, 23)(17, 29)(19, 33)(20, 36)(21, 32)(22, 35)(26, 45)(28, 42)(30, 47)(31, 49)(34, 55)(37, 54)(38, 59)(39, 61)(40, 60)(41, 64)(43, 56)(44, 46)(48, 71)(50, 67)(51, 76)(52, 74)(57, 84)(58, 81)(62, 88)(65, 90)(66, 94)(68, 89)(69, 85)(70, 83)(73, 100)(75, 104)(77, 95)(78, 107)(79, 108)(80, 110)(82, 105)(86, 117)(87, 93)(91, 123)(92, 126)(96, 127)(97, 122)(98, 109)(99, 118)(101, 113)(106, 138)(111, 120)(112, 133)(114, 141)(115, 139)(116, 124)(119, 132)(121, 147)(125, 156)(128, 159)(130, 151)(131, 161)(134, 167)(135, 145)(136, 142)(137, 168)(140, 144)(143, 176)(146, 177)(148, 150)(149, 157)(152, 183)(153, 182)(154, 166)(155, 175)(158, 170)(160, 189)(162, 179)(163, 164)(165, 173)(169, 188)(171, 194)(172, 200)(178, 207)(180, 191)(181, 208)(184, 214)(185, 215)(187, 192)(190, 199)(193, 217)(195, 216)(196, 211)(197, 210)(201, 225)(202, 226)(203, 204)(205, 229)(209, 227)(212, 220)(213, 221)(219, 240)(222, 239)(223, 230)(224, 235)(228, 231)(232, 245)(233, 244)(234, 241)(236, 242)(237, 243)(238, 246)(247, 249)(248, 250)(251, 255)(252, 254)
b: (2, 172)(4, 200)(5, 188)(6, 137)(8, 190)(9, 115)(10, 199)(11, 169)(12, 145)(13, 154)(14, 168)(15, 167)(17, 155)(18, 139)(19, 138)(20, 82)(21, 149)(22, 125)(23, 134)(24, 135)(25, 102)(26, 113)(27, 166)(28, 112)(29, 175)(30, 136)(31, 69)(32, 157)(33, 106)(34, 95)(35, 156)(36, 105)(37, 104)(38, 116)(39, 255)(40, 91)(41, 86)(42, 133)(43, 51)(44, 73)(45, 101)(46, 100)(47, 142)(48, 80)(49, 85)(50, 84)(52, 99)(53, 256)(54, 75)(55, 77)(56, 76)(57, 67)(58, 66)(59, 124)(60, 123)(61, 251)(62, 246)(63, 253)(64, 117)(65, 245)(68, 216)(70, 78)(71, 110)(72, 103)(74, 118)(79, 254)(81, 94)(83, 107)(87, 247)(88, 238)(89, 195)(90, 232)(92, 227)(93, 249)(96, 179)(97, 230)(98, 239)(108, 252)(109, 222)(111, 234)(114, 217)(119, 242)(120, 241)(121, 215)(122, 223)(126, 209)(127, 162)(128, 244)(130, 210)(131, 211)(132, 236)(140, 250)(141, 193)(143, 240)(144, 248)(146, 189)(147, 185)(148, 213)(150, 221)(151, 197)(152, 183)(153, 229)(158, 226)(159, 233)(160, 177)(161, 196)(165, 235)(170, 202)(171, 180)(173, 224)(174, 186)(176, 219)(178, 243)(181, 214)(182, 205)(184, 208)(187, 228)(191, 194)(192, 231)(201, 225)(203, 212)(204, 220)(206, 218)(207, 237)
c: (1, 2, 5, 12, 25, 43, 68, 96, 129, 162, 195, 76, 102, 135, 169, 200)(3, 8, 13, 28, 44, 70, 97, 131, 163, 197, 222, 49, 73, 101, 134, 168)(4, 9, 19, 34, 56, 82, 114, 146, 179, 209, 232, 117, 145, 159, 192, 220)(6, 15, 26, 46, 69, 98, 130, 164, 196, 223, 107, 100, 133, 166, 199, 7)(10, 21, 35, 58, 83, 116, 147, 181, 210, 234, 246, 81, 113, 144, 178, 208)(11, 22, 39, 62, 89, 121, 152, 185, 216, 238, 251, 156, 188, 207, 225, 243)(14, 20, 37, 57, 85, 115, 148, 180, 211, 233, 247, 84, 112, 126, 158, 191)(16, 17, 30, 48, 72, 99, 132, 165, 198, 224, 242, 74, 103, 110, 142, 175)(18, 31, 50, 75, 105, 137, 171, 202, 227, 42, 67, 93, 128, 161, 194, 221)(23, 33, 53, 79, 109, 141, 174, 205, 230, 245, 253, 123, 154, 187, 218, 240)(24, 41, 65, 92, 127, 160, 193, 36, 51, 77, 106, 139, 172, 203, 228, 244)(27, 40, 63, 90, 122, 153, 186, 217, 239, 252, 256, 138, 167, 176, 206, 231)(29, 38, 60, 86, 118, 149, 182, 212, 235, 248, 254, 55, 80, 111, 143, 177)(32, 52, 64, 91, 124, 155, 189, 219, 241, 71, 95, 108, 140, 173, 204, 229)(45, 66, 88, 120, 151, 184, 215, 59, 78, 94, 125, 157, 190, 214, 237, 250)(47, 54, 61, 87, 119, 150, 183, 213, 236, 249, 255, 104, 136, 170, 201, 226)

(III) Last is Groups&Graphs. Copy everything between (not including) the lines of asterisks into a plain text file and save it as "graph.txt". Then launch G&G (Groups&Graphs) and select Read Text from the File menu.

**************

&Graph
C4[ 256, 77 ]
256
-1 2 200 4 172
-2 1 5 203 9
-3 199 137 6 10
-4 11 1 204 18
-5 12 2 19 228
-6 13 3 214 20
-7 14 168 190 8
-8 15 171 7 21
-9 22 2 31 229
-10 23 3 194 32
-11 33 231 24 4
-12 34 244 25 5
-13 35 26 202 6
-14 36 27 7 184
-15 37 28 237 8
-16 155 17 29 175
-17 189 16 38 30
-18 35 4 49 205
-19 5 39 50 32
-20 6 215 40 51
-21 33 221 8 52
-22 27 41 9 53
-23 243 42 10 54
-24 11 55 233 25
-25 12 56 24 43
-26 44 13 57 250
-27 22 45 14 226
-28 46 58 15 227
-29 47 59 16 160
-30 48 60 17 219
-31 58 73 9 230
-32 213 19 74 10
-33 11 67 61 21
-34 12 62 52 75
-35 13 18 53 64
-36 14 60 185 76
-37 77 15 59 63
-38 78 17 193 54
-39 79 40 19 65
-40 66 47 39 20
-41 22 80 247 43
-42 44 209 23 81
-43 68 25 82 41
-44 69 26 83 42
-45 46 27 248 84
-46 45 70 28 85
-47 71 29 40 240
-48 72 30 86 241
-49 100 223 81 18
-50 101 245 83 19
-51 102 216 20 86
-52 34 103 236 21
-53 22 35 93 87
-54 23 38 95 63
-55 88 24 104 74
-56 89 25 105 64
-57 78 90 26 106
-58 79 91 28 31
-59 37 29 107 217
-60 36 61 94 30
-61 33 90 60 108
-62 34 92 63 109
-63 88 37 62 54
-64 110 56 35 249
-65 111 68 39 84
-66 254 112 69 40
-67 33 232 113 70
-68 114 96 43 65
-69 44 66 115 97
-70 67 46 116 98
-71 47 234 72 117
-72 99 48 71 118
-73 133 113 107 31
-74 55 242 103 32
-75 253 34 134 116
-76 36 102 117 195
-77 135 37 238 118
-78 100 57 38 239
-79 58 39 128 119
-80 103 136 41 120
-81 123 49 42 108
-82 121 91 137 43
-83 44 124 50 109
-84 45 138 107 65
-85 122 46 94 139
-86 48 125 51 87
-87 122 140 53 86
-88 55 126 63 98
-89 56 90 127 141
-90 89 57 61 120
-91 255 58 82 142
-92 143 112 62 96
-93 144 117 53 97
-94 133 60 85 252
-95 99 145 246 54
-96 68 146 92 129
-97 69 147 93 130
-98 88 70 148 131
-99 132 72 149 95
-100 78 101 112 49
-101 100 144 166 50
-102 145 135 51 76
-103 110 80 52 74
-104 55 253 167 124
-105 56 123 168 147
-106 57 169 149 251
-107 222 59 73 84
-108 132 81 159 61
-109 83 62 150 161
-110 111 103 64 142
-111 110 170 151 65
-112 66 100 167 92
-113 154 67 73 140
-114 68 124 171 152
-115 69 125 172 153
-116 155 70 75 141
-117 156 71 93 76
-118 77 157 72 119
-119 79 118 173 153
-120 90 80 158 130
-121 122 82 160 174
-122 121 85 151 87
-123 81 136 105 251
-124 114 104 83 175
-125 166 256 115 86
-126 88 176 133 127
-127 89 177 126 129
-128 79 145 178 131
-129 179 127 96 162
-130 180 97 163 120
-131 181 128 98 164
-132 99 165 182 108
-133 134 126 94 73
-134 133 199 178 75
-135 77 102 169 159
-136 176 155 123 80
-137 154 3 82 181
-138 188 255 157 84
-139 156 200 182 85
-140 165 113 192 87
-141 89 116 183 194
-142 110 143 91 175
-143 201 92 184 142
-144 187 101 93 173
-145 188 102 95 128
-146 155 202 96 185
-147 189 105 97 174
-148 157 203 98 186
-149 99 190 106 150
-150 149 204 109 186
-151 111 122 191 164
-152 114 193 205 153
-153 115 184 119 152
-154 156 113 137 170
-155 146 136 16 116
-156 154 256 117 139
-157 199 148 138 118
-158 166 160 206 120
-159 135 161 108 207
-160 121 158 29 162
-161 159 163 109 208
-162 209 160 129 195
-163 210 161 130 196
-164 211 151 131 197
-165 132 198 212 140
-166 101 168 125 158
-167 112 190 104 207
-168 166 105 7 208
-169 200 135 192 106
-170 154 111 189 206
-171 187 210 114 8
-172 1 188 212 115
-173 198 220 144 119
-174 121 221 147 213
-175 177 124 16 142
-176 136 126 214 225
-177 127 215 226 175
-178 134 204 128 218
-179 189 216 227 129
-180 190 217 228 130
-181 137 205 131 219
-182 132 214 139 183
-183 182 217 141 229
-184 143 14 196 153
-185 36 146 186 230
-186 148 215 150 185
-187 144 188 201 171
-188 187 145 138 172
-189 179 147 170 17
-190 167 180 149 7
-191 231 199 193 151
-192 169 225 194 140
-193 191 38 195 152
-194 192 141 10 197
-195 232 193 162 76
-196 222 233 184 163
-197 223 234 194 164
-198 165 224 235 173
-199 134 3 157 191
-200 220 1 169 139
-201 143 187 231 219
-202 13 146 234 218
-203 2 235 148 207
-204 178 4 224 150
-205 181 236 18 152
-206 243 158 170 237
-207 167 159 203 218
-208 168 161 229 240
-209 238 162 42 219
-210 171 163 230 241
-211 244 214 239 164
-212 165 213 237 172
-213 212 239 174 32
-214 176 211 6 182
-215 177 223 20 186
-216 179 245 51 217
-217 59 180 183 216
-218 178 202 226 207
-219 209 201 181 30
-220 221 243 200 173
-221 220 222 174 21
-222 221 246 107 196
-223 49 247 215 197
-224 198 242 204 248
-225 176 192 228 240
-226 177 27 218 241
-227 179 246 28 240
-228 180 5 225 248
-229 242 183 9 208
-230 210 249 31 185
-231 11 201 191 250
-232 67 195 251 241
-233 24 237 196 252
-234 245 202 71 197
-235 198 203 236 250
-236 235 205 52 252
-237 233 212 15 206
-238 77 209 253 239
-239 78 211 213 238
-240 47 225 227 208
-241 210 232 48 226
-242 254 224 74 229
-243 220 23 244 206
-244 12 243 254 211
-245 255 234 50 216
-246 253 222 95 227
-247 223 256 41 250
-248 45 224 249 228
-249 256 248 64 230
-250 231 26 235 247
-251 232 123 106 252
-252 233 236 94 251
-253 246 104 238 75
-254 66 242 244 255
-255 254 91 245 138
-256 156 125 247 249
0

**************