C4graphGraph forms for C4 [ 256, 79 ] = UG(ATD[256,149])

[Home] [Table] [Glossary] [Families]

On this page are computer-accessible forms for the graph C4[ 256, 79 ] = UG(ATD[256,149]).

(I) Following is a form readable by MAGMA:

g:=Graph<256|{ {168, 169}, {105, 107}, {1, 2}, {45, 46}, {156, 159}, {1, 5}, {3, 7}, {2, 6}, {90, 95}, {153, 156}, {106, 108}, {226, 228}, {192, 198}, {208, 215}, {71, 79}, {117, 124}, {212, 221}, {211, 218}, {160, 170}, {4, 15}, {231, 236}, {4, 8}, {230, 234}, {228, 232}, {3, 14}, {230, 232}, {2, 13}, {55, 56}, {9, 24}, {238, 255}, {79, 94}, {108, 127}, {235, 248}, {100, 112}, {175, 187}, {174, 186}, {173, 185}, {101, 113}, {5, 16}, {229, 240}, {162, 183}, {7, 18}, {107, 126}, {6, 17}, {235, 252}, {227, 244}, {203, 211}, {46, 55}, {172, 181}, {227, 249}, {8, 19}, {42, 49}, {12, 23}, {32, 60}, {34, 62}, {33, 61}, {9, 20}, {168, 181}, {11, 22}, {10, 21}, {4, 36}, {69, 100}, {85, 116}, {132, 165}, {6, 36}, {208, 242}, {202, 232}, {74, 104}, {7, 37}, {153, 187}, {157, 191}, {11, 40}, {70, 101}, {19, 48}, {15, 44}, {133, 166}, {147, 176}, {22, 50}, {31, 59}, {30, 58}, {29, 57}, {28, 56}, {23, 51}, {12, 41}, {79, 106}, {20, 49}, {14, 43}, {146, 183}, {5, 35}, {15, 41}, {128, 166}, {13, 42}, {205, 234}, {204, 235}, {193, 230}, {68, 99}, {24, 63}, {93, 122}, {149, 189}, {150, 190}, {140, 165}, {141, 164}, {147, 186}, {74, 96}, {220, 246}, {209, 251}, {146, 185}, {24, 52}, {215, 251}, {27, 55}, {26, 54}, {25, 53}, {157, 177}, {10, 39}, {75, 102}, {8, 38}, {210, 252}, {73, 103}, {22, 57}, {206, 225}, {148, 187}, {3, 51}, {217, 233}, {67, 115}, {27, 42}, {207, 254}, {29, 44}, {141, 188}, {92, 110}, {223, 237}, {82, 97}, {128, 179}, {21, 33}, {87, 99}, {68, 113}, {150, 163}, {151, 162}, {130, 180}, {219, 237}, {209, 231}, {144, 167}, {194, 250}, {207, 247}, {64, 121}, {199, 254}, {70, 127}, {68, 125}, {66, 123}, {154, 160}, {199, 253}, {21, 46}, {158, 165}, {69, 126}, {65, 122}, {152, 163}, {192, 252}, {16, 45}, {18, 47}, {210, 236}, {17, 46}, {194, 253}, {67, 124}, {150, 169}, {136, 200}, {32, 97}, {161, 224}, {159, 222}, {41, 104}, {39, 102}, {37, 100}, {156, 221}, {43, 105}, {133, 199}, {141, 207}, {28, 95}, {162, 225}, {38, 101}, {33, 98}, {47, 107}, {191, 251}, {180, 240}, {179, 247}, {167, 227}, {166, 226}, {143, 203}, {145, 213}, {27, 94}, {170, 239}, {53, 112}, {44, 106}, {16, 87}, {169, 238}, {63, 120}, {54, 113}, {36, 99}, {17, 88}, {62, 119}, {60, 117}, {58, 115}, {40, 97}, {21, 92}, {19, 90}, {140, 197}, {23, 93}, {55, 125}, {54, 124}, {146, 216}, {147, 217}, {18, 89}, {61, 118}, {57, 114}, {41, 98}, {142, 197}, {131, 207}, {180, 248}, {179, 255}, {48, 125}, {188, 241}, {169, 228}, {149, 216}, {155, 214}, {148, 218}, {183, 249}, {20, 91}, {182, 249}, {59, 116}, {40, 103}, {129, 206}, {31, 78}, {171, 250}, {153, 200}, {164, 246}, {1, 82}, {184, 235}, {10, 89}, {12, 88}, {191, 233}, {135, 208}, {158, 201}, {13, 85}, {14, 86}, {142, 214}, {143, 215}, {144, 200}, {3, 90}, {159, 198}, {25, 64}, {136, 209}, {138, 211}, {140, 213}, {155, 193}, {158, 196}, {26, 65}, {137, 210}, {154, 193}, {11, 87}, {51, 111}, {50, 110}, {49, 109}, {48, 108}, {151, 203}, {152, 196}, {130, 220}, {176, 238}, {131, 221}, {136, 214}, {156, 194}, {139, 212}, {172, 243}, {170, 245}, {146, 205}, {147, 204}, {149, 202}, {137, 233}, {162, 195}, {168, 201}, {26, 120}, {1, 98}, {182, 213}, {52, 87}, {8, 107}, {161, 196}, {33, 71}, {43, 76}, {52, 83}, {139, 236}, {23, 126}, {138, 227}, {56, 82}, {151, 253}, {154, 240}, {35, 72}, {137, 229}, {157, 241}, {138, 231}, {2, 108}, {63, 81}, {38, 73}, {185, 214}, {134, 246}, {7, 118}, {189, 204}, {36, 86}, {149, 231}, {190, 205}, {34, 86}, {189, 201}, {39, 95}, {163, 219}, {143, 247}, {35, 89}, {165, 223}, {164, 222}, {9, 117}, {132, 248}, {10, 119}, {30, 96}, {160, 223}, {106, 234}, {48, 178}, {123, 249}, {44, 175}, {19, 151}, {80, 212}, {43, 174}, {42, 173}, {52, 179}, {60, 180}, {62, 182}, {61, 181}, {35, 170}, {38, 172}, {51, 184}, {53, 190}, {16, 158}, {37, 171}, {9, 134}, {32, 176}, {34, 178}, {116, 229}, {53, 167}, {114, 224}, {115, 225}, {13, 153}, {86, 194}, {100, 241}, {67, 213}, {101, 242}, {109, 245}, {96, 250}, {104, 243}, {45, 176}, {105, 244}, {6, 152}, {47, 177}, {81, 206}, {95, 192}, {67, 226}, {83, 242}, {69, 228}, {94, 255}, {4, 166}, {98, 193}, {80, 244}, {71, 226}, {102, 195}, {125, 216}, {127, 218}, {103, 192}, {126, 217}, {109, 197}, {110, 198}, {119, 222}, {104, 196}, {123, 215}, {28, 177}, {93, 240}, {70, 233}, {116, 219}, {29, 173}, {76, 252}, {68, 244}, {56, 136}, {31, 175}, {30, 174}, {124, 205}, {60, 142}, {71, 245}, {63, 140}, {109, 222}, {50, 134}, {91, 238}, {118, 195}, {111, 216}, {112, 199}, {123, 204}, {57, 129}, {64, 248}, {59, 131}, {58, 130}, {75, 241}, {85, 239}, {114, 200}, {81, 234}, {103, 220}, {117, 201}, {118, 202}, {119, 203}, {50, 143}, {78, 243}, {72, 246}, {91, 229}, {76, 242}, {75, 245}, {73, 247}, {37, 154}, {65, 254}, {18, 210}, {97, 161}, {26, 219}, {45, 236}, {30, 223}, {5, 198}, {31, 220}, {58, 254}, {84, 144}, {20, 209}, {65, 135}, {40, 239}, {27, 211}, {72, 128}, {28, 212}, {25, 208}, {79, 134}, {77, 132}, {75, 130}, {66, 139}, {54, 255}, {105, 163}, {74, 129}, {78, 133}, {66, 142}, {77, 129}, {32, 237}, {64, 141}, {92, 145}, {76, 131}, {121, 182}, {70, 150}, {84, 132}, {113, 161}, {121, 168}, {77, 159}, {22, 197}, {81, 133}, {120, 173}, {122, 175}, {11, 221}, {77, 155}, {49, 230}, {80, 135}, {121, 174}, {96, 184}, {83, 138}, {59, 224}, {82, 137}, {74, 145}, {110, 178}, {39, 250}, {84, 139}, {115, 172}, {120, 167}, {15, 239}, {29, 253}, {12, 237}, {90, 187}, {88, 185}, {83, 178}, {92, 189}, {94, 191}, {89, 186}, {93, 190}, {61, 217}, {85, 177}, {112, 148}, {91, 188}, {122, 157}, {80, 184}, {34, 206}, {78, 160}, {69, 183}, {99, 145}, {73, 186}, {88, 171}, {62, 202}, {47, 218}, {114, 135}, {111, 152}, {24, 224}, {25, 225}, {17, 232}, {14, 243}, {72, 181}, {102, 155}, {66, 188}, {84, 171}, {111, 144}, {127, 128}, {148, 256}, {164, 256}, {195, 256}, {251, 256} }>;

(II) A more general form is to represent the graph as the orbit of {168, 169} under the group generated by the following permutations:

a: (1, 2, 108, 127, 70, 150, 190, 53, 25, 64, 248, 132, 77, 159, 198, 5)(3, 24, 118, 59, 149, 78, 209, 14, 9, 7, 224, 202, 31, 231, 243, 20)(4, 94, 107, 54, 69, 65, 249, 58, 66, 96, 197, 39, 11, 21, 239, 55)(6, 106, 218, 101, 169, 93, 167, 225, 141, 235, 165, 155, 156, 110, 35, 82)(8, 255, 126, 26, 183, 254, 123, 30, 142, 250, 22, 10, 40, 46, 15, 27)(12, 173, 151, 247, 147, 237, 185, 253, 143, 186, 32, 88, 29, 203, 73, 176)(13, 48, 128, 233, 163, 205, 112, 208, 121, 180, 84, 129, 222, 192, 16, 98)(17, 44, 211, 38, 238, 23, 120, 162, 207, 204, 223, 214, 194, 50, 89, 97)(18, 161, 232, 175, 138, 172, 91, 51, 63, 195, 131, 189, 160, 136, 86, 134)(19, 179, 217, 219, 146, 199, 215, 174, 60, 171, 57, 119, 103, 45, 41, 42)(28, 99, 71, 177, 68, 226, 157, 244, 67, 241, 80, 213, 75, 212, 145, 245)(33, 85, 125, 166, 191, 105, 124, 100, 135, 182, 130, 139, 74, 109, 95, 87)(34, 246, 210, 196, 230, 187, 83, 181, 229, 111, 81, 256, 76, 201, 154, 200)(36, 79, 47, 113, 228, 122, 227, 115, 188, 184, 140, 102, 221, 92, 170, 56)(37, 114, 62, 220, 236, 104, 49, 90, 52, 61, 116, 216, 133, 251, 43, 117)(72, 137, 152, 234, 148, 242, 168, 240, 144, 206, 164, 252, 158, 193, 153, 178)
b: (2, 82)(3, 9)(4, 176)(5, 98)(6, 97)(7, 134)(8, 238)(10, 245)(11, 88)(12, 87)(13, 56)(14, 117)(15, 45)(16, 41)(17, 40)(18, 79)(19, 91)(20, 90)(21, 170)(22, 171)(23, 52)(24, 51)(26, 244)(27, 177)(28, 42)(29, 139)(30, 213)(31, 149)(32, 36)(33, 35)(34, 180)(37, 50)(38, 169)(39, 109)(43, 124)(44, 236)(46, 239)(47, 94)(48, 229)(49, 95)(53, 208)(54, 105)(55, 85)(57, 84)(58, 182)(59, 216)(60, 86)(61, 72)(62, 130)(63, 184)(64, 225)(65, 227)(66, 253)(67, 174)(68, 219)(69, 247)(71, 89)(73, 228)(74, 165)(75, 119)(76, 205)(78, 189)(80, 120)(81, 235)(83, 93)(92, 160)(96, 140)(99, 237)(100, 143)(101, 150)(102, 222)(103, 232)(104, 158)(106, 210)(107, 255)(108, 137)(110, 154)(111, 224)(112, 215)(113, 163)(114, 144)(115, 121)(116, 125)(118, 246)(122, 138)(123, 199)(126, 179)(127, 233)(128, 217)(129, 132)(131, 146)(133, 204)(135, 167)(136, 153)(141, 162)(142, 194)(145, 223)(147, 166)(148, 251)(151, 188)(152, 161)(155, 159)(156, 214)(157, 211)(164, 195)(168, 172)(173, 212)(175, 231)(178, 240)(183, 207)(185, 221)(186, 226)(187, 209)(190, 242)(191, 218)(192, 230)(193, 198)(197, 250)(201, 243)(202, 220)(203, 241)(206, 248)(234, 252)(249, 254)
c: (2, 5)(3, 9)(4, 11)(6, 16)(7, 20)(8, 22)(10, 27)(12, 32)(13, 35)(14, 24)(15, 40)(17, 45)(18, 49)(19, 50)(21, 55)(23, 60)(26, 30)(28, 71)(29, 73)(33, 56)(34, 83)(36, 87)(37, 91)(38, 57)(39, 94)(41, 97)(42, 89)(43, 63)(44, 103)(47, 109)(48, 110)(51, 117)(52, 86)(53, 64)(54, 96)(58, 65)(59, 78)(61, 136)(62, 138)(66, 69)(67, 80)(68, 145)(70, 77)(72, 153)(74, 113)(75, 157)(76, 81)(79, 95)(82, 98)(84, 169)(85, 170)(88, 176)(90, 134)(92, 125)(93, 180)(100, 188)(101, 129)(102, 191)(104, 161)(105, 140)(106, 192)(107, 197)(108, 198)(111, 201)(112, 141)(114, 172)(115, 135)(116, 160)(118, 209)(119, 211)(120, 174)(121, 167)(122, 130)(123, 183)(124, 184)(126, 142)(127, 159)(128, 156)(131, 133)(132, 150)(137, 193)(139, 228)(143, 151)(144, 168)(146, 204)(147, 185)(148, 164)(152, 158)(154, 229)(155, 233)(162, 215)(163, 165)(166, 221)(171, 238)(173, 186)(175, 220)(177, 245)(179, 194)(181, 200)(182, 227)(187, 246)(189, 216)(190, 248)(195, 251)(199, 207)(202, 231)(205, 235)(206, 242)(208, 225)(210, 230)(212, 226)(213, 244)(214, 217)(218, 222)(219, 223)(224, 243)(232, 236)(234, 252)(247, 253)(250, 255)

(III) Last is Groups&Graphs. Copy everything between (not including) the lines of asterisks into a plain text file and save it as "graph.txt". Then launch G&G (Groups&Graphs) and select Read Text from the File menu.

**************

&Graph
C4[ 256, 79 ]
256
-1 2 5 82 98
-2 1 13 6 108
-3 90 14 7 51
-4 166 36 15 8
-5 198 1 35 16
-6 2 36 17 152
-7 3 37 18 118
-8 4 38 19 107
-9 24 134 117 20
-10 89 39 119 21
-11 22 221 40 87
-12 88 23 237 41
-13 2 85 42 153
-14 243 3 86 43
-15 44 4 41 239
-16 45 158 5 87
-17 88 232 46 6
-18 89 210 47 7
-19 90 48 8 151
-20 209 91 49 9
-21 33 46 92 10
-22 11 57 50 197
-23 12 93 126 51
-24 224 52 63 9
-25 225 53 64 208
-26 120 54 65 219
-27 55 211 94 42
-28 56 177 212 95
-29 44 253 57 173
-30 58 223 96 174
-31 220 78 59 175
-32 176 60 237 97
-33 71 61 21 98
-34 178 62 206 86
-35 89 5 170 72
-36 99 4 6 86
-37 154 100 171 7
-38 101 73 172 8
-39 102 95 250 10
-40 11 103 239 97
-41 12 15 104 98
-42 13 27 49 173
-43 14 105 174 76
-44 15 29 106 175
-45 176 46 16 236
-46 55 45 17 21
-47 177 18 107 218
-48 178 125 19 108
-49 20 42 109 230
-50 22 110 143 134
-51 23 111 3 184
-52 24 179 83 87
-53 112 167 25 190
-54 255 113 124 26
-55 56 46 125 27
-56 55 136 82 28
-57 22 114 29 129
-58 254 115 30 130
-59 224 116 31 131
-60 180 117 32 142
-61 33 181 118 217
-62 34 202 182 119
-63 24 81 140 120
-64 121 25 248 141
-65 122 254 135 26
-66 188 123 139 142
-67 124 213 115 226
-68 99 244 113 125
-69 100 126 183 228
-70 101 233 127 150
-71 33 79 245 226
-72 35 246 181 128
-73 103 38 247 186
-74 145 104 96 129
-75 102 245 130 241
-76 242 43 131 252
-77 132 155 159 129
-78 133 243 160 31
-79 134 71 94 106
-80 244 135 212 184
-81 133 234 63 206
-82 1 56 137 97
-83 242 178 138 52
-84 132 144 171 139
-85 177 13 116 239
-86 34 14 36 194
-87 11 99 16 52
-88 12 17 171 185
-89 35 18 10 186
-90 187 3 95 19
-91 188 238 20 229
-92 110 145 189 21
-93 23 122 190 240
-94 79 255 191 27
-95 90 192 28 39
-96 74 250 30 184
-97 82 40 161 32
-98 33 1 193 41
-99 68 145 36 87
-100 112 69 37 241
-101 242 113 70 38
-102 155 39 195 75
-103 220 192 40 73
-104 243 41 74 196
-105 244 107 163 43
-106 44 79 234 108
-107 47 126 105 8
-108 2 48 127 106
-109 222 245 49 197
-110 198 178 92 50
-111 144 51 216 152
-112 100 199 148 53
-113 68 101 161 54
-114 57 200 135 224
-115 67 58 225 172
-116 59 85 229 219
-117 124 201 60 9
-118 202 61 7 195
-119 222 203 62 10
-120 167 26 63 173
-121 168 182 64 174
-122 157 93 65 175
-123 66 204 215 249
-124 67 117 205 54
-125 55 68 48 216
-126 23 69 107 217
-127 70 128 108 218
-128 166 179 72 127
-129 77 57 74 206
-130 220 58 180 75
-131 221 59 207 76
-132 77 165 248 84
-133 78 166 199 81
-134 79 246 50 9
-135 80 114 65 208
-136 209 56 200 214
-137 210 233 82 229
-138 231 211 83 227
-139 66 212 236 84
-140 165 213 63 197
-141 188 64 207 164
-142 66 60 214 197
-143 203 247 50 215
-144 111 167 200 84
-145 99 92 213 74
-146 183 205 216 185
-147 176 204 217 186
-148 187 112 256 218
-149 231 189 202 216
-150 190 70 169 163
-151 253 203 19 162
-152 111 6 163 196
-153 187 13 156 200
-154 37 160 193 240
-155 77 102 214 193
-156 221 159 194 153
-157 122 177 191 241
-158 165 201 16 196
-159 77 198 156 222
-160 154 78 223 170
-161 113 224 97 196
-162 225 183 151 195
-163 105 150 152 219
-164 222 256 246 141
-165 132 223 158 140
-166 133 4 226 128
-167 144 227 53 120
-168 121 201 169 181
-169 168 150 238 228
-170 35 245 160 239
-171 88 37 84 250
-172 243 38 115 181
-173 29 42 185 120
-174 121 30 43 186
-175 44 187 122 31
-176 45 147 238 32
-177 47 157 28 85
-178 110 34 48 83
-179 255 247 128 52
-180 60 248 130 240
-181 168 61 72 172
-182 121 213 62 249
-183 69 146 249 162
-184 80 235 51 96
-185 88 146 214 173
-186 89 147 73 174
-187 90 148 153 175
-188 66 91 141 241
-189 201 92 149 204
-190 93 150 205 53
-191 233 157 94 251
-192 198 103 95 252
-193 154 155 98 230
-194 253 156 250 86
-195 102 256 118 162
-196 158 104 161 152
-197 22 140 109 142
-198 110 5 159 192
-199 253 133 254 112
-200 144 114 136 153
-201 189 168 158 117
-202 232 149 62 118
-203 143 211 151 119
-204 123 189 147 235
-205 190 124 146 234
-206 34 81 225 129
-207 254 247 141 131
-208 242 25 135 215
-209 231 136 20 251
-210 137 236 18 252
-211 27 203 138 218
-212 221 80 28 139
-213 67 145 182 140
-214 155 136 185 142
-215 143 123 251 208
-216 111 146 125 149
-217 233 147 126 61
-218 211 47 148 127
-219 26 116 237 163
-220 103 246 31 130
-221 11 156 212 131
-222 159 119 109 164
-223 165 160 237 30
-224 24 59 114 161
-225 25 115 162 206
-226 67 166 71 228
-227 167 244 138 249
-228 232 69 169 226
-229 91 137 116 240
-230 232 234 49 193
-231 209 236 138 149
-232 202 17 228 230
-233 70 191 137 217
-234 81 106 205 230
-235 204 248 184 252
-236 231 45 210 139
-237 12 223 32 219
-238 176 255 91 169
-239 15 170 40 85
-240 154 180 93 229
-241 100 188 157 75
-242 101 83 76 208
-243 78 14 104 172
-244 68 80 105 227
-245 71 170 75 109
-246 220 134 72 164
-247 143 179 73 207
-248 132 180 235 64
-249 123 182 183 227
-250 39 171 194 96
-251 209 256 191 215
-252 210 235 192 76
-253 199 29 194 151
-254 199 58 207 65
-255 179 94 238 54
-256 148 195 251 164
0

**************