C4graphGraph forms for C4 [ 256, 81 ] = UG(ATD[256,155])

[Home] [Table] [Glossary] [Families]

On this page are computer-accessible forms for the graph C4[ 256, 81 ] = UG(ATD[256,155]).

(I) Following is a form readable by MAGMA:

g:=Graph<256|{ {196, 197}, {176, 178}, {1, 2}, {89, 90}, {12, 15}, {117, 118}, {40, 44}, {99, 103}, {115, 118}, {128, 133}, {1, 7}, {96, 102}, {41, 47}, {152, 158}, {65, 70}, {232, 239}, {98, 101}, {136, 143}, {166, 174}, {211, 218}, {2, 8}, {179, 185}, {16, 26}, {6, 12}, {3, 9}, {177, 189}, {4, 10}, {22, 24}, {5, 11}, {104, 121}, {173, 188}, {171, 186}, {15, 29}, {192, 210}, {168, 186}, {12, 31}, {15, 27}, {175, 187}, {2, 23}, {10, 31}, {8, 29}, {36, 50}, {78, 88}, {68, 82}, {41, 63}, {9, 30}, {169, 190}, {102, 113}, {166, 190}, {175, 183}, {174, 182}, {35, 58}, {71, 94}, {36, 62}, {3, 24}, {11, 16}, {7, 28}, {101, 126}, {64, 92}, {4, 25}, {35, 62}, {6, 27}, {34, 60}, {5, 26}, {235, 244}, {170, 181}, {167, 184}, {9, 22}, {26, 58}, {88, 120}, {25, 56}, {194, 227}, {195, 225}, {89, 122}, {210, 241}, {209, 242}, {216, 252}, {217, 253}, {148, 177}, {220, 249}, {223, 247}, {27, 50}, {214, 255}, {139, 162}, {14, 36}, {87, 125}, {85, 127}, {134, 172}, {10, 33}, {212, 255}, {11, 32}, {142, 165}, {194, 238}, {210, 254}, {12, 33}, {14, 35}, {141, 163}, {8, 39}, {215, 248}, {87, 120}, {13, 34}, {23, 39}, {202, 250}, {193, 241}, {211, 226}, {216, 233}, {215, 230}, {2, 48}, {86, 100}, {10, 56}, {141, 191}, {93, 110}, {195, 240}, {153, 170}, {17, 37}, {197, 241}, {19, 39}, {18, 38}, {18, 39}, {222, 235}, {221, 232}, {217, 236}, {94, 107}, {28, 41}, {19, 38}, {157, 171}, {7, 48}, {7, 63}, {69, 125}, {68, 124}, {129, 185}, {25, 32}, {91, 97}, {223, 229}, {193, 251}, {197, 254}, {220, 231}, {200, 243}, {20, 40}, {84, 104}, {74, 118}, {21, 41}, {147, 175}, {198, 251}, {151, 169}, {211, 237}, {156, 162}, {146, 173}, {168, 232}, {188, 252}, {6, 71}, {187, 250}, {29, 92}, {160, 226}, {191, 253}, {165, 231}, {164, 230}, {161, 227}, {4, 64}, {185, 253}, {184, 252}, {15, 74}, {190, 251}, {59, 126}, {163, 229}, {188, 250}, {187, 252}, {8, 64}, {57, 113}, {9, 65}, {11, 66}, {186, 243}, {26, 80}, {134, 204}, {24, 83}, {183, 251}, {160, 237}, {3, 77}, {31, 81}, {13, 67}, {5, 75}, {161, 238}, {190, 241}, {189, 242}, {181, 250}, {1, 81}, {176, 224}, {24, 72}, {23, 71}, {20, 69}, {184, 233}, {158, 207}, {27, 73}, {189, 239}, {145, 195}, {21, 70}, {42, 121}, {31, 76}, {163, 247}, {176, 228}, {17, 68}, {191, 234}, {185, 236}, {30, 75}, {136, 221}, {138, 223}, {28, 74}, {137, 222}, {186, 237}, {30, 70}, {37, 124}, {59, 98}, {57, 96}, {140, 213}, {142, 215}, {151, 206}, {1, 90}, {58, 97}, {25, 66}, {141, 214}, {146, 201}, {159, 196}, {155, 199}, {165, 249}, {164, 248}, {129, 220}, {144, 205}, {150, 203}, {18, 76}, {61, 99}, {158, 192}, {139, 212}, {180, 235}, {138, 235}, {148, 246}, {169, 202}, {167, 194}, {147, 245}, {167, 193}, {136, 239}, {189, 218}, {49, 89}, {55, 95}, {54, 94}, {53, 93}, {52, 92}, {51, 91}, {50, 90}, {157, 245}, {37, 76}, {47, 70}, {44, 69}, {131, 234}, {52, 95}, {180, 223}, {178, 217}, {173, 198}, {170, 193}, {168, 195}, {55, 92}, {32, 77}, {36, 73}, {34, 79}, {38, 72}, {33, 78}, {179, 220}, {133, 234}, {153, 246}, {159, 240}, {130, 242}, {149, 228}, {162, 208}, {35, 80}, {21, 97}, {37, 81}, {135, 243}, {38, 83}, {174, 219}, {149, 224}, {46, 88}, {46, 87}, {177, 200}, {145, 232}, {40, 82}, {171, 209}, {45, 86}, {161, 218}, {188, 192}, {137, 244}, {42, 84}, {166, 216}, {48, 78}, {43, 85}, {159, 225}, {60, 67}, {187, 196}, {54, 182}, {79, 207}, {78, 206}, {77, 205}, {76, 204}, {75, 203}, {127, 255}, {104, 233}, {22, 148}, {83, 209}, {82, 208}, {100, 230}, {108, 238}, {116, 246}, {16, 147}, {73, 202}, {124, 248}, {86, 211}, {103, 226}, {84, 210}, {107, 237}, {64, 199}, {122, 253}, {62, 183}, {101, 236}, {66, 200}, {102, 236}, {120, 242}, {14, 133}, {123, 240}, {20, 152}, {14, 131}, {16, 157}, {71, 201}, {123, 245}, {22, 153}, {119, 248}, {85, 197}, {122, 234}, {13, 156}, {3, 144}, {5, 150}, {6, 146}, {19, 135}, {18, 134}, {109, 249}, {17, 132}, {23, 130}, {127, 233}, {104, 255}, {120, 239}, {102, 254}, {107, 243}, {111, 247}, {21, 140}, {29, 132}, {47, 181}, {106, 240}, {108, 246}, {110, 244}, {116, 238}, {30, 133}, {101, 254}, {4, 155}, {28, 131}, {106, 245}, {105, 201}, {117, 213}, {121, 217}, {40, 137}, {57, 152}, {123, 218}, {110, 204}, {111, 205}, {115, 208}, {32, 134}, {33, 135}, {105, 207}, {109, 203}, {125, 219}, {45, 138}, {48, 151}, {114, 213}, {113, 216}, {34, 136}, {58, 144}, {43, 129}, {61, 145}, {55, 154}, {63, 146}, {112, 192}, {116, 196}, {119, 199}, {96, 212}, {98, 214}, {97, 213}, {99, 215}, {49, 132}, {42, 156}, {54, 143}, {100, 221}, {103, 222}, {49, 139}, {56, 130}, {53, 142}, {124, 199}, {126, 194}, {50, 140}, {51, 141}, {112, 206}, {52, 244}, {90, 154}, {79, 143}, {105, 169}, {106, 170}, {98, 163}, {109, 172}, {114, 179}, {115, 178}, {53, 247}, {96, 162}, {119, 180}, {108, 168}, {93, 155}, {99, 165}, {112, 182}, {126, 184}, {108, 171}, {117, 178}, {43, 227}, {80, 153}, {121, 176}, {44, 230}, {95, 149}, {85, 159}, {84, 158}, {51, 249}, {45, 231}, {123, 177}, {75, 128}, {93, 150}, {91, 144}, {81, 154}, {125, 182}, {45, 225}, {68, 137}, {106, 167}, {43, 229}, {83, 157}, {82, 156}, {74, 132}, {105, 166}, {65, 147}, {72, 155}, {49, 228}, {89, 140}, {13, 219}, {67, 149}, {66, 148}, {79, 152}, {61, 229}, {57, 224}, {109, 180}, {59, 225}, {19, 200}, {116, 175}, {119, 172}, {59, 231}, {94, 130}, {111, 179}, {112, 173}, {60, 226}, {73, 151}, {72, 150}, {61, 227}, {88, 135}, {113, 174}, {110, 142}, {46, 207}, {77, 172}, {60, 222}, {91, 191}, {107, 143}, {47, 202}, {80, 181}, {69, 160}, {46, 201}, {67, 164}, {55, 208}, {56, 209}, {115, 154}, {100, 138}, {111, 128}, {42, 219}, {44, 221}, {122, 139}, {114, 128}, {20, 224}, {17, 228}, {118, 131}, {65, 183}, {103, 145}, {86, 161}, {87, 160}, {51, 203}, {62, 198}, {54, 206}, {53, 205}, {52, 204}, {63, 198}, {95, 164}, {127, 129}, {114, 256}, {117, 256}, {212, 256}, {214, 256} }>;

(II) A more general form is to represent the graph as the orbit of {196, 197} under the group generated by the following permutations:

a: (2, 81)(6, 132)(7, 90)(8, 31)(9, 144)(10, 64)(11, 150)(12, 29)(13, 125)(16, 203)(17, 71)(19, 204)(20, 79)(22, 205)(23, 37)(24, 77)(25, 155)(26, 75)(27, 74)(28, 50)(30, 58)(32, 72)(33, 92)(34, 69)(35, 133)(36, 131)(38, 134)(39, 76)(40, 143)(41, 140)(42, 174)(43, 194)(44, 136)(45, 195)(46, 149)(47, 213)(48, 154)(49, 146)(51, 147)(52, 135)(53, 148)(54, 82)(55, 78)(56, 199)(57, 158)(59, 159)(60, 160)(61, 161)(62, 234)(63, 89)(65, 91)(66, 93)(67, 87)(68, 94)(70, 97)(73, 118)(80, 128)(83, 172)(84, 113)(85, 126)(86, 145)(88, 95)(96, 192)(98, 196)(99, 218)(100, 232)(101, 197)(102, 210)(103, 211)(104, 216)(105, 176)(106, 220)(107, 137)(108, 223)(109, 157)(110, 200)(111, 153)(112, 162)(114, 181)(115, 151)(116, 163)(117, 202)(119, 209)(120, 164)(121, 166)(122, 198)(123, 165)(124, 130)(127, 184)(129, 167)(138, 168)(139, 173)(141, 175)(142, 177)(156, 182)(169, 178)(170, 179)(171, 180)(183, 191)(185, 193)(186, 235)(187, 214)(188, 212)(189, 215)(190, 217)(201, 228)(206, 208)(207, 224)(222, 237)(229, 238)(230, 239)(231, 240)(236, 241)(242, 248)(243, 244)(245, 249)(246, 247)(250, 256)(251, 253)(252, 255)
b: (1, 2, 8, 29, 15, 12, 31, 81)(3, 13, 30, 79, 5, 20, 58, 125)(4, 17, 50, 78, 18, 55, 28, 71)(6, 10, 37, 90, 48, 39, 92, 74)(7, 23, 64, 132, 27, 33, 76, 154)(9, 34, 75, 152, 26, 69, 144, 219)(11, 40, 97, 182, 24, 67, 133, 207)(14, 46, 32, 82, 21, 54, 72, 149)(16, 44, 91, 174, 22, 60, 128, 158)(19, 52, 118, 146, 56, 124, 89, 151)(25, 68, 140, 206, 38, 95, 131, 201)(35, 87, 77, 156, 70, 143, 150, 224)(36, 88, 134, 208, 41, 94, 155, 228)(42, 65, 136, 203, 57, 80, 160, 205)(43, 85, 159, 225, 59, 126, 194, 227)(45, 98, 184, 238, 61, 129, 197, 240)(47, 107, 93, 176, 62, 120, 172, 162)(49, 73, 135, 204, 115, 63, 130, 199)(51, 113, 153, 226, 111, 84, 147, 221)(53, 121, 183, 239, 109, 96, 181, 237)(66, 137, 213, 112, 83, 164, 234, 105)(86, 163, 233, 116, 145, 220, 254, 106)(99, 185, 241, 123, 138, 214, 252, 108)(100, 141, 216, 246, 103, 179, 210, 245)(101, 167, 161, 229, 127, 196, 195, 231)(102, 170, 211, 247, 104, 175, 232, 249)(110, 178, 198, 242, 119, 139, 202, 243)(114, 192, 157, 230, 191, 166, 148, 222)(117, 173, 209, 248, 122, 169, 200, 244)(142, 217, 251, 189, 180, 212, 250, 186)(165, 236, 193, 218, 223, 255, 187, 168)(171, 215, 253, 190, 177, 235, 256, 188)
c: (2, 7)(4, 14)(8, 28)(9, 24)(10, 36)(11, 26)(12, 27)(13, 42)(17, 49)(18, 21)(19, 47)(20, 57)(23, 63)(25, 35)(29, 74)(30, 72)(31, 50)(32, 58)(33, 73)(34, 84)(37, 89)(38, 70)(39, 41)(40, 96)(43, 61)(44, 102)(45, 59)(46, 105)(51, 109)(52, 117)(53, 111)(54, 112)(55, 115)(56, 62)(60, 104)(64, 131)(65, 83)(66, 80)(67, 121)(68, 139)(69, 113)(71, 146)(75, 150)(76, 140)(77, 144)(78, 151)(79, 158)(81, 90)(82, 162)(85, 145)(86, 126)(87, 166)(88, 169)(91, 172)(92, 118)(93, 128)(94, 173)(95, 178)(97, 134)(98, 138)(99, 129)(100, 101)(103, 127)(106, 123)(107, 188)(108, 116)(110, 114)(119, 191)(120, 190)(122, 124)(125, 174)(130, 198)(133, 155)(135, 202)(136, 210)(137, 212)(141, 180)(142, 179)(143, 192)(147, 157)(148, 153)(149, 176)(159, 195)(160, 216)(161, 194)(163, 223)(164, 217)(165, 220)(167, 218)(168, 196)(170, 177)(171, 175)(181, 200)(183, 209)(184, 211)(185, 215)(186, 187)(189, 193)(197, 232)(199, 234)(204, 213)(214, 235)(221, 254)(222, 255)(226, 233)(230, 236)(237, 252)(239, 241)(242, 251)(243, 250)(244, 256)(248, 253)

(III) Last is Groups&Graphs. Copy everything between (not including) the lines of asterisks into a plain text file and save it as "graph.txt". Then launch G&G (Groups&Graphs) and select Read Text from the File menu.

**************

&Graph
C4[ 256, 81 ]
256
-1 2 90 81 7
-2 1 23 48 8
-3 77 144 24 9
-4 155 25 64 10
-5 11 26 150 75
-6 12 146 27 71
-7 1 48 28 63
-8 2 39 29 64
-9 22 3 30 65
-10 33 56 4 31
-11 66 5 16 32
-12 33 15 6 31
-13 34 67 156 219
-14 133 35 36 131
-15 12 27 29 74
-16 11 157 26 147
-17 132 68 37 228
-18 134 38 39 76
-19 200 135 38 39
-20 69 224 40 152
-21 70 41 140 97
-22 24 148 9 153
-23 2 71 39 130
-24 22 3 72 83
-25 66 56 4 32
-26 58 80 5 16
-27 15 6 50 73
-28 7 41 74 131
-29 132 15 92 8
-30 133 70 9 75
-31 12 81 10 76
-32 11 77 134 25
-33 12 78 135 10
-34 13 79 136 60
-35 14 58 80 62
-36 14 50 62 73
-37 124 81 17 76
-38 72 83 18 19
-39 23 18 8 19
-40 44 82 137 20
-41 47 28 63 21
-42 121 156 84 219
-43 227 85 129 229
-44 221 69 40 230
-45 231 225 138 86
-46 88 201 207 87
-47 70 202 181 41
-48 78 2 7 151
-49 132 89 139 228
-50 90 36 27 140
-51 91 203 249 141
-52 244 92 204 95
-53 93 247 205 142
-54 143 94 182 206
-55 154 92 95 208
-56 209 25 130 10
-57 113 224 96 152
-58 144 35 26 97
-59 231 126 225 98
-60 34 67 222 226
-61 99 145 227 229
-62 198 35 36 183
-63 198 146 7 41
-64 199 4 92 8
-65 70 147 183 9
-66 11 200 25 148
-67 13 60 149 164
-68 124 82 137 17
-69 44 125 160 20
-70 47 30 21 65
-71 23 201 6 94
-72 155 24 38 150
-73 36 202 27 151
-74 132 15 28 118
-75 5 203 128 30
-76 37 204 18 31
-77 3 172 205 32
-78 33 88 48 206
-79 143 34 152 207
-80 35 26 181 153
-81 154 1 37 31
-82 68 156 40 208
-83 209 24 157 38
-84 210 158 104 42
-85 159 127 43 197
-86 45 100 211 161
-87 46 125 160 120
-88 78 46 135 120
-89 122 90 49 140
-90 154 1 89 50
-91 144 191 51 97
-92 55 29 52 64
-93 110 155 150 53
-94 71 107 130 54
-95 55 149 52 164
-96 57 102 212 162
-97 58 91 213 21
-98 101 59 214 163
-99 165 103 61 215
-100 221 138 86 230
-101 254 126 236 98
-102 254 113 236 96
-103 99 145 222 226
-104 121 233 255 84
-105 166 201 169 207
-106 167 245 170 240
-107 143 243 94 237
-108 168 246 171 238
-109 180 203 172 249
-110 244 93 204 142
-111 179 247 128 205
-112 192 182 173 206
-113 57 102 216 174
-114 179 256 213 128
-115 154 178 118 208
-116 246 238 196 175
-117 178 256 213 118
-118 115 117 74 131
-119 199 180 248 172
-120 88 242 239 87
-121 176 104 217 42
-122 253 89 234 139
-123 177 245 218 240
-124 199 68 37 248
-125 69 182 87 219
-126 101 59 194 184
-127 233 255 85 129
-128 111 133 114 75
-129 220 127 185 43
-130 242 23 56 94
-131 14 234 28 118
-132 49 17 29 74
-133 14 234 128 30
-134 204 18 172 32
-135 33 88 243 19
-136 143 34 221 239
-137 68 222 244 40
-138 45 100 223 235
-139 122 212 49 162
-140 89 213 50 21
-141 191 214 51 163
-142 110 165 215 53
-143 79 136 107 54
-144 3 58 91 205
-145 232 103 61 195
-146 201 6 63 173
-147 245 16 65 175
-148 22 66 177 246
-149 67 224 95 228
-150 5 93 203 72
-151 48 169 73 206
-152 57 79 158 20
-153 22 80 246 170
-154 55 90 81 115
-155 199 4 93 72
-156 13 82 162 42
-157 245 16 83 171
-158 192 84 152 207
-159 225 85 196 240
-160 69 226 237 87
-161 227 238 86 218
-162 156 139 96 208
-163 247 141 229 98
-164 67 248 95 230
-165 99 231 249 142
-166 190 105 216 174
-167 193 106 194 184
-168 232 195 108 186
-169 190 202 105 151
-170 181 193 106 153
-171 209 157 108 186
-172 77 134 119 109
-173 198 188 112 146
-174 166 113 182 219
-175 187 147 116 183
-176 121 178 224 228
-177 123 189 200 148
-178 176 115 117 217
-179 220 111 114 185
-180 223 235 119 109
-181 47 80 170 250
-182 112 125 174 54
-183 62 251 65 175
-184 167 233 126 252
-185 253 179 236 129
-186 243 168 171 237
-187 250 196 175 252
-188 192 173 250 252
-189 242 177 239 218
-190 166 169 251 241
-191 253 91 234 141
-192 188 210 112 158
-193 167 170 251 241
-194 167 126 227 238
-195 145 168 225 240
-196 187 159 116 197
-197 254 85 196 241
-198 62 63 173 251
-199 155 124 64 119
-200 66 177 243 19
-201 46 146 71 105
-202 47 169 73 250
-203 51 150 75 109
-204 110 134 52 76
-205 77 111 144 53
-206 78 112 151 54
-207 46 79 158 105
-208 55 82 115 162
-209 242 56 83 171
-210 254 192 84 241
-211 226 237 86 218
-212 255 256 139 96
-213 114 117 140 97
-214 255 256 141 98
-215 99 248 142 230
-216 166 233 113 252
-217 121 253 178 236
-218 123 189 211 161
-219 13 125 42 174
-220 231 179 249 129
-221 44 100 232 136
-222 103 235 60 137
-223 180 247 138 229
-224 176 57 149 20
-225 45 59 159 195
-226 211 103 60 160
-227 61 161 194 43
-228 176 49 17 149
-229 223 61 163 43
-230 44 100 215 164
-231 165 220 45 59
-232 221 145 168 239
-233 104 127 216 184
-234 122 133 191 131
-235 222 244 180 138
-236 101 102 217 185
-237 211 160 107 186
-238 116 161 194 108
-239 232 189 136 120
-240 123 159 106 195
-241 210 190 193 197
-242 209 189 130 120
-243 200 135 107 186
-244 110 235 137 52
-245 123 157 147 106
-246 148 116 108 153
-247 111 223 53 163
-248 124 215 119 164
-249 165 220 51 109
-250 187 188 202 181
-251 198 190 193 183
-252 187 188 216 184
-253 122 191 217 185
-254 210 101 102 197
-255 212 104 214 127
-256 212 114 214 117
0

**************