[Home] [Table] [Glossary]
[Families]
On this page are computer-accessible forms for the graph C4[ 256, 83 ] =
UG(ATD[256,161]).
(I) Following is a form readable by MAGMA:
g:=Graph<256|{ {212, 213}, {52, 54}, {240, 242}, {1, 5}, {216, 220}, {19, 21},
{168, 174}, {57, 62}, {240, 247}, {1, 9}, {198, 206}, {65, 75}, {195, 201}, {71,
77}, {113, 123}, {131, 137}, {1, 13}, {160, 172}, {69, 73}, {55, 59}, {87, 91},
{99, 111}, {119, 123}, {131, 143}, {67, 78}, {163, 174}, {39, 41}, {246, 249},
{9, 25}, {38, 54}, {33, 51}, {175, 188}, {1, 21}, {199, 211}, {73, 93}, {5, 17},
{107, 126}, {11, 29}, {13, 27}, {78, 89}, {5, 29}, {130, 154}, {75, 81}, {235,
241}, {227, 249}, {103, 125}, {110, 117}, {203, 208}, {173, 177}, {235, 246},
{34, 60}, {128, 158}, {109, 114}, {88, 120}, {92, 124}, {223, 254}, {23, 53},
{159, 189}, {139, 168}, {153, 186}, {9, 45}, {197, 225}, {143, 171}, {80, 116},
{132, 160}, {157, 184}, {222, 251}, {215, 241}, {148, 179}, {9, 33}, {74, 98},
{64, 104}, {25, 49}, {21, 61}, {17, 57}, {7, 45}, {208, 250}, {202, 224}, {201,
227}, {76, 102}, {68, 110}, {84, 126}, {79, 100}, {156, 183}, {152, 179}, {88,
115}, {5, 41}, {151, 187}, {148, 184}, {197, 232}, {144, 190}, {193, 238}, {134,
182}, {223, 239}, {220, 236}, {215, 231}, {150, 166}, {146, 162}, {138, 186},
{206, 255}, {17, 37}, {218, 238}, {90, 110}, {136, 191}, {222, 233}, {150, 161},
{13, 53}, {142, 182}, {78, 118}, {72, 112}, {3, 57}, {135, 188}, {145, 170},
{16, 44}, {201, 245}, {136, 180}, {24, 36}, {74, 117}, {155, 164}, {13, 77},
{25, 89}, {21, 85}, {17, 81}, {142, 207}, {191, 254}, {178, 240}, {33, 101},
{58, 126}, {130, 199}, {145, 212}, {135, 194}, {47, 105}, {156, 218}, {58, 124},
{37, 109}, {49, 121}, {151, 222}, {167, 238}, {43, 97}, {166, 236}, {164, 238},
{153, 211}, {47, 101}, {34, 105}, {139, 192}, {128, 203}, {12, 64}, {178, 254},
{56, 116}, {49, 125}, {150, 219}, {157, 208}, {19, 93}, {56, 118}, {45, 99},
{175, 224}, {139, 218}, {62, 108}, {150, 196}, {132, 214}, {191, 236}, {170,
254}, {135, 210}, {188, 233}, {186, 239}, {146, 196}, {172, 251}, {8, 80}, {173,
245}, {167, 255}, {41, 113}, {30, 70}, {25, 65}, {3, 89}, {148, 206}, {134,
220}, {15, 85}, {166, 250}, {173, 241}, {42, 119}, {143, 210}, {27, 69}, {39,
121}, {164, 251}, {133, 229}, {184, 216}, {32, 66}, {61, 95}, {48, 82}, {168,
203}, {50, 86}, {19, 117}, {172, 202}, {46, 72}, {42, 66}, {155, 242}, {188,
213}, {7, 109}, {138, 224}, {44, 70}, {16, 122}, {129, 235}, {2, 105}, {152,
243}, {22, 122}, {37, 73}, {62, 83}, {174, 195}, {170, 199}, {26, 116}, {152,
246}, {57, 87}, {55, 89}, {4, 116}, {46, 94}, {34, 82}, {183, 198}, {27, 105},
{174, 220}, {147, 225}, {50, 64}, {155, 232}, {18, 102}, {163, 215}, {160, 212},
{147, 231}, {144, 228}, {133, 241}, {48, 68}, {32, 84}, {31, 107}, {144, 229},
{11, 125}, {42, 92}, {38, 80}, {189, 202}, {31, 103}, {159, 231}, {49, 73}, {36,
94}, {191, 197}, {129, 250}, {177, 202}, {137, 242}, {29, 97}, {159, 227}, {137,
245}, {14, 112}, {40, 86}, {30, 96}, {28, 98}, {83, 211}, {87, 215}, {99, 227},
{103, 231}, {111, 239}, {121, 249}, {127, 255}, {28, 158}, {65, 195}, {58, 185},
{75, 200}, {36, 160}, {69, 193}, {91, 223}, {113, 245}, {59, 190}, {94, 219},
{19, 149}, {96, 230}, {99, 229}, {50, 181}, {4, 140}, {71, 207}, {26, 146}, {18,
154}, {108, 228}, {31, 149}, {40, 162}, {82, 217}, {120, 243}, {14, 130}, {31,
145}, {67, 205}, {95, 209}, {32, 176}, {83, 195}, {113, 225}, {121, 233}, {66,
211}, {39, 181}, {85, 198}, {96, 243}, {115, 224}, {103, 242}, {111, 250}, {22,
128}, {27, 141}, {127, 233}, {2, 149}, {70, 209}, {90, 205}, {29, 133}, {77,
213}, {24, 130}, {76, 214}, {51, 169}, {108, 246}, {20, 136}, {59, 167}, {44,
176}, {120, 229}, {18, 140}, {95, 193}, {38, 185}, {48, 175}, {61, 157}, {84,
244}, {98, 194}, {6, 165}, {10, 169}, {6, 162}, {37, 129}, {20, 176}, {15, 171},
{107, 207}, {118, 210}, {124, 216}, {35, 134}, {68, 226}, {102, 192}, {112,
214}, {33, 137}, {56, 144}, {55, 159}, {108, 196}, {23, 189}, {14, 165}, {45,
134}, {92, 247}, {15, 163}, {72, 228}, {68, 232}, {53, 153}, {104, 196}, {119,
219}, {22, 187}, {34, 143}, {86, 251}, {11, 165}, {72, 230}, {62, 142}, {23,
165}, {51, 129}, {122, 200}, {56, 139}, {79, 252}, {97, 210}, {4, 176}, {100,
208}, {106, 222}, {43, 156}, {127, 200}, {41, 145}, {63, 135}, {60, 132}, {47,
151}, {8, 180}, {47, 147}, {84, 232}, {86, 234}, {104, 212}, {114, 206}, {7,
185}, {10, 180}, {92, 226}, {42, 149}, {79, 240}, {101, 218}, {14, 207}, {46,
239}, {106, 171}, {119, 182}, {20, 214}, {74, 136}, {6, 194}, {80, 148}, {11,
205}, {43, 237}, {98, 164}, {74, 141}, {4, 204}, {60, 244}, {35, 235}, {10,
192}, {54, 252}, {87, 157}, {22, 221}, {60, 247}, {23, 219}, {64, 140}, {97,
172}, {107, 166}, {118, 187}, {12, 194}, {40, 230}, {85, 155}, {28, 204}, {100,
180}, {75, 154}, {115, 162}, {15, 221}, {76, 158}, {52, 230}, {43, 249}, {26,
200}, {100, 182}, {104, 186}, {46, 253}, {88, 140}, {106, 190}, {63, 234}, {102,
179}, {52, 226}, {79, 153}, {78, 152}, {88, 142}, {10, 221}, {106, 179}, {115,
170}, {120, 161}, {7, 221}, {54, 236}, {114, 168}, {40, 244}, {101, 184}, {35,
253}, {76, 146}, {90, 132}, {6, 217}, {112, 175}, {24, 248}, {77, 173}, {65,
161}, {28, 252}, {81, 177}, {93, 189}, {96, 128}, {30, 255}, {51, 209}, {59,
217}, {55, 213}, {124, 158}, {35, 199}, {95, 187}, {58, 223}, {82, 183}, {69,
163}, {122, 156}, {26, 253}, {2, 234}, {36, 204}, {16, 248}, {83, 185}, {24,
243}, {66, 169}, {32, 203}, {94, 181}, {70, 171}, {3, 237}, {12, 226}, {81,
190}, {93, 178}, {8, 248}, {53, 197}, {114, 131}, {123, 138}, {67, 177}, {71,
181}, {91, 169}, {30, 237}, {126, 141}, {12, 248}, {67, 183}, {61, 201}, {52,
192}, {44, 216}, {16, 228}, {71, 178}, {111, 154}, {117, 131}, {123, 141}, {38,
209}, {125, 138}, {63, 198}, {110, 151}, {91, 161}, {127, 133}, {8, 244}, {48,
204}, {90, 167}, {2, 252}, {39, 217}, {20, 234}, {3, 253}, {109, 147}, {18,
237}, {50, 205}, {63, 256}, {193, 256}, {225, 256}, {247, 256} }>;
(II) A more general form is to represent the graph as the orbit of {212, 213}
under the group generated by the following permutations:
a: (2, 3)(5, 13)(6, 14)(7, 15)(8, 16)(9, 21)(10, 22)(11, 23)(12, 24)(17, 27)(18,
28)(19, 25)(20, 26)(29, 53)(30, 54)(31, 55)(32, 56)(33, 61)(34, 62)(35, 63)(36,
64)(37, 69)(38, 70)(39, 71)(40, 72)(41, 77)(42, 78)(43, 79)(44, 80)(45, 85)(46,
86)(47, 87)(48, 88)(49, 93)(50, 94)(51, 95)(52, 96)(57, 105)(58, 106)(59,
107)(60, 108)(65, 117)(66, 118)(67, 119)(68, 120)(74, 75)(81, 141)(82, 142)(83,
143)(84, 144)(89, 149)(90, 150)(91, 151)(92, 152)(97, 153)(98, 154)(99,
155)(100, 156)(101, 157)(102, 158)(103, 159)(104, 160)(109, 163)(110, 161)(111,
164)(112, 162)(113, 173)(114, 174)(115, 175)(116, 176)(121, 178)(122, 180)(123,
177)(124, 179)(125, 189)(126, 190)(127, 191)(128, 192)(129, 193)(130, 194)(131,
195)(132, 196)(133, 197)(134, 198)(135, 199)(136, 200)(137, 201)(138, 202)(139,
203)(140, 204)(145, 213)(146, 214)(147, 215)(148, 216)(166, 167)(169, 187)(170,
188)(171, 185)(172, 186)(182, 183)(205, 219)(206, 220)(207, 217)(208, 218)(210,
211)(222, 223)(225, 241)(226, 243)(227, 242)(228, 244)(229, 232)(233, 254)(234,
253)(235, 256)(236, 255)(237, 252)(238, 250)(239, 251)(240, 249)(246, 247) (III) Last is Groups&Graphs. Copy everything between (not including)
the lines of asterisks into a plain text file and save it as "graph.txt". Then
launch G&G (Groups&Graphs) and select Read Text from the File menu.
**************
&Graph **************
b: (1, 5)(2, 6)(3, 7)(4, 8)(9, 17)(10, 18)(11, 19)(12, 20)(13, 41)(14, 42)(15,
43)(16, 44)(21, 29)(22, 30)(23, 31)(24, 32)(25, 37)(26, 38)(27, 39)(28, 40)(33,
81)(34, 82)(35, 83)(36, 84)(45, 57)(46, 58)(47, 59)(48, 60)(49, 73)(50, 74)(51,
75)(52, 76)(53, 145)(54, 146)(55, 147)(56, 148)(61, 133)(62, 134)(63, 135)(64,
136)(65, 129)(66, 130)(67, 131)(68, 132)(69, 121)(70, 122)(71, 123)(72, 124)(77,
113)(78, 114)(79, 115)(80, 116)(85, 97)(86, 98)(87, 99)(88, 100)(89, 109)(90,
110)(91, 111)(92, 112)(93, 125)(94, 126)(95, 127)(96, 128)(101, 190)(102,
192)(103, 189)(104, 191)(105, 217)(106, 218)(107, 219)(108, 220)(117, 205)(118,
206)(119, 207)(120, 208)(137, 177)(138, 178)(139, 179)(140, 180)(141, 181)(142,
182)(143, 183)(144, 184)(149, 165)(150, 166)(151, 167)(152, 168)(153, 170)(154,
169)(155, 172)(156, 171)(157, 229)(158, 230)(159, 231)(160, 232)(161, 250)(162,
252)(163, 249)(164, 251)(173, 245)(174, 246)(175, 247)(176, 248)(185, 253)(186,
254)(187, 255)(188, 256)(193, 233)(194, 234)(195, 235)(196, 236)(197, 212)(198,
210)(199, 211)(200, 209)(201, 241)(202, 242)(203, 243)(204, 244)(213, 225)(214,
226)(215, 227)(216, 228)(221, 237)(222, 238)(223, 239)(224, 240)
c: (5, 9)(6, 10)(7, 11)(8, 12)(13, 21)(14, 22)(15, 23)(16, 24)(17, 25)(18,
26)(19, 27)(20, 28)(29, 45)(30, 46)(31, 47)(32, 48)(33, 41)(34, 42)(35, 43)(36,
44)(37, 49)(38, 50)(39, 51)(40, 52)(53, 85)(54, 86)(55, 87)(56, 88)(57, 89)(58,
90)(59, 91)(60, 92)(61, 77)(62, 78)(63, 79)(64, 80)(65, 81)(66, 82)(67, 83)(68,
84)(69, 93)(70, 94)(71, 95)(72, 96)(97, 134)(98, 136)(99, 133)(100, 135)(101,
145)(102, 146)(103, 147)(104, 148)(105, 149)(106, 150)(107, 151)(108, 152)(109,
125)(110, 126)(111, 127)(112, 128)(113, 137)(114, 138)(115, 139)(116, 140)(117,
141)(118, 142)(119, 143)(120, 144)(121, 129)(122, 130)(123, 131)(124, 132)(153,
198)(154, 200)(155, 197)(156, 199)(157, 213)(158, 214)(159, 215)(160, 216)(161,
190)(162, 192)(163, 189)(164, 191)(165, 221)(166, 222)(167, 223)(168, 224)(169,
217)(170, 218)(171, 219)(172, 220)(173, 201)(174, 202)(175, 203)(176, 204)(177,
195)(178, 193)(179, 196)(180, 194)(181, 209)(182, 210)(183, 211)(184, 212)(185,
205)(186, 206)(187, 207)(188, 208)(225, 242)(226, 244)(227, 241)(228, 243)(233,
250)(234, 252)(235, 249)(236, 251)(237, 253)(238, 254)(239, 255)(240, 256)
d: (1, 2)(3, 4)(5, 252)(6, 250)(7, 251)(8, 249)(9, 234)(10, 233)(11, 236)(12,
235)(13, 149)(14, 150)(15, 151)(16, 152)(17, 28)(18, 26)(19, 27)(20, 25)(21,
105)(22, 106)(23, 107)(24, 108)(29, 54)(30, 56)(31, 53)(32, 55)(33, 63)(34,
61)(35, 64)(36, 62)(37, 98)(38, 97)(39, 100)(40, 99)(41, 79)(42, 77)(43, 80)(44,
78)(45, 86)(46, 88)(47, 85)(48, 87)(49, 136)(50, 134)(51, 135)(52, 133)(57,
204)(58, 202)(59, 203)(60, 201)(65, 214)(66, 213)(67, 216)(68, 215)(69, 117)(70,
118)(71, 119)(72, 120)(73, 74)(75, 76)(81, 158)(82, 157)(83, 160)(84, 159)(89,
176)(90, 174)(91, 175)(92, 173)(93, 141)(94, 142)(95, 143)(96, 144)(101,
198)(102, 200)(103, 197)(104, 199)(109, 164)(110, 163)(111, 162)(112, 161)(113,
240)(114, 238)(115, 239)(116, 237)(121, 180)(122, 179)(123, 178)(124, 177)(125,
191)(126, 189)(127, 192)(128, 190)(129, 194)(130, 196)(131, 193)(132, 195)(137,
256)(138, 254)(139, 255)(140, 253)(145, 153)(146, 154)(147, 155)(148, 156)(165,
166)(167, 168)(169, 188)(170, 186)(171, 187)(172, 185)(181, 182)(183, 184)(205,
220)(206, 218)(207, 219)(208, 217)(209, 210)(211, 212)(221, 222)(223, 224)(225,
242)(226, 241)(227, 244)(228, 243)(229, 230)(231, 232)(245, 247)(246, 248)
C4[ 256, 83 ]
256
-1 13 5 9 21
-2 234 105 149 252
-3 253 89 57 237
-4 176 116 204 140
-5 1 17 29 41
-6 165 194 162 217
-7 45 221 185 109
-8 244 80 180 248
-9 33 1 45 25
-10 221 169 180 192
-11 165 125 29 205
-12 226 248 194 64
-13 77 1 27 53
-14 165 112 130 207
-15 221 171 85 163
-16 44 122 248 228
-17 57 37 81 5
-18 154 102 237 140
-19 93 149 117 21
-20 176 234 136 214
-21 1 61 19 85
-22 187 122 221 128
-23 165 189 53 219
-24 243 36 248 130
-25 89 49 9 65
-26 253 200 146 116
-27 13 69 105 141
-28 158 204 98 252
-29 11 133 5 97
-30 255 70 237 96
-31 145 103 149 107
-32 66 176 203 84
-33 101 137 51 9
-34 143 60 82 105
-35 253 199 134 235
-36 24 94 160 204
-37 17 73 129 109
-38 209 80 185 54
-39 121 181 41 217
-40 244 162 86 230
-41 145 113 5 39
-42 66 92 149 119
-43 156 237 249 97
-44 176 70 16 216
-45 99 134 7 9
-46 253 72 94 239
-47 101 147 105 151
-48 68 82 204 175
-49 121 25 125 73
-50 181 205 64 86
-51 33 209 169 129
-52 192 226 54 230
-53 23 13 153 197
-54 38 236 52 252
-55 89 59 213 159
-56 144 116 139 118
-57 3 17 62 87
-58 124 223 126 185
-59 55 167 190 217
-60 132 34 244 247
-61 157 201 95 21
-62 57 83 108 142
-63 198 135 234 256
-64 12 104 50 140
-65 25 161 195 75
-66 211 169 42 32
-67 78 177 183 205
-68 110 232 48 226
-69 27 193 73 163
-70 44 209 171 30
-71 77 178 181 207
-72 46 112 228 230
-73 69 37 49 93
-74 136 117 141 98
-75 154 200 81 65
-76 102 146 158 214
-77 13 213 71 173
-78 67 89 118 152
-79 100 240 153 252
-80 38 148 116 8
-81 177 190 17 75
-82 34 48 183 217
-83 211 62 195 185
-84 232 244 126 32
-85 198 155 15 21
-86 234 50 40 251
-87 57 91 157 215
-88 115 140 120 142
-89 55 78 3 25
-90 110 132 167 205
-91 223 169 161 87
-92 124 247 226 42
-93 178 189 73 19
-94 46 36 181 219
-95 187 209 61 193
-96 243 128 30 230
-97 210 29 172 43
-98 28 194 74 164
-99 45 111 227 229
-100 79 180 182 208
-101 33 47 184 218
-102 179 192 18 76
-103 231 242 125 31
-104 212 64 196 186
-105 34 2 47 27
-106 222 179 190 171
-107 166 126 31 207
-108 246 62 228 196
-109 37 114 147 7
-110 68 90 117 151
-111 99 154 239 250
-112 14 214 72 175
-113 123 245 225 41
-114 168 206 109 131
-115 88 224 170 162
-116 56 80 4 26
-117 110 19 74 131
-118 187 56 78 210
-119 123 182 42 219
-120 88 243 161 229
-121 233 49 39 249
-122 22 156 200 16
-123 113 138 119 141
-124 58 92 158 216
-125 11 103 49 138
-126 58 84 107 141
-127 133 200 233 255
-128 22 158 203 96
-129 37 235 51 250
-130 154 199 24 14
-131 143 114 137 117
-132 90 60 214 160
-133 127 29 229 241
-134 220 45 35 182
-135 188 210 194 63
-136 180 191 74 20
-137 33 242 245 131
-138 123 125 224 186
-139 56 168 192 218
-140 88 4 18 64
-141 123 27 126 74
-142 88 182 62 207
-143 34 210 171 131
-144 56 190 228 229
-145 212 170 41 31
-146 26 162 196 76
-147 231 47 225 109
-148 80 179 184 206
-149 2 19 31 42
-150 166 161 196 219
-151 110 187 222 47
-152 78 243 179 246
-153 79 211 53 186
-154 111 18 75 130
-155 242 232 85 164
-156 122 183 218 43
-157 61 184 87 208
-158 124 28 128 76
-159 55 231 189 227
-160 132 36 212 172
-161 91 150 65 120
-162 146 115 6 40
-163 69 15 215 174
-164 155 238 251 98
-165 11 23 14 6
-166 236 150 107 250
-167 90 255 59 238
-168 114 203 139 174
-169 66 91 51 10
-170 199 254 145 115
-171 143 15 70 106
-172 202 160 97 251
-173 77 177 245 241
-174 220 168 195 163
-175 188 112 48 224
-176 44 4 20 32
-177 67 81 202 173
-178 254 71 93 240
-179 102 148 106 152
-180 100 136 8 10
-181 71 39 50 94
-182 100 134 119 142
-183 198 67 156 82
-184 101 157 148 216
-185 58 38 83 7
-186 104 138 239 153
-187 22 95 118 151
-188 233 135 213 175
-189 23 202 93 159
-190 144 59 81 106
-191 254 136 236 197
-192 102 139 52 10
-193 69 256 95 238
-194 12 135 6 98
-195 201 83 174 65
-196 146 104 150 108
-197 232 191 225 53
-198 183 63 85 206
-199 35 211 170 130
-200 122 26 127 75
-201 245 61 227 195
-202 177 189 224 172
-203 168 128 32 208
-204 36 4 48 28
-205 11 67 90 50
-206 198 255 114 148
-207 14 71 107 142
-208 100 157 203 250
-209 70 38 51 95
-210 143 135 118 97
-211 66 199 83 153
-212 145 213 104 160
-213 55 77 188 212
-214 132 112 20 76
-215 231 163 87 241
-216 44 220 124 184
-217 59 82 6 39
-218 101 156 139 238
-219 23 94 150 119
-220 134 236 216 174
-221 22 15 7 10
-222 233 106 151 251
-223 254 58 91 239
-224 202 115 138 175
-225 113 256 147 197
-226 12 68 92 52
-227 99 201 159 249
-228 144 16 72 108
-229 99 133 144 120
-230 72 40 52 96
-231 103 147 159 215
-232 155 68 84 197
-233 121 188 222 127
-234 2 63 20 86
-235 35 246 129 241
-236 220 166 191 54
-237 3 18 30 43
-238 167 193 218 164
-239 111 46 223 186
-240 242 79 178 247
-241 133 235 215 173
-242 155 103 137 240
-243 24 96 152 120
-244 60 40 84 8
-245 113 201 137 173
-246 235 249 108 152
-247 256 92 60 240
-248 12 24 16 8
-249 121 246 227 43
-250 111 166 129 208
-251 222 172 86 164
-252 2 79 28 54
-253 35 46 3 26
-254 178 223 191 170
-255 167 127 30 206
-256 225 247 193 63
0