C4graphGraph forms for C4 [ 256, 87 ] = UG(ATD[256,173])

[Home] [Table] [Glossary] [Families]

On this page are computer-accessible forms for the graph C4[ 256, 87 ] = UG(ATD[256,173]).

(I) Following is a form readable by MAGMA:

g:=Graph<256|{ {48, 49}, {218, 219}, {1, 2}, {81, 82}, {139, 143}, {241, 245}, {2, 7}, {1, 6}, {217, 222}, {118, 124}, {3, 8}, {114, 121}, {211, 223}, {4, 9}, {192, 205}, {97, 111}, {225, 239}, {5, 10}, {2, 18}, {15, 31}, {14, 30}, {13, 29}, {12, 28}, {11, 27}, {10, 26}, {9, 25}, {8, 24}, {7, 23}, {6, 22}, {5, 21}, {4, 20}, {3, 19}, {39, 54}, {238, 255}, {200, 217}, {108, 126}, {172, 190}, {76, 95}, {131, 144}, {3, 23}, {74, 94}, {111, 122}, {231, 242}, {205, 216}, {131, 150}, {135, 145}, {46, 57}, {207, 216}, {71, 93}, {134, 157}, {198, 221}, {170, 177}, {97, 124}, {102, 120}, {167, 184}, {225, 254}, {153, 185}, {214, 246}, {201, 233}, {194, 226}, {73, 104}, {220, 253}, {30, 61}, {212, 247}, {136, 174}, {218, 252}, {196, 227}, {209, 246}, {136, 160}, {11, 34}, {210, 251}, {83, 122}, {149, 188}, {196, 239}, {77, 96}, {214, 251}, {193, 236}, {16, 62}, {17, 63}, {156, 179}, {223, 240}, {213, 250}, {199, 232}, {194, 237}, {6, 54}, {17, 33}, {16, 32}, {10, 58}, {9, 57}, {8, 56}, {7, 55}, {13, 60}, {157, 172}, {15, 61}, {215, 229}, {210, 224}, {89, 106}, {74, 126}, {221, 233}, {197, 241}, {30, 40}, {207, 249}, {206, 248}, {193, 247}, {78, 120}, {12, 59}, {213, 226}, {144, 169}, {154, 163}, {149, 175}, {199, 253}, {26, 33}, {72, 115}, {14, 50}, {128, 189}, {129, 188}, {85, 106}, {198, 249}, {157, 162}, {21, 85}, {171, 235}, {35, 98}, {165, 228}, {163, 226}, {55, 118}, {37, 100}, {59, 121}, {156, 222}, {34, 97}, {52, 119}, {1, 69}, {56, 124}, {63, 122}, {16, 86}, {176, 246}, {45, 107}, {128, 198}, {129, 199}, {155, 221}, {36, 99}, {164, 227}, {152, 208}, {158, 215}, {161, 232}, {12, 70}, {49, 123}, {13, 71}, {130, 200}, {135, 204}, {189, 246}, {37, 105}, {38, 107}, {132, 201}, {134, 203}, {141, 192}, {36, 106}, {185, 247}, {182, 248}, {11, 68}, {175, 224}, {133, 202}, {149, 218}, {187, 235}, {63, 110}, {5, 87}, {174, 252}, {49, 99}, {22, 68}, {19, 65}, {18, 64}, {27, 72}, {133, 214}, {31, 75}, {136, 220}, {154, 206}, {160, 244}, {28, 73}, {53, 96}, {142, 219}, {20, 66}, {188, 234}, {174, 248}, {21, 67}, {29, 74}, {139, 211}, {190, 230}, {166, 254}, {62, 103}, {167, 254}, {146, 203}, {134, 220}, {191, 229}, {187, 224}, {4, 88}, {24, 69}, {44, 113}, {26, 71}, {42, 116}, {169, 247}, {25, 70}, {170, 245}, {168, 200}, {177, 209}, {144, 241}, {45, 79}, {46, 77}, {150, 240}, {22, 113}, {151, 255}, {147, 249}, {36, 79}, {181, 222}, {52, 95}, {48, 91}, {42, 65}, {132, 239}, {133, 238}, {32, 76}, {158, 242}, {159, 243}, {35, 78}, {51, 94}, {49, 92}, {138, 231}, {151, 250}, {130, 236}, {178, 220}, {171, 197}, {34, 77}, {50, 93}, {50, 66}, {141, 255}, {152, 234}, {11, 127}, {173, 217}, {52, 64}, {16, 101}, {182, 195}, {47, 90}, {45, 88}, {39, 82}, {37, 80}, {38, 81}, {168, 223}, {46, 89}, {24, 96}, {178, 202}, {137, 240}, {18, 104}, {177, 203}, {142, 244}, {148, 238}, {40, 83}, {171, 208}, {44, 87}, {14, 114}, {176, 204}, {164, 216}, {44, 80}, {143, 243}, {41, 84}, {43, 86}, {155, 230}, {166, 216}, {42, 85}, {34, 162}, {37, 165}, {36, 164}, {35, 163}, {40, 169}, {59, 186}, {58, 187}, {112, 241}, {47, 173}, {108, 238}, {60, 191}, {58, 190}, {15, 138}, {105, 236}, {127, 250}, {72, 206}, {79, 200}, {106, 237}, {105, 224}, {109, 231}, {27, 144}, {102, 237}, {31, 147}, {69, 201}, {28, 145}, {67, 206}, {101, 232}, {29, 146}, {48, 191}, {93, 210}, {107, 228}, {98, 242}, {99, 243}, {100, 244}, {127, 239}, {113, 227}, {24, 141}, {47, 186}, {26, 143}, {17, 135}, {25, 142}, {67, 212}, {66, 213}, {61, 165}, {121, 225}, {19, 138}, {58, 160}, {23, 140}, {64, 219}, {61, 161}, {20, 139}, {92, 195}, {119, 215}, {123, 219}, {4, 167}, {71, 228}, {70, 227}, {31, 185}, {78, 232}, {57, 159}, {56, 158}, {41, 143}, {39, 129}, {111, 201}, {117, 211}, {1, 166}, {69, 226}, {51, 155}, {43, 130}, {68, 237}, {53, 156}, {45, 132}, {48, 154}, {90, 240}, {112, 218}, {50, 153}, {76, 231}, {54, 157}, {51, 159}, {80, 252}, {73, 229}, {97, 205}, {120, 212}, {5, 168}, {75, 230}, {53, 152}, {18, 189}, {44, 131}, {19, 162}, {41, 152}, {39, 150}, {38, 151}, {84, 230}, {86, 228}, {114, 192}, {126, 204}, {32, 148}, {79, 251}, {75, 255}, {33, 149}, {94, 234}, {95, 235}, {103, 211}, {119, 195}, {33, 148}, {60, 137}, {116, 193}, {47, 153}, {22, 161}, {117, 194}, {43, 147}, {125, 197}, {83, 234}, {91, 225}, {117, 207}, {78, 245}, {82, 233}, {120, 196}, {81, 236}, {70, 248}, {40, 151}, {86, 150}, {117, 181}, {30, 223}, {65, 131}, {88, 154}, {116, 182}, {119, 180}, {115, 183}, {126, 186}, {84, 146}, {3, 196}, {109, 170}, {17, 217}, {68, 140}, {60, 244}, {59, 243}, {25, 209}, {10, 195}, {100, 173}, {101, 172}, {123, 178}, {125, 180}, {15, 197}, {75, 129}, {13, 193}, {7, 202}, {55, 250}, {95, 146}, {109, 160}, {12, 194}, {87, 153}, {112, 190}, {113, 191}, {124, 179}, {98, 178}, {99, 179}, {100, 180}, {107, 186}, {109, 188}, {101, 183}, {110, 189}, {42, 254}, {88, 140}, {63, 235}, {116, 161}, {9, 222}, {108, 187}, {20, 204}, {85, 142}, {104, 179}, {102, 184}, {103, 185}, {87, 183}, {104, 136}, {29, 252}, {51, 210}, {54, 212}, {74, 168}, {65, 163}, {64, 162}, {98, 128}, {105, 139}, {103, 132}, {110, 141}, {92, 184}, {76, 169}, {27, 253}, {81, 183}, {67, 165}, {66, 164}, {14, 233}, {77, 170}, {55, 208}, {28, 251}, {80, 184}, {93, 181}, {38, 207}, {89, 176}, {56, 209}, {122, 147}, {125, 148}, {94, 180}, {111, 133}, {123, 145}, {91, 176}, {90, 182}, {92, 177}, {118, 155}, {23, 249}, {91, 181}, {73, 167}, {72, 166}, {62, 208}, {35, 205}, {112, 158}, {102, 137}, {108, 156}, {96, 145}, {110, 159}, {118, 135}, {52, 199}, {57, 202}, {53, 198}, {6, 242}, {8, 253}, {90, 175}, {2, 245}, {89, 174}, {46, 215}, {84, 173}, {82, 171}, {115, 138}, {115, 137}, {121, 130}, {125, 134}, {32, 221}, {43, 213}, {62, 192}, {114, 140}, {41, 214}, {83, 172}, {127, 128}, {21, 256}, {175, 256}, {203, 256}, {229, 256} }>;

(II) A more general form is to represent the graph as the orbit of {48, 49} under the group generated by the following permutations:

a: (2, 6)(3, 11)(4, 14)(5, 17)(7, 22)(8, 27)(9, 30)(10, 33)(12, 38)(13, 41)(15, 46)(16, 49)(18, 54)(19, 34)(20, 50)(21, 63)(23, 68)(24, 72)(25, 40)(28, 81)(29, 84)(31, 89)(32, 92)(36, 43)(37, 51)(39, 104)(42, 111)(44, 118)(45, 121)(47, 126)(48, 62)(52, 134)(53, 137)(55, 113)(56, 144)(57, 61)(58, 149)(59, 107)(60, 152)(64, 157)(65, 97)(67, 110)(69, 166)(70, 151)(71, 143)(73, 82)(74, 173)(75, 174)(76, 177)(77, 138)(78, 98)(79, 130)(80, 155)(83, 142)(85, 122)(86, 99)(87, 135)(88, 114)(90, 108)(91, 103)(93, 139)(94, 100)(95, 203)(96, 115)(101, 123)(102, 198)(105, 210)(106, 147)(116, 133)(119, 125)(120, 128)(124, 131)(127, 196)(129, 136)(132, 225)(141, 206)(145, 183)(148, 195)(150, 179)(153, 204)(154, 192)(156, 240)(158, 241)(159, 165)(160, 188)(161, 202)(163, 205)(164, 213)(167, 233)(168, 217)(169, 209)(170, 231)(171, 229)(172, 219)(175, 187)(176, 185)(178, 232)(181, 211)(182, 238)(184, 221)(189, 212)(190, 218)(191, 208)(193, 214)(194, 207)(197, 215)(199, 220)(201, 254)(216, 226)(222, 223)(227, 250)(228, 243)(230, 252)(234, 244)(235, 256)(236, 251)(237, 249)(242, 245)(246, 247)(248, 255)
b: (2, 166)(3, 11)(4, 136)(5, 41)(6, 69)(7, 72)(8, 68)(9, 174)(10, 143)(12, 215)(13, 17)(14, 129)(15, 151)(18, 254)(19, 127)(20, 160)(21, 214)(22, 24)(23, 27)(25, 89)(28, 229)(29, 217)(30, 75)(31, 40)(32, 86)(33, 71)(34, 196)(36, 177)(37, 108)(38, 197)(39, 233)(42, 189)(43, 76)(44, 53)(45, 134)(46, 70)(47, 94)(48, 123)(50, 188)(51, 90)(52, 121)(54, 201)(55, 115)(56, 237)(57, 248)(58, 139)(59, 119)(60, 135)(61, 255)(62, 101)(63, 193)(64, 225)(65, 128)(66, 109)(67, 133)(74, 173)(77, 227)(78, 205)(79, 203)(80, 156)(81, 171)(83, 185)(84, 168)(85, 246)(87, 152)(88, 220)(91, 219)(92, 99)(93, 149)(95, 130)(96, 113)(97, 120)(98, 163)(100, 126)(102, 124)(103, 172)(104, 167)(105, 187)(106, 209)(107, 125)(110, 116)(111, 212)(112, 117)(114, 199)(118, 137)(122, 247)(131, 198)(132, 157)(138, 250)(140, 253)(141, 161)(142, 176)(144, 249)(145, 191)(146, 200)(147, 169)(148, 228)(150, 221)(153, 234)(154, 178)(155, 240)(158, 194)(159, 182)(162, 239)(164, 170)(165, 238)(175, 210)(179, 184)(180, 186)(181, 218)(183, 208)(190, 211)(192, 232)(195, 243)(202, 206)(204, 244)(207, 241)(213, 231)(216, 245)(222, 252)(223, 230)(226, 242)(235, 236)(251, 256)
c: (1, 2, 245, 78, 35, 98, 242, 6)(3, 34, 253, 19, 11, 8, 162, 27)(4, 152, 195, 86, 91, 155, 256, 81)(5, 107, 222, 94, 90, 130, 204, 84)(7, 170, 232, 163, 128, 158, 54, 166)(9, 234, 182, 43, 176, 230, 21, 38)(10, 228, 181, 51, 175, 236, 20, 41)(12, 63, 252, 185, 36, 238, 244, 30)(13, 50, 251, 187, 37, 211, 243, 33)(14, 28, 235, 80, 103, 99, 148, 60)(15, 237, 141, 219, 169, 227, 111, 136)(16, 48, 221, 229, 82, 167, 208, 92)(17, 29, 153, 79, 108, 100, 223, 59)(18, 241, 120, 205, 178, 231, 22, 69)(23, 77, 199, 65, 127, 56, 157, 72)(24, 64, 144, 196, 97, 220, 138, 68)(25, 83, 248, 147, 89, 75, 85, 151)(26, 71, 93, 210, 224, 105, 139, 143)(31, 106, 255, 142, 40, 70, 122, 174)(32, 191, 233, 73, 171, 184, 62, 49)(39, 254, 55, 177, 101, 154, 198, 215)(42, 250, 209, 172, 206, 249, 46, 129)(44, 132, 179, 125, 137, 114, 145, 95)(45, 156, 180, 240, 121, 135, 146, 87)(47, 200, 126, 173, 168, 186, 217, 74)(52, 131, 239, 124, 134, 115, 140, 96)(53, 119, 150, 225, 118, 203, 183, 88)(57, 188, 116, 213, 246, 190, 67, 207)(58, 165, 117, 159, 149, 193, 66, 214)(61, 194, 110, 218, 247, 164, 133, 160)(76, 113, 201, 104, 197, 102, 192, 123)(109, 161, 226, 189, 112, 212, 216, 202)

(III) Last is Groups&Graphs. Copy everything between (not including) the lines of asterisks into a plain text file and save it as "graph.txt". Then launch G&G (Groups&Graphs) and select Read Text from the File menu.

**************

&Graph
C4[ 256, 87 ]
256
-1 166 2 69 6
-2 1 245 7 18
-3 23 8 19 196
-4 88 167 9 20
-5 168 10 21 87
-6 22 242 1 54
-7 55 23 2 202
-8 253 56 24 3
-9 57 222 25 4
-10 58 26 5 195
-11 34 68 27 127
-12 59 70 28 194
-13 60 71 193 29
-14 233 114 50 30
-15 61 138 31 197
-16 101 62 86 32
-17 33 135 63 217
-18 2 189 104 64
-19 3 138 162 65
-20 66 4 204 139
-21 67 256 5 85
-22 68 113 6 161
-23 3 7 249 140
-24 69 8 96 141
-25 209 70 9 142
-26 33 143 71 10
-27 11 253 144 72
-28 12 145 73 251
-29 13 146 74 252
-30 14 223 61 40
-31 15 147 75 185
-32 221 16 148 76
-33 26 148 17 149
-34 11 77 162 97
-35 78 205 163 98
-36 99 79 106 164
-37 165 100 80 105
-38 81 107 151 207
-39 82 150 129 54
-40 169 83 30 151
-41 143 214 84 152
-42 254 116 85 65
-43 147 213 86 130
-44 80 113 87 131
-45 88 132 79 107
-46 77 89 57 215
-47 90 173 153 186
-48 154 91 191 49
-49 99 123 48 92
-50 66 14 93 153
-51 155 210 159 94
-52 199 95 64 119
-53 198 156 96 152
-54 157 212 6 39
-55 7 118 250 208
-56 209 124 158 8
-57 46 202 159 9
-58 187 190 160 10
-59 121 12 243 186
-60 13 244 191 137
-61 165 15 161 30
-62 103 16 192 208
-63 110 122 235 17
-64 18 52 162 219
-65 19 42 163 131
-66 213 50 20 164
-67 165 212 206 21
-68 11 22 237 140
-69 1 24 201 226
-70 12 25 248 227
-71 13 26 93 228
-72 166 27 115 206
-73 167 104 28 229
-74 168 126 94 29
-75 255 129 31 230
-76 231 169 95 32
-77 34 46 170 96
-78 232 35 245 120
-79 45 200 36 251
-80 44 37 184 252
-81 38 82 236 183
-82 233 81 39 171
-83 122 234 40 172
-84 146 41 173 230
-85 106 42 21 142
-86 16 150 228 43
-87 44 5 183 153
-88 154 45 4 140
-89 176 46 106 174
-90 47 182 240 175
-91 176 48 181 225
-92 177 49 184 195
-93 210 71 181 50
-94 234 180 51 74
-95 146 235 52 76
-96 77 24 145 53
-97 34 111 124 205
-98 242 35 178 128
-99 243 36 179 49
-100 244 37 180 173
-101 232 16 172 183
-102 137 237 184 120
-103 132 211 62 185
-104 179 136 18 73
-105 37 224 236 139
-106 89 36 237 85
-107 45 38 228 186
-108 187 156 126 238
-109 231 188 170 160
-110 189 159 63 141
-111 122 133 201 97
-112 190 158 218 241
-113 22 44 191 227
-114 121 14 192 140
-115 137 72 138 183
-116 182 193 161 42
-117 211 181 194 207
-118 55 155 124 135
-119 180 215 52 195
-120 78 102 212 196
-121 59 114 225 130
-122 111 147 83 63
-123 145 178 49 219
-124 56 179 118 97
-125 134 180 148 197
-126 204 74 108 186
-127 11 128 239 250
-128 198 189 127 98
-129 188 199 39 75
-130 121 200 236 43
-131 44 144 150 65
-132 45 201 103 239
-133 111 202 214 238
-134 220 157 125 203
-135 145 17 204 118
-136 220 104 160 174
-137 102 60 115 240
-138 231 15 115 19
-139 143 211 105 20
-140 88 23 68 114
-141 110 24 255 192
-142 244 25 85 219
-143 243 26 139 41
-144 169 27 131 241
-145 123 135 28 96
-146 203 29 84 95
-147 122 249 31 43
-148 33 125 238 32
-149 33 188 218 175
-150 39 86 240 131
-151 255 38 40 250
-152 234 41 53 208
-153 47 50 185 87
-154 88 48 206 163
-155 221 51 118 230
-156 222 179 53 108
-157 134 172 162 54
-158 242 56 112 215
-159 110 243 57 51
-160 244 58 136 109
-161 22 232 61 116
-162 34 157 19 64
-163 154 35 226 65
-164 66 36 216 227
-165 67 37 61 228
-166 1 254 72 216
-167 254 4 73 184
-168 200 223 5 74
-169 144 247 40 76
-170 77 177 245 109
-171 235 82 197 208
-172 101 157 190 83
-173 100 47 84 217
-174 89 136 248 252
-175 90 256 224 149
-176 89 91 246 204
-177 209 92 170 203
-178 220 123 202 98
-179 99 156 124 104
-180 100 125 94 119
-181 222 91 93 117
-182 90 116 248 195
-183 101 81 115 87
-184 167 80 102 92
-185 103 247 31 153
-186 47 59 126 107
-187 58 224 235 108
-188 234 149 129 109
-189 110 246 18 128
-190 112 58 172 230
-191 113 48 60 229
-192 114 62 205 141
-193 13 236 247 116
-194 12 226 237 117
-195 92 182 119 10
-196 3 227 239 120
-197 15 125 171 241
-198 221 128 249 53
-199 253 232 52 129
-200 79 168 217 130
-201 132 111 233 69
-202 133 57 178 7
-203 177 134 146 256
-204 176 135 126 20
-205 35 192 216 97
-206 154 67 72 248
-207 38 117 216 249
-208 55 171 62 152
-209 56 177 25 246
-210 224 93 51 251
-211 223 103 117 139
-212 67 247 54 120
-213 66 226 250 43
-214 133 246 41 251
-215 46 158 119 229
-216 166 205 207 164
-217 200 222 17 173
-218 112 149 219 252
-219 123 64 218 142
-220 253 134 178 136
-221 198 155 233 32
-222 156 181 217 9
-223 211 168 30 240
-224 187 210 105 175
-225 121 254 91 239
-226 69 213 194 163
-227 113 70 196 164
-228 165 71 107 86
-229 256 191 215 73
-230 155 190 84 75
-231 242 138 76 109
-232 78 199 101 161
-233 221 14 201 82
-234 188 83 94 152
-235 187 171 95 63
-236 81 105 193 130
-237 68 102 106 194
-238 133 255 148 108
-239 132 225 127 196
-240 90 223 137 150
-241 144 112 245 197
-242 231 158 6 98
-243 99 143 59 159
-244 100 60 160 142
-245 78 2 170 241
-246 176 209 189 214
-247 212 169 193 185
-248 70 182 206 174
-249 198 23 147 207
-250 55 213 127 151
-251 210 79 214 28
-252 80 29 174 218
-253 220 199 27 8
-254 166 167 225 42
-255 238 151 75 141
-256 203 229 21 175
0

**************