C4graphGraph forms for C4 [ 256, 88 ] = UG(ATD[256,176])

[Home] [Table] [Glossary] [Families]

On this page are computer-accessible forms for the graph C4[ 256, 88 ] = UG(ATD[256,176]).

(I) Following is a form readable by MAGMA:

g:=Graph<256|{ {156, 157}, {168, 170}, {184, 186}, {1, 2}, {197, 198}, {33, 34}, {90, 94}, {2, 7}, {56, 61}, {42, 44}, {1, 6}, {83, 84}, {131, 132}, {129, 137}, {246, 254}, {178, 187}, {209, 216}, {199, 206}, {34, 40}, {3, 8}, {119, 124}, {17, 29}, {4, 9}, {215, 218}, {80, 93}, {164, 170}, {5, 10}, {196, 203}, {194, 205}, {5, 21}, {175, 190}, {2, 16}, {76, 94}, {46, 60}, {15, 29}, {14, 28}, {11, 25}, {10, 24}, {7, 21}, {6, 20}, {3, 17}, {99, 112}, {162, 177}, {47, 59}, {235, 255}, {193, 213}, {192, 212}, {139, 158}, {4, 18}, {13, 27}, {12, 26}, {5, 19}, {202, 210}, {79, 85}, {66, 89}, {106, 113}, {105, 117}, {160, 189}, {8, 22}, {9, 23}, {103, 121}, {138, 148}, {195, 227}, {77, 108}, {86, 119}, {151, 182}, {87, 117}, {218, 249}, {138, 174}, {86, 113}, {72, 96}, {18, 59}, {214, 255}, {75, 98}, {22, 63}, {20, 61}, {16, 58}, {21, 62}, {85, 120}, {213, 248}, {142, 163}, {156, 177}, {90, 116}, {220, 242}, {133, 171}, {19, 60}, {194, 237}, {143, 160}, {84, 100}, {137, 185}, {15, 62}, {198, 247}, {130, 179}, {132, 182}, {223, 237}, {133, 183}, {159, 173}, {209, 226}, {220, 239}, {192, 244}, {201, 252}, {6, 48}, {195, 245}, {15, 57}, {14, 56}, {7, 49}, {131, 181}, {134, 176}, {74, 125}, {219, 236}, {211, 228}, {201, 254}, {5, 61}, {223, 231}, {208, 232}, {20, 45}, {8, 50}, {13, 55}, {12, 54}, {9, 51}, {4, 63}, {91, 103}, {152, 164}, {71, 122}, {202, 247}, {75, 118}, {154, 167}, {10, 52}, {90, 100}, {11, 53}, {196, 251}, {1, 65}, {174, 238}, {128, 193}, {159, 222}, {179, 241}, {180, 246}, {3, 64}, {169, 234}, {135, 196}, {135, 195}, {163, 231}, {189, 248}, {43, 109}, {187, 253}, {160, 230}, {28, 91}, {171, 236}, {161, 230}, {42, 109}, {31, 88}, {56, 112}, {131, 203}, {140, 196}, {49, 120}, {184, 241}, {179, 249}, {185, 243}, {48, 123}, {188, 247}, {50, 126}, {141, 192}, {176, 253}, {165, 232}, {60, 114}, {139, 197}, {166, 233}, {191, 240}, {184, 247}, {55, 103}, {185, 233}, {164, 245}, {186, 235}, {189, 239}, {50, 97}, {187, 232}, {182, 229}, {57, 106}, {19, 71}, {178, 230}, {174, 250}, {55, 99}, {168, 253}, {23, 64}, {31, 72}, {136, 223}, {144, 200}, {24, 65}, {181, 236}, {175, 246}, {165, 252}, {162, 251}, {36, 125}, {30, 71}, {28, 69}, {26, 67}, {25, 66}, {29, 70}, {35, 127}, {128, 221}, {176, 238}, {27, 68}, {129, 222}, {146, 242}, {62, 92}, {24, 124}, {54, 82}, {53, 81}, {27, 127}, {26, 126}, {25, 125}, {143, 234}, {190, 219}, {186, 223}, {169, 204}, {145, 244}, {16, 118}, {161, 199}, {17, 119}, {48, 87}, {52, 83}, {34, 74}, {180, 220}, {166, 206}, {39, 79}, {38, 78}, {37, 77}, {36, 76}, {35, 75}, {32, 73}, {171, 194}, {153, 240}, {18, 120}, {188, 215}, {22, 122}, {51, 95}, {24, 116}, {23, 123}, {20, 121}, {173, 192}, {143, 224}, {181, 218}, {44, 92}, {190, 206}, {145, 225}, {146, 226}, {26, 107}, {149, 228}, {130, 240}, {7, 115}, {133, 241}, {168, 221}, {148, 227}, {57, 65}, {189, 197}, {139, 243}, {41, 80}, {43, 81}, {128, 250}, {159, 229}, {162, 217}, {144, 237}, {188, 193}, {150, 235}, {44, 82}, {175, 209}, {58, 68}, {54, 73}, {27, 155}, {82, 210}, {80, 209}, {85, 212}, {35, 161}, {37, 167}, {77, 201}, {95, 219}, {4, 129}, {74, 207}, {41, 172}, {76, 202}, {84, 211}, {69, 205}, {70, 206}, {98, 234}, {78, 199}, {87, 222}, {53, 191}, {94, 212}, {100, 238}, {101, 233}, {111, 227}, {76, 194}, {110, 224}, {118, 248}, {67, 204}, {91, 212}, {39, 183}, {73, 217}, {57, 169}, {54, 166}, {12, 157}, {93, 204}, {112, 225}, {59, 168}, {102, 245}, {120, 235}, {1, 149}, {102, 242}, {112, 228}, {14, 155}, {121, 239}, {3, 148}, {81, 198}, {25, 142}, {13, 154}, {11, 156}, {104, 255}, {107, 252}, {108, 244}, {87, 204}, {97, 250}, {100, 255}, {116, 239}, {122, 225}, {2, 158}, {30, 130}, {29, 129}, {28, 128}, {15, 147}, {124, 224}, {21, 136}, {78, 208}, {97, 254}, {106, 245}, {107, 203}, {38, 135}, {45, 140}, {40, 137}, {121, 216}, {123, 217}, {32, 131}, {51, 144}, {46, 141}, {41, 138}, {37, 134}, {108, 207}, {117, 214}, {127, 220}, {42, 142}, {89, 253}, {115, 215}, {119, 211}, {33, 132}, {52, 145}, {114, 215}, {126, 219}, {34, 133}, {92, 251}, {89, 254}, {47, 136}, {44, 139}, {111, 200}, {125, 218}, {16, 184}, {63, 151}, {58, 147}, {60, 149}, {56, 146}, {61, 150}, {83, 248}, {88, 244}, {95, 243}, {22, 187}, {86, 251}, {108, 193}, {107, 197}, {39, 136}, {59, 148}, {96, 208}, {98, 210}, {110, 222}, {83, 226}, {85, 228}, {103, 214}, {126, 207}, {63, 141}, {106, 216}, {104, 221}, {46, 152}, {47, 153}, {99, 213}, {43, 147}, {33, 152}, {45, 151}, {118, 205}, {43, 150}, {50, 143}, {9, 183}, {49, 142}, {86, 150}, {90, 154}, {39, 229}, {91, 153}, {70, 132}, {115, 177}, {38, 229}, {69, 134}, {114, 183}, {33, 231}, {113, 182}, {113, 185}, {93, 151}, {13, 198}, {102, 173}, {36, 232}, {64, 140}, {97, 173}, {45, 224}, {98, 175}, {114, 191}, {47, 225}, {72, 134}, {8, 216}, {35, 243}, {23, 199}, {66, 145}, {99, 176}, {37, 241}, {40, 252}, {101, 177}, {102, 178}, {115, 167}, {32, 246}, {122, 172}, {10, 221}, {53, 237}, {71, 159}, {70, 158}, {69, 157}, {68, 156}, {67, 155}, {66, 154}, {65, 153}, {64, 152}, {95, 135}, {110, 180}, {111, 181}, {127, 165}, {14, 210}, {96, 188}, {55, 234}, {11, 213}, {36, 250}, {109, 179}, {38, 249}, {101, 186}, {79, 174}, {17, 242}, {92, 191}, {72, 172}, {110, 138}, {104, 141}, {105, 140}, {41, 207}, {46, 200}, {111, 137}, {42, 205}, {117, 146}, {124, 155}, {62, 214}, {123, 147}, {73, 160}, {75, 162}, {116, 157}, {104, 130}, {18, 249}, {79, 164}, {74, 161}, {88, 180}, {78, 163}, {12, 226}, {77, 163}, {6, 233}, {32, 208}, {96, 144}, {40, 217}, {67, 178}, {58, 203}, {88, 170}, {89, 171}, {94, 172}, {31, 236}, {48, 195}, {80, 165}, {82, 167}, {81, 166}, {93, 170}, {105, 158}, {109, 149}, {30, 231}, {49, 200}, {31, 230}, {51, 201}, {68, 190}, {19, 238}, {84, 169}, {30, 227}, {52, 202}, {101, 256}, {105, 256}, {211, 256}, {240, 256} }>;

(II) A more general form is to represent the graph as the orbit of {156, 157} under the group generated by the following permutations:

a: (1, 2, 7, 21, 62, 92, 191, 240, 256, 101, 186, 235, 150, 43, 109, 149)(3, 12, 34, 94, 151, 27, 78, 176, 245, 189, 181, 145, 222, 98, 51, 128)(4, 14, 23, 69, 152, 116, 132, 154, 229, 55, 135, 213, 227, 83, 137, 202)(5, 15, 44, 114, 153, 105, 177, 223, 255, 86, 81, 179, 228, 6, 16, 49)(8, 26, 74, 172, 93, 127, 208, 253, 102, 160, 236, 244, 110, 175, 201, 250)(9, 28, 64, 157, 33, 90, 182, 13, 38, 99, 195, 248, 111, 52, 129, 210)(10, 29, 82, 183, 91, 140, 156, 231, 100, 113, 198, 249, 112, 48, 118, 200)(11, 30, 84, 185, 247, 18, 56, 123, 205, 46, 24, 70, 167, 39, 103, 196)(17, 54, 133, 212, 45, 68, 163, 238, 106, 197, 218, 225, 87, 75, 144, 221)(19, 57, 139, 215, 47, 117, 162, 237, 104, 119, 166, 241, 85, 20, 58, 142)(22, 67, 161, 72, 170, 220, 32, 89, 173, 143, 219, 108, 138, 209, 252, 36)(25, 71, 169, 243, 188, 59, 146, 217, 194, 141, 124, 206, 37, 79, 121, 203)(31, 88, 180, 246, 254, 97, 50, 126, 207, 41, 80, 165, 232, 187, 178, 230)(35, 96, 168, 242, 73, 171, 192, 224, 190, 77, 174, 216, 107, 125, 122, 204)(40, 76, 63, 155, 199, 134, 164, 239, 131, 66, 159, 234, 95, 193, 148, 226)(42, 60, 65, 158, 115, 136, 214, 251, 53, 130, 211, 233, 184, 120, 61, 147)
b: (2, 6)(3, 11)(4, 13)(7, 20)(8, 25)(9, 27)(10, 19)(12, 33)(14, 39)(15, 43)(16, 48)(17, 53)(18, 55)(21, 61)(22, 66)(23, 68)(24, 60)(26, 34)(28, 79)(29, 81)(30, 83)(35, 95)(36, 97)(37, 93)(38, 98)(40, 107)(41, 108)(42, 106)(44, 113)(45, 115)(46, 116)(47, 112)(49, 121)(50, 125)(51, 127)(52, 71)(54, 132)(56, 136)(57, 109)(58, 123)(59, 99)(62, 150)(63, 154)(64, 156)(65, 149)(67, 133)(69, 164)(70, 166)(72, 88)(73, 131)(74, 126)(75, 135)(76, 173)(77, 80)(78, 175)(82, 182)(84, 130)(85, 91)(86, 92)(87, 184)(89, 187)(90, 141)(94, 192)(96, 180)(100, 104)(101, 105)(102, 194)(103, 120)(110, 188)(111, 189)(114, 124)(117, 186)(118, 195)(119, 191)(122, 145)(128, 174)(129, 198)(134, 170)(137, 197)(138, 193)(139, 185)(140, 177)(142, 216)(143, 218)(144, 220)(146, 223)(148, 213)(151, 167)(152, 157)(153, 228)(155, 183)(158, 233)(159, 202)(160, 181)(161, 219)(162, 196)(163, 209)(165, 201)(168, 176)(169, 179)(171, 178)(172, 244)(190, 199)(200, 239)(203, 217)(204, 241)(205, 245)(208, 246)(210, 229)(211, 240)(214, 235)(215, 224)(221, 238)(222, 247)(226, 231)(227, 248)(230, 236)(232, 254)(234, 249)(237, 242)
c: (2, 149)(3, 226)(4, 210)(5, 147)(6, 65)(7, 109)(8, 209)(9, 202)(10, 123)(11, 231)(12, 148)(13, 229)(14, 129)(15, 61)(16, 60)(17, 146)(18, 82)(19, 58)(20, 57)(21, 43)(22, 175)(23, 52)(24, 48)(25, 163)(26, 138)(27, 159)(28, 137)(29, 56)(30, 156)(32, 253)(33, 213)(34, 193)(35, 192)(36, 201)(37, 218)(38, 154)(39, 198)(40, 128)(41, 126)(42, 49)(44, 120)(45, 169)(46, 118)(47, 166)(50, 80)(51, 76)(53, 223)(54, 59)(55, 182)(62, 150)(63, 98)(64, 83)(66, 78)(67, 110)(68, 71)(69, 111)(70, 112)(72, 236)(73, 168)(74, 108)(75, 141)(77, 125)(79, 197)(81, 136)(84, 140)(85, 139)(86, 214)(87, 124)(88, 230)(89, 208)(90, 135)(91, 185)(92, 235)(93, 143)(94, 95)(96, 171)(97, 165)(99, 132)(100, 196)(101, 240)(102, 220)(103, 113)(104, 162)(105, 211)(106, 121)(107, 174)(114, 184)(115, 179)(116, 195)(117, 119)(122, 190)(127, 173)(130, 177)(131, 176)(133, 188)(134, 181)(144, 194)(145, 199)(151, 234)(152, 248)(153, 233)(155, 222)(157, 227)(158, 228)(160, 170)(161, 244)(164, 189)(167, 249)(172, 219)(178, 180)(183, 247)(186, 191)(187, 246)(200, 205)(203, 238)(204, 224)(206, 225)(212, 243)(215, 241)(217, 221)(232, 254)(239, 245)(250, 252)(251, 255)

(III) Last is Groups&Graphs. Copy everything between (not including) the lines of asterisks into a plain text file and save it as "graph.txt". Then launch G&G (Groups&Graphs) and select Read Text from the File menu.

**************

&Graph
C4[ 256, 88 ]
256
-1 2 6 149 65
-2 1 158 16 7
-3 148 17 8 64
-4 18 63 129 9
-5 61 19 10 21
-6 1 233 48 20
-7 2 49 115 21
-8 22 3 50 216
-9 23 4 51 183
-10 221 24 5 52
-11 156 25 213 53
-12 157 26 226 54
-13 55 154 198 27
-14 56 155 210 28
-15 57 147 29 62
-16 2 58 118 184
-17 242 3 29 119
-18 4 59 249 120
-19 5 60 71 238
-20 121 45 6 61
-21 136 5 7 62
-22 187 122 8 63
-23 199 123 9 64
-24 124 116 10 65
-25 11 66 125 142
-26 12 67 126 107
-27 155 13 68 127
-28 14 69 91 128
-29 15 70 17 129
-30 231 71 227 130
-31 88 236 72 230
-32 246 73 131 208
-33 132 231 34 152
-34 33 133 40 74
-35 243 127 161 75
-36 232 125 250 76
-37 77 134 167 241
-38 78 135 249 229
-39 79 136 183 229
-40 34 137 217 252
-41 80 138 172 207
-42 44 205 109 142
-43 81 147 150 109
-44 92 82 139 42
-45 224 140 151 20
-46 200 60 141 152
-47 59 136 225 153
-48 123 6 195 87
-49 200 7 120 142
-50 143 126 8 97
-51 144 201 95 9
-52 145 202 83 10
-53 11 81 191 237
-54 12 166 82 73
-55 99 13 234 103
-56 112 14 146 61
-57 15 169 106 65
-58 68 147 16 203
-59 47 168 148 18
-60 46 114 149 19
-61 56 5 150 20
-62 15 92 214 21
-63 22 4 151 141
-64 23 3 140 152
-65 1 24 57 153
-66 154 89 145 25
-67 155 178 26 204
-68 156 58 190 27
-69 134 157 28 205
-70 132 158 29 206
-71 122 159 19 30
-72 134 172 96 31
-73 160 217 32 54
-74 34 125 161 207
-75 35 118 162 98
-76 36 202 94 194
-77 201 37 108 163
-78 199 38 163 208
-79 39 85 174 164
-80 165 209 93 41
-81 198 166 53 43
-82 44 210 167 54
-83 226 248 84 52
-84 100 211 169 83
-85 79 212 228 120
-86 113 150 119 251
-87 222 48 204 117
-88 244 180 170 31
-89 66 253 254 171
-90 154 100 94 116
-91 212 103 28 153
-92 44 191 62 251
-93 80 170 204 151
-94 90 212 172 76
-95 243 135 51 219
-96 144 188 72 208
-97 254 50 173 250
-98 210 234 75 175
-99 55 176 112 213
-100 90 255 84 238
-101 177 233 256 186
-102 242 178 245 173
-103 55 121 91 214
-104 221 255 130 141
-105 256 158 117 140
-106 57 113 245 216
-107 26 203 197 252
-108 77 244 193 207
-109 179 149 42 43
-110 222 180 224 138
-111 200 137 181 227
-112 99 56 225 228
-113 182 106 86 185
-114 191 60 215 183
-115 177 167 215 7
-116 24 90 157 239
-117 146 214 105 87
-118 16 248 205 75
-119 211 124 17 86
-120 235 49 18 85
-121 103 216 239 20
-122 22 71 225 172
-123 23 48 147 217
-124 155 24 224 119
-125 25 36 74 218
-126 26 50 207 219
-127 165 220 35 27
-128 221 28 193 250
-129 222 4 137 29
-130 179 104 30 240
-131 132 181 203 32
-132 33 70 182 131
-133 34 171 183 241
-134 176 69 37 72
-135 38 95 195 196
-136 47 223 39 21
-137 111 40 129 185
-138 110 148 41 174
-139 44 243 158 197
-140 45 105 64 196
-141 46 104 192 63
-142 25 49 42 163
-143 234 224 50 160
-144 200 237 51 96
-145 66 244 225 52
-146 242 56 226 117
-147 123 58 15 43
-148 3 59 138 227
-149 1 60 228 109
-150 235 61 86 43
-151 45 93 182 63
-152 33 46 64 164
-153 47 91 240 65
-154 66 13 90 167
-155 67 14 124 27
-156 11 177 68 157
-157 12 156 69 116
-158 2 70 105 139
-159 222 71 173 229
-160 143 189 73 230
-161 199 35 74 230
-162 177 217 75 251
-163 77 231 78 142
-164 79 245 170 152
-165 232 80 127 252
-166 233 81 206 54
-167 154 37 82 115
-168 253 221 59 170
-169 57 234 204 84
-170 88 168 93 164
-171 89 133 236 194
-172 122 72 94 41
-173 102 159 192 97
-174 79 138 238 250
-175 209 190 246 98
-176 99 253 134 238
-177 101 156 115 162
-178 187 67 102 230
-179 249 130 109 241
-180 88 110 220 246
-181 111 236 218 131
-182 132 113 151 229
-183 133 114 39 9
-184 16 247 186 241
-185 243 233 113 137
-186 101 223 235 184
-187 22 253 232 178
-188 247 193 215 96
-189 160 248 239 197
-190 68 206 175 219
-191 92 114 53 240
-192 244 212 173 141
-193 188 213 128 108
-194 171 237 205 76
-195 135 245 48 227
-196 135 203 140 251
-197 198 189 139 107
-198 13 81 247 197
-199 23 78 161 206
-200 111 144 46 49
-201 77 254 51 252
-202 210 247 52 76
-203 58 107 196 131
-204 67 169 93 87
-205 69 194 118 42
-206 166 199 190 70
-207 126 41 74 108
-208 78 232 96 32
-209 80 226 216 175
-210 14 202 82 98
-211 256 84 228 119
-212 91 192 94 85
-213 11 99 193 248
-214 255 103 62 117
-215 188 114 115 218
-216 121 209 106 8
-217 123 40 73 162
-218 125 181 215 249
-219 190 126 236 95
-220 242 180 127 239
-221 168 104 128 10
-222 110 159 129 87
-223 231 136 237 186
-224 110 143 45 124
-225 122 112 145 47
-226 209 12 146 83
-227 111 148 30 195
-228 112 211 149 85
-229 38 159 39 182
-230 178 160 161 31
-231 33 223 30 163
-232 165 187 36 208
-233 166 101 6 185
-234 55 143 169 98
-235 255 150 120 186
-236 181 171 31 219
-237 144 223 194 53
-238 176 100 19 174
-239 121 220 189 116
-240 256 191 130 153
-241 133 179 37 184
-242 220 102 146 17
-243 35 95 139 185
-244 88 145 192 108
-245 102 106 195 164
-246 254 180 32 175
-247 198 188 202 184
-248 189 213 83 118
-249 179 38 18 218
-250 36 128 97 174
-251 92 162 86 196
-252 165 201 40 107
-253 176 187 89 168
-254 89 201 246 97
-255 100 235 104 214
-256 101 211 105 240
0

**************