C4graphGraph forms for C4 [ 256, 90 ] = UG(ATD[256,182])

[Home] [Table] [Glossary] [Families]

On this page are computer-accessible forms for the graph C4[ 256, 90 ] = UG(ATD[256,182]).

(I) Following is a form readable by MAGMA:

g:=Graph<256|{ {10, 11}, {206, 207}, {46, 47}, {38, 39}, {205, 207}, {1, 2}, {93, 94}, {113, 114}, {121, 122}, {195, 199}, {2, 7}, {233, 236}, {1, 6}, {99, 100}, {123, 124}, {81, 88}, {181, 188}, {199, 205}, {3, 8}, {20, 24}, {4, 9}, {240, 253}, {199, 202}, {7, 10}, {115, 126}, {116, 121}, {132, 138}, {247, 249}, {5, 10}, {6, 22}, {15, 31}, {163, 179}, {11, 26}, {12, 30}, {69, 87}, {13, 31}, {8, 27}, {135, 148}, {2, 22}, {34, 54}, {9, 29}, {2, 23}, {102, 115}, {200, 223}, {205, 213}, {230, 254}, {3, 24}, {206, 213}, {47, 52}, {7, 28}, {8, 20}, {200, 212}, {32, 60}, {4, 25}, {204, 209}, {201, 212}, {10, 23}, {6, 27}, {5, 26}, {229, 250}, {228, 251}, {227, 252}, {44, 51}, {25, 57}, {150, 182}, {84, 117}, {215, 246}, {196, 229}, {208, 242}, {70, 101}, {221, 254}, {217, 250}, {192, 227}, {28, 56}, {30, 59}, {218, 252}, {153, 190}, {220, 251}, {210, 245}, {149, 189}, {209, 249}, {133, 172}, {138, 163}, {222, 244}, {195, 232}, {211, 248}, {13, 33}, {139, 167}, {147, 191}, {212, 249}, {14, 32}, {86, 120}, {76, 98}, {15, 33}, {77, 98}, {9, 57}, {78, 126}, {16, 34}, {210, 224}, {69, 119}, {17, 35}, {21, 38}, {198, 242}, {79, 122}, {93, 104}, {18, 36}, {19, 37}, {18, 37}, {19, 36}, {29, 37}, {203, 242}, {28, 38}, {132, 191}, {204, 247}, {136, 179}, {68, 120}, {200, 244}, {128, 188}, {91, 102}, {214, 235}, {131, 190}, {137, 183}, {140, 178}, {130, 189}, {207, 240}, {202, 245}, {201, 246}, {134, 185}, {129, 192}, {187, 249}, {136, 203}, {147, 215}, {171, 239}, {150, 210}, {4, 65}, {133, 192}, {6, 64}, {35, 101}, {7, 65}, {149, 211}, {49, 118}, {145, 214}, {8, 64}, {184, 240}, {139, 194}, {182, 255}, {143, 198}, {14, 68}, {144, 218}, {160, 234}, {9, 66}, {138, 193}, {142, 194}, {29, 80}, {145, 220}, {151, 218}, {49, 127}, {191, 241}, {12, 67}, {173, 226}, {131, 204}, {150, 217}, {61, 109}, {190, 238}, {176, 224}, {1, 80}, {30, 79}, {26, 75}, {24, 73}, {130, 211}, {21, 71}, {189, 239}, {166, 244}, {63, 109}, {25, 74}, {181, 230}, {29, 78}, {132, 215}, {16, 69}, {180, 225}, {168, 253}, {34, 119}, {153, 204}, {27, 77}, {60, 106}, {31, 73}, {30, 72}, {4, 83}, {164, 243}, {54, 97}, {27, 76}, {17, 70}, {146, 197}, {162, 245}, {23, 79}, {169, 241}, {56, 96}, {56, 97}, {41, 115}, {58, 96}, {19, 72}, {188, 231}, {58, 97}, {56, 99}, {134, 218}, {172, 240}, {153, 197}, {16, 77}, {165, 248}, {63, 98}, {62, 99}, {18, 76}, {1, 94}, {61, 98}, {23, 72}, {39, 71}, {184, 216}, {161, 193}, {162, 194}, {142, 239}, {49, 85}, {166, 194}, {165, 193}, {134, 227}, {181, 208}, {141, 232}, {48, 86}, {128, 230}, {129, 231}, {37, 66}, {168, 207}, {38, 65}, {148, 243}, {152, 255}, {48, 88}, {174, 198}, {55, 95}, {54, 94}, {53, 93}, {52, 92}, {51, 91}, {50, 90}, {49, 89}, {140, 228}, {32, 74}, {191, 213}, {177, 219}, {33, 75}, {35, 78}, {178, 223}, {137, 231}, {154, 234}, {184, 200}, {180, 196}, {137, 248}, {41, 91}, {187, 201}, {46, 92}, {142, 252}, {156, 238}, {158, 236}, {159, 237}, {35, 80}, {175, 220}, {172, 216}, {183, 195}, {177, 197}, {36, 81}, {45, 88}, {44, 89}, {155, 237}, {157, 235}, {42, 82}, {60, 68}, {59, 67}, {47, 87}, {44, 85}, {175, 214}, {138, 243}, {144, 233}, {40, 82}, {170, 208}, {41, 83}, {45, 86}, {139, 247}, {169, 213}, {183, 202}, {151, 233}, {185, 199}, {43, 84}, {104, 234}, {17, 146}, {124, 255}, {89, 222}, {90, 210}, {101, 237}, {105, 225}, {111, 231}, {25, 144}, {46, 164}, {91, 209}, {87, 221}, {104, 226}, {26, 145}, {112, 251}, {45, 160}, {28, 146}, {107, 228}, {125, 242}, {31, 143}, {116, 228}, {15, 158}, {50, 163}, {52, 166}, {124, 238}, {14, 157}, {76, 223}, {113, 229}, {51, 165}, {22, 129}, {24, 143}, {111, 248}, {92, 196}, {5, 156}, {103, 254}, {71, 222}, {110, 247}, {114, 235}, {127, 230}, {95, 197}, {114, 232}, {57, 162}, {70, 221}, {112, 237}, {117, 232}, {101, 251}, {117, 235}, {105, 246}, {16, 176}, {96, 192}, {19, 179}, {18, 178}, {17, 177}, {113, 208}, {120, 217}, {53, 151}, {108, 206}, {127, 221}, {36, 128}, {62, 154}, {50, 150}, {107, 205}, {108, 203}, {3, 171}, {116, 220}, {125, 212}, {11, 161}, {100, 206}, {22, 188}, {48, 155}, {42, 135}, {79, 226}, {77, 224}, {47, 130}, {54, 152}, {55, 153}, {40, 135}, {78, 225}, {48, 159}, {32, 144}, {62, 142}, {33, 145}, {34, 147}, {112, 193}, {119, 198}, {62, 139}, {109, 219}, {45, 154}, {58, 141}, {90, 227}, {46, 148}, {5, 190}, {119, 203}, {41, 148}, {102, 219}, {121, 196}, {3, 189}, {43, 149}, {109, 173}, {110, 174}, {111, 175}, {118, 182}, {43, 234}, {53, 244}, {50, 243}, {55, 245}, {63, 253}, {61, 255}, {20, 215}, {106, 174}, {93, 152}, {113, 180}, {125, 184}, {127, 186}, {89, 159}, {105, 175}, {59, 252}, {69, 130}, {114, 181}, {126, 185}, {84, 156}, {85, 157}, {43, 226}, {103, 174}, {87, 158}, {82, 155}, {110, 167}, {126, 180}, {39, 236}, {102, 173}, {124, 183}, {96, 172}, {118, 186}, {64, 141}, {120, 182}, {40, 250}, {107, 185}, {11, 216}, {63, 236}, {61, 238}, {13, 217}, {83, 135}, {59, 239}, {42, 254}, {108, 186}, {55, 224}, {122, 173}, {125, 170}, {14, 214}, {88, 128}, {71, 159}, {70, 158}, {40, 241}, {107, 178}, {39, 253}, {64, 155}, {90, 129}, {106, 177}, {123, 160}, {20, 201}, {66, 156}, {100, 186}, {67, 157}, {82, 141}, {92, 131}, {108, 179}, {123, 164}, {51, 211}, {117, 149}, {105, 136}, {110, 140}, {21, 246}, {85, 176}, {106, 143}, {15, 233}, {60, 219}, {111, 136}, {13, 229}, {73, 160}, {75, 162}, {52, 222}, {53, 223}, {65, 170}, {103, 140}, {74, 161}, {72, 163}, {66, 169}, {73, 164}, {86, 187}, {75, 166}, {118, 152}, {74, 165}, {99, 146}, {116, 133}, {97, 147}, {123, 137}, {57, 202}, {67, 176}, {21, 225}, {95, 171}, {112, 132}, {115, 134}, {12, 250}, {80, 167}, {95, 168}, {58, 195}, {94, 167}, {83, 170}, {81, 168}, {81, 171}, {121, 131}, {12, 241}, {84, 169}, {44, 209}, {100, 154}, {68, 187}, {104, 151}, {122, 133}, {42, 256}, {103, 256}, {161, 256}, {216, 256} }>;

(II) A more general form is to represent the graph as the orbit of {10, 11} under the group generated by the following permutations:

a: (1, 2)(3, 137)(4, 17)(5, 139)(6, 22)(7, 80)(8, 231)(9, 146)(10, 167)(11, 110)(12, 118)(13, 44)(14, 68)(15, 91)(16, 50)(18, 96)(19, 97)(20, 111)(21, 225)(23, 94)(24, 248)(25, 177)(26, 247)(27, 129)(28, 29)(30, 152)(31, 51)(32, 60)(33, 209)(34, 163)(35, 65)(36, 58)(37, 56)(38, 78)(39, 126)(40, 127)(41, 158)(42, 254)(43, 234)(45, 117)(46, 47)(48, 114)(49, 250)(52, 92)(53, 122)(54, 72)(55, 245)(57, 197)(59, 255)(61, 252)(62, 156)(63, 134)(64, 188)(66, 99)(67, 182)(69, 243)(70, 83)(71, 180)(73, 211)(74, 106)(75, 204)(76, 192)(77, 90)(79, 93)(81, 195)(82, 230)(84, 154)(85, 217)(86, 235)(87, 148)(88, 232)(89, 229)(95, 202)(98, 227)(100, 169)(101, 170)(102, 233)(103, 256)(104, 226)(105, 246)(107, 240)(108, 191)(109, 218)(112, 242)(113, 159)(115, 236)(116, 200)(119, 138)(120, 157)(121, 244)(123, 189)(124, 239)(125, 251)(128, 141)(130, 164)(131, 166)(132, 203)(133, 223)(135, 221)(136, 215)(140, 216)(142, 238)(143, 165)(144, 219)(145, 249)(147, 179)(149, 160)(150, 176)(151, 173)(153, 162)(155, 181)(161, 174)(168, 199)(171, 183)(172, 178)(175, 201)(184, 228)(185, 253)(186, 241)(187, 214)(190, 194)(193, 198)(196, 222)(205, 207)(206, 213)(208, 237)(210, 224)(212, 220)
b: (2, 80)(3, 118)(5, 225)(6, 94)(7, 29)(8, 152)(9, 65)(10, 78)(11, 126)(12, 158)(14, 46)(15, 250)(17, 72)(18, 56)(19, 146)(20, 255)(21, 156)(22, 167)(23, 35)(24, 182)(25, 83)(26, 180)(27, 54)(28, 37)(30, 70)(31, 217)(32, 148)(33, 229)(34, 77)(36, 99)(38, 66)(39, 169)(40, 233)(41, 74)(42, 218)(43, 159)(44, 211)(47, 157)(48, 234)(49, 189)(50, 106)(52, 235)(53, 141)(55, 203)(57, 170)(58, 223)(59, 221)(60, 243)(61, 215)(62, 128)(63, 191)(64, 93)(67, 87)(68, 164)(69, 176)(71, 84)(73, 120)(75, 113)(76, 97)(79, 101)(81, 100)(82, 151)(85, 130)(86, 160)(88, 154)(89, 149)(90, 174)(91, 165)(92, 214)(95, 108)(96, 178)(98, 147)(102, 193)(103, 227)(104, 155)(105, 190)(107, 172)(109, 132)(110, 129)(111, 204)(112, 173)(114, 166)(115, 161)(117, 222)(119, 224)(121, 220)(122, 251)(123, 187)(124, 201)(125, 202)(127, 239)(131, 175)(133, 228)(134, 256)(135, 144)(136, 153)(137, 249)(138, 219)(139, 188)(140, 192)(142, 230)(143, 150)(145, 196)(162, 208)(163, 177)(168, 206)(171, 186)(179, 197)(181, 194)(183, 212)(184, 199)(185, 216)(195, 200)(198, 210)(205, 240)(209, 248)(213, 253)(226, 237)(231, 247)(232, 244)(236, 241)(238, 246)(242, 245)(252, 254)
c: (2, 6)(3, 11)(4, 16)(5, 20)(7, 27)(8, 10)(9, 34)(12, 40)(14, 46)(17, 53)(18, 56)(19, 58)(21, 61)(23, 64)(24, 26)(25, 69)(28, 76)(29, 54)(30, 82)(31, 33)(32, 47)(35, 93)(36, 96)(37, 97)(38, 98)(39, 63)(41, 85)(42, 59)(43, 112)(44, 91)(45, 116)(48, 122)(49, 115)(50, 114)(52, 60)(55, 125)(57, 119)(62, 140)(65, 77)(66, 147)(67, 135)(68, 92)(70, 151)(71, 109)(72, 141)(73, 145)(74, 130)(75, 143)(78, 152)(79, 155)(80, 94)(81, 172)(83, 176)(84, 132)(86, 121)(87, 144)(88, 133)(89, 102)(90, 181)(95, 184)(99, 178)(100, 107)(101, 104)(103, 142)(105, 124)(106, 166)(108, 199)(110, 139)(111, 137)(113, 150)(117, 138)(118, 126)(120, 196)(123, 175)(127, 134)(128, 192)(129, 188)(131, 187)(136, 183)(146, 223)(148, 157)(149, 193)(153, 212)(154, 228)(156, 215)(158, 233)(159, 173)(160, 220)(161, 189)(162, 198)(163, 232)(164, 214)(165, 211)(168, 240)(169, 191)(170, 224)(171, 216)(174, 194)(177, 244)(179, 195)(180, 182)(185, 186)(190, 201)(197, 200)(202, 203)(204, 249)(205, 206)(208, 210)(217, 229)(218, 221)(219, 222)(225, 255)(226, 237)(227, 230)(234, 251)(235, 243)(238, 246)(239, 256)(242, 245)(252, 254)

(III) Last is Groups&Graphs. Copy everything between (not including) the lines of asterisks into a plain text file and save it as "graph.txt". Then launch G&G (Groups&Graphs) and select Read Text from the File menu.

**************

&Graph
C4[ 256, 90 ]
256
-1 2 80 6 94
-2 22 1 23 7
-3 24 189 171 8
-4 25 83 9 65
-5 156 190 26 10
-6 22 1 27 64
-7 2 28 10 65
-8 3 27 20 64
-9 66 57 4 29
-10 11 23 5 7
-11 26 161 216 10
-12 67 30 250 241
-13 33 217 31 229
-14 68 157 214 32
-15 33 233 158 31
-16 77 176 34 69
-17 177 35 146 70
-18 178 36 37 76
-19 36 179 37 72
-20 24 201 215 8
-21 246 38 71 225
-22 188 2 6 129
-23 2 79 72 10
-24 143 3 73 20
-25 144 57 4 74
-26 11 145 5 75
-27 77 6 8 76
-28 56 146 38 7
-29 78 80 37 9
-30 12 79 59 72
-31 143 13 15 73
-32 144 14 60 74
-33 13 145 15 75
-34 147 16 119 54
-35 78 101 80 17
-36 81 18 128 19
-37 66 18 29 19
-38 28 39 21 65
-39 253 38 71 236
-40 135 82 250 241
-41 91 115 148 83
-42 254 135 256 82
-43 234 149 226 84
-44 209 89 51 85
-45 88 154 160 86
-46 47 92 148 164
-47 46 52 130 87
-48 88 155 159 86
-49 89 127 85 118
-50 243 90 150 163
-51 44 165 211 91
-52 166 222 47 92
-53 244 223 93 151
-54 34 94 97 152
-55 245 224 95 153
-56 99 28 96 97
-57 25 202 162 9
-58 96 195 97 141
-59 67 30 239 252
-60 68 106 32 219
-61 255 238 98 109
-62 99 154 139 142
-63 253 236 98 109
-64 155 6 8 141
-65 4 38 170 7
-66 156 37 169 9
-67 176 12 157 59
-68 187 14 60 120
-69 16 119 130 87
-70 221 101 158 17
-71 222 159 39 21
-72 23 19 30 163
-73 24 160 31 164
-74 165 25 161 32
-75 33 166 26 162
-76 223 27 18 98
-77 224 16 27 98
-78 35 126 225 29
-79 23 122 226 30
-80 1 35 167 29
-81 88 36 168 171
-82 155 40 42 141
-83 135 4 170 41
-84 156 169 117 43
-85 44 176 157 49
-86 187 45 48 120
-87 221 47 69 158
-88 45 48 81 128
-89 44 222 49 159
-90 210 50 227 129
-91 209 102 51 41
-92 46 52 196 131
-93 104 94 53 152
-94 1 167 93 54
-95 55 168 171 197
-96 56 58 192 172
-97 56 58 147 54
-98 77 61 63 76
-99 56 100 146 62
-100 99 154 206 186
-101 35 70 237 251
-102 91 115 173 219
-103 254 256 140 174
-104 234 93 226 151
-105 136 246 225 175
-106 143 177 60 174
-107 178 205 228 185
-108 179 203 206 186
-109 61 63 173 219
-110 167 247 140 174
-111 231 136 248 175
-112 132 193 237 251
-113 114 180 229 208
-114 232 113 235 181
-115 134 102 126 41
-116 121 220 133 228
-117 232 235 149 84
-118 49 182 152 186
-119 198 34 69 203
-120 68 182 217 86
-121 122 116 196 131
-122 121 133 79 173
-123 124 137 160 164
-124 123 255 183 238
-125 242 212 170 184
-126 78 180 115 185
-127 221 49 186 230
-128 88 188 36 230
-129 22 231 90 192
-130 189 211 47 69
-131 121 190 92 204
-132 112 191 138 215
-133 122 192 116 172
-134 115 227 185 218
-135 148 83 40 42
-136 111 179 203 105
-137 231 123 248 183
-138 132 243 193 163
-139 167 247 62 194
-140 110 178 103 228
-141 232 58 82 64
-142 62 194 239 252
-143 198 24 106 31
-144 233 25 218 32
-145 33 220 26 214
-146 99 17 28 197
-147 34 191 215 97
-148 243 46 135 41
-149 189 211 117 43
-150 210 50 182 217
-151 233 104 53 218
-152 255 93 118 54
-153 55 190 204 197
-154 45 100 234 62
-155 48 82 237 64
-156 66 5 84 238
-157 67 14 235 85
-158 15 70 236 87
-159 89 48 71 237
-160 45 123 234 73
-161 11 256 193 74
-162 57 245 194 75
-163 179 50 72 138
-164 243 46 123 73
-165 193 248 51 74
-166 244 194 52 75
-167 110 80 94 139
-168 253 81 95 207
-169 66 213 84 241
-170 125 83 65 208
-171 3 81 95 239
-172 133 216 96 240
-173 122 102 226 109
-174 110 198 103 106
-175 220 111 214 105
-176 67 224 16 85
-177 17 106 197 219
-178 223 18 107 140
-179 136 19 108 163
-180 113 126 225 196
-181 188 114 208 230
-182 255 150 118 120
-183 124 202 137 195
-184 200 125 216 240
-185 199 134 126 107
-186 100 127 118 108
-187 68 201 249 86
-188 22 231 181 128
-189 3 149 239 130
-190 5 238 131 153
-191 132 147 213 241
-192 133 227 96 129
-193 165 112 138 161
-194 166 139 162 142
-195 199 232 58 183
-196 121 92 180 229
-197 177 146 95 153
-198 143 242 119 174
-199 202 205 195 185
-200 244 212 223 184
-201 187 212 246 20
-202 199 57 245 183
-203 242 136 108 119
-204 209 247 131 153
-205 199 213 107 207
-206 100 213 108 207
-207 168 205 206 240
-208 242 113 170 181
-209 44 91 204 249
-210 90 245 224 150
-211 149 248 51 130
-212 200 201 125 249
-213 169 191 205 206
-214 145 14 235 175
-215 132 147 246 20
-216 11 256 172 184
-217 13 150 250 120
-218 144 134 151 252
-219 177 102 60 109
-220 145 116 251 175
-221 254 70 127 87
-222 89 244 71 52
-223 178 200 53 76
-224 55 77 176 210
-225 78 180 105 21
-226 79 104 173 43
-227 90 134 192 252
-228 116 107 140 251
-229 13 113 250 196
-230 254 181 127 128
-231 111 188 137 129
-232 114 117 195 141
-233 144 15 236 151
-234 154 104 160 43
-235 157 114 214 117
-236 233 158 39 63
-237 155 101 112 159
-238 156 124 190 61
-239 189 59 171 142
-240 253 172 184 207
-241 12 169 191 40
-242 198 125 203 208
-243 148 50 138 164
-244 166 200 222 53
-245 55 210 202 162
-246 201 105 215 21
-247 110 204 139 249
-248 165 111 211 137
-249 187 209 212 247
-250 12 40 217 229
-251 220 101 112 228
-252 59 227 218 142
-253 168 39 63 240
-254 221 103 42 230
-255 124 61 182 152
-256 103 161 216 42
0

**************