[Home] [Table] [Glossary]
[Families]
On this page are computer-accessible forms for the graph C4[ 256, 94 ] =
UG(ATD[256,194]).
(I) Following is a form readable by MAGMA:
g:=Graph<256|{ {102, 103}, {244, 245}, {236, 237}, {216, 217}, {170, 171}, {1,
2}, {156, 159}, {36, 39}, {1, 5}, {242, 246}, {193, 197}, {3, 7}, {2, 6}, {123,
127}, {81, 84}, {203, 206}, {90, 95}, {91, 94}, {218, 220}, {99, 100}, {133,
140}, {97, 107}, {241, 251}, {166, 172}, {35, 40}, {244, 255}, {2, 14}, {242,
254}, {241, 253}, {198, 202}, {4, 8}, {3, 15}, {96, 108}, {151, 154}, {247,
250}, {4, 16}, {192, 212}, {167, 179}, {13, 25}, {12, 24}, {7, 19}, {6, 18}, {5,
17}, {79, 90}, {141, 152}, {12, 26}, {77, 85}, {200, 209}, {111, 117}, {204,
214}, {199, 221}, {193, 219}, {237, 246}, {8, 20}, {76, 80}, {11, 23}, {10, 22},
{9, 21}, {169, 180}, {173, 176}, {78, 81}, {207, 208}, {174, 177}, {134, 166},
{203, 235}, {202, 234}, {135, 167}, {73, 107}, {222, 252}, {193, 227}, {192,
226}, {16, 51}, {216, 251}, {28, 63}, {24, 59}, {20, 55}, {90, 121}, {8, 44},
{11, 47}, {10, 46}, {9, 45}, {17, 52}, {27, 62}, {25, 60}, {19, 54}, {158, 184},
{222, 248}, {18, 53}, {200, 239}, {26, 61}, {87, 112}, {208, 248}, {3, 42}, {79,
101}, {207, 229}, {132, 175}, {212, 255}, {5, 41}, {7, 43}, {6, 42}, {21, 56},
{221, 240}, {212, 249}, {23, 58}, {149, 184}, {142, 160}, {208, 254}, {22, 57},
{213, 250}, {195, 243}, {78, 127}, {205, 252}, {139, 186}, {30, 45}, {206, 253},
{64, 116}, {196, 240}, {92, 104}, {131, 187}, {220, 228}, {214, 238}, {209,
233}, {157, 165}, {147, 171}, {72, 113}, {206, 247}, {140, 182}, {221, 231},
{210, 232}, {205, 246}, {152, 164}, {12, 49}, {200, 245}, {15, 50}, {13, 48},
{137, 180}, {28, 34}, {31, 33}, {88, 102}, {130, 188}, {137, 183}, {14, 49},
{217, 230}, {29, 93}, {156, 220}, {50, 114}, {36, 100}, {33, 97}, {154, 219},
{179, 242}, {177, 243}, {153, 218}, {48, 116}, {176, 244}, {59, 127}, {58, 126},
{57, 125}, {56, 124}, {51, 119}, {50, 118}, {49, 117}, {131, 199}, {144, 213},
{181, 240}, {146, 215}, {40, 110}, {41, 111}, {136, 207}, {145, 214}, {34, 106},
{188, 244}, {187, 243}, {186, 242}, {185, 241}, {32, 105}, {128, 201}, {130,
203}, {133, 204}, {135, 206}, {38, 108}, {181, 255}, {39, 109}, {16, 91}, {20,
95}, {129, 202}, {134, 205}, {147, 216}, {52, 120}, {55, 123}, {54, 122}, {53,
121}, {138, 198}, {149, 217}, {17, 92}, {19, 94}, {37, 107}, {139, 197}, {18,
93}, {29, 77}, {44, 124}, {144, 192}, {35, 112}, {191, 236}, {151, 196}, {11,
95}, {9, 92}, {58, 111}, {54, 99}, {36, 113}, {15, 90}, {172, 250}, {10, 93},
{27, 76}, {14, 89}, {148, 195}, {130, 218}, {169, 241}, {154, 194}, {10, 83},
{157, 196}, {57, 96}, {137, 208}, {139, 210}, {149, 204}, {13, 86}, {43, 112},
{136, 211}, {138, 209}, {143, 212}, {46, 114}, {159, 195}, {47, 115}, {29, 64},
{44, 113}, {31, 66}, {52, 106}, {191, 225}, {190, 224}, {141, 211}, {1, 94},
{30, 65}, {138, 213}, {133, 228}, {135, 230}, {189, 223}, {32, 67}, {40, 75},
{36, 71}, {128, 227}, {134, 229}, {33, 68}, {35, 70}, {142, 232}, {160, 198},
{143, 233}, {34, 69}, {174, 201}, {158, 249}, {60, 91}, {27, 114}, {190, 215},
{52, 93}, {141, 231}, {166, 204}, {4, 111}, {155, 240}, {171, 199}, {191, 211},
{37, 72}, {39, 74}, {180, 218}, {38, 73}, {28, 108}, {37, 84}, {158, 239}, {151,
229}, {38, 85}, {144, 227}, {167, 211}, {189, 201}, {170, 222}, {21, 96}, {23,
98}, {22, 97}, {155, 236}, {153, 238}, {31, 104}, {146, 234}, {147, 235}, {148,
236}, {30, 103}, {173, 215}, {24, 99}, {150, 237}, {29, 102}, {27, 103}, {25,
100}, {150, 232}, {11, 116}, {26, 101}, {1, 129}, {40, 168}, {106, 234}, {92,
222}, {32, 163}, {98, 225}, {83, 213}, {34, 165}, {47, 168}, {39, 175}, {104,
224}, {109, 228}, {110, 231}, {42, 160}, {121, 243}, {28, 145}, {47, 160}, {80,
223}, {53, 161}, {55, 163}, {54, 162}, {89, 205}, {62, 166}, {63, 167}, {60,
165}, {101, 252}, {99, 249}, {96, 251}, {123, 224}, {107, 247}, {125, 225},
{126, 226}, {57, 164}, {63, 162}, {62, 163}, {102, 248}, {67, 227}, {23, 182},
{51, 145}, {109, 207}, {74, 238}, {115, 215}, {69, 224}, {122, 223}, {2, 164},
{41, 143}, {59, 156}, {48, 152}, {66, 234}, {98, 203}, {5, 175}, {75, 225}, {65,
237}, {55, 154}, {91, 245}, {100, 202}, {43, 132}, {87, 248}, {108, 220}, {61,
140}, {45, 159}, {46, 157}, {81, 226}, {72, 251}, {115, 192}, {42, 158}, {116,
193}, {64, 246}, {105, 223}, {126, 200}, {97, 214}, {110, 217}, {117, 194}, {15,
183}, {105, 209}, {49, 136}, {56, 129}, {9, 179}, {13, 183}, {103, 221}, {104,
210}, {120, 194}, {125, 199}, {32, 155}, {120, 195}, {60, 128}, {63, 131}, {62,
130}, {61, 129}, {12, 177}, {85, 232}, {33, 156}, {31, 162}, {121, 196}, {123,
198}, {101, 219}, {3, 188}, {30, 161}, {18, 173}, {4, 187}, {122, 197}, {46,
239}, {86, 151}, {87, 150}, {88, 153}, {61, 254}, {80, 147}, {118, 181}, {45,
233}, {75, 143}, {74, 142}, {73, 141}, {72, 140}, {67, 135}, {66, 134}, {65,
133}, {64, 132}, {81, 148}, {83, 150}, {82, 149}, {38, 239}, {82, 155}, {51,
249}, {115, 185}, {37, 233}, {71, 139}, {70, 138}, {69, 137}, {68, 136}, {88,
148}, {112, 189}, {114, 191}, {127, 178}, {59, 245}, {56, 247}, {87, 152}, {113,
190}, {44, 252}, {105, 185}, {106, 186}, {126, 174}, {110, 188}, {117, 161},
{118, 162}, {119, 163}, {124, 168}, {43, 253}, {109, 187}, {17, 201}, {89, 131},
{98, 184}, {76, 144}, {58, 231}, {79, 146}, {78, 145}, {14, 238}, {85, 181},
{82, 178}, {94, 190}, {68, 165}, {77, 172}, {6, 228}, {7, 229}, {95, 189}, {71,
164}, {80, 179}, {25, 253}, {119, 146}, {124, 153}, {73, 175}, {86, 176}, {82,
180}, {53, 210}, {122, 157}, {119, 159}, {22, 255}, {71, 174}, {69, 172}, {67,
170}, {65, 168}, {20, 254}, {66, 169}, {70, 173}, {41, 197}, {8, 230}, {84,
186}, {86, 184}, {88, 182}, {89, 183}, {68, 171}, {78, 161}, {50, 194}, {70,
182}, {26, 235}, {77, 185}, {118, 128}, {120, 142}, {21, 226}, {35, 219}, {125,
132}, {74, 176}, {83, 169}, {75, 177}, {16, 235}, {79, 178}, {24, 230}, {84,
170}, {76, 178}, {19, 256}, {48, 256}, {216, 256}, {250, 256} }>;
(II) A more general form is to represent the graph as the orbit of {102, 103}
under the group generated by the following permutations:
a: (2, 5)(3, 9)(4, 12)(6, 17)(7, 21)(8, 24)(10, 29)(11, 33)(13, 37)(14, 41)(15,
45)(16, 26)(18, 52)(19, 56)(20, 59)(22, 64)(23, 68)(25, 72)(28, 35)(30, 50)(31,
47)(32, 82)(34, 70)(38, 87)(39, 71)(40, 63)(42, 92)(43, 96)(44, 99)(46, 102)(48,
107)(49, 111)(51, 101)(53, 120)(54, 124)(55, 127)(57, 132)(58, 136)(60, 140)(61,
91)(62, 76)(65, 118)(66, 115)(67, 149)(69, 138)(73, 152)(74, 139)(75, 131)(77,
83)(78, 154)(79, 119)(80, 130)(81, 151)(84, 86)(85, 150)(88, 157)(89, 143)(90,
159)(94, 129)(95, 156)(97, 116)(98, 171)(100, 113)(103, 114)(104, 160)(105,
180)(106, 173)(108, 112)(109, 174)(110, 167)(121, 195)(122, 153)(126, 207)(128,
133)(134, 192)(135, 217)(137, 209)(142, 210)(144, 166)(145, 219)(147, 203)(148,
196)(158, 222)(161, 194)(162, 168)(163, 178)(164, 175)(165, 182)(169, 185)(170,
184)(172, 213)(176, 186)(177, 187)(179, 188)(181, 237)(183, 233)(189, 220)(190,
202)(191, 221)(193, 214)(197, 238)(198, 224)(199, 225)(200, 208)(201, 228)(204,
227)(205, 212)(206, 216)(211, 231)(215, 234)(218, 223)(226, 229)(236, 240)(239,
248)(242, 244)(245, 254)(246, 255)(247, 256)(249, 252)(251, 253) (III) Last is Groups&Graphs. Copy everything between (not including)
the lines of asterisks into a plain text file and save it as "graph.txt". Then
launch G&G (Groups&Graphs) and select Read Text from the File menu.
**************
&Graph **************
b: (2, 94)(4, 12)(5, 129)(6, 19)(7, 42)(8, 177)(10, 172)(11, 35)(13, 176)(14,
91)(15, 188)(16, 49)(17, 56)(18, 256)(20, 75)(21, 92)(22, 69)(23, 219)(24,
187)(25, 74)(26, 111)(28, 33)(29, 213)(30, 80)(31, 108)(32, 236)(34, 97)(37,
186)(38, 66)(39, 100)(40, 95)(41, 61)(43, 160)(44, 174)(45, 179)(46, 166)(47,
112)(48, 173)(50, 130)(51, 136)(52, 247)(53, 216)(54, 228)(55, 225)(57, 224)(58,
101)(59, 131)(60, 238)(62, 114)(63, 156)(64, 138)(65, 223)(67, 148)(68, 145)(70,
116)(71, 113)(72, 139)(73, 234)(76, 103)(77, 83)(78, 171)(79, 231)(81, 170)(82,
240)(85, 169)(87, 115)(88, 227)(89, 245)(90, 110)(93, 250)(96, 104)(98, 154)(99,
109)(102, 144)(105, 237)(106, 107)(117, 235)(118, 218)(119, 211)(120, 206)(121,
217)(122, 133)(123, 125)(124, 201)(126, 252)(127, 199)(128, 153)(132, 198)(134,
239)(135, 195)(137, 255)(140, 197)(141, 146)(142, 253)(143, 254)(147, 161)(149,
196)(150, 185)(151, 184)(152, 215)(157, 204)(158, 229)(159, 167)(162, 220)(163,
191)(164, 190)(165, 214)(168, 189)(175, 202)(178, 221)(180, 181)(182, 193)(183,
244)(192, 248)(194, 203)(200, 205)(207, 249)(208, 212)(209, 246)(210, 251)(222,
226)(230, 243)(232, 241)(233, 242)
c: (1, 2)(3, 26)(4, 13)(5, 164)(6, 129)(7, 12)(8, 86)(9, 10)(11, 23)(14, 94)(15,
235)(16, 183)(17, 57)(18, 56)(19, 49)(20, 184)(21, 93)(22, 92)(24, 229)(25,
187)(27, 76)(28, 34)(29, 226)(30, 213)(31, 33)(32, 155)(35, 40)(36, 39)(37,
232)(38, 186)(41, 152)(42, 61)(43, 177)(44, 176)(45, 83)(46, 179)(47, 182)(48,
111)(50, 147)(51, 137)(52, 96)(53, 247)(54, 136)(55, 149)(58, 116)(59, 134)(60,
131)(62, 178)(63, 165)(64, 126)(65, 138)(66, 156)(67, 240)(68, 162)(69, 145)(70,
168)(71, 175)(72, 142)(73, 139)(74, 113)(75, 112)(77, 81)(78, 172)(79, 130)(80,
114)(82, 163)(84, 85)(87, 143)(88, 115)(89, 91)(90, 203)(95, 98)(97, 104)(99,
207)(100, 109)(101, 188)(102, 192)(103, 144)(105, 236)(106, 108)(107, 210)(110,
219)(117, 256)(118, 171)(119, 180)(120, 251)(121, 206)(122, 211)(123, 204)(124,
173)(125, 201)(127, 166)(128, 199)(132, 174)(133, 198)(135, 196)(140, 160)(141,
197)(146, 218)(148, 185)(150, 233)(151, 230)(153, 215)(154, 217)(157, 167)(158,
254)(159, 169)(161, 250)(170, 181)(189, 225)(190, 238)(191, 223)(193, 231)(194,
216)(195, 241)(200, 246)(202, 228)(205, 245)(208, 249)(209, 237)(212, 248)(214,
224)(220, 234)(221, 227)(222, 255)(239, 242)(243, 253)(244, 252)
C4[ 256, 94 ]
256
-1 2 5 94 129
-2 1 14 6 164
-3 188 15 7 42
-4 187 111 16 8
-5 1 17 41 175
-6 2 18 228 42
-7 3 19 229 43
-8 44 4 20 230
-9 45 179 92 21
-10 22 46 93 83
-11 23 47 116 95
-12 177 24 26 49
-13 25 48 183 86
-14 89 2 49 238
-15 90 3 50 183
-16 91 4 235 51
-17 201 92 5 52
-18 93 6 173 53
-19 256 94 7 54
-20 55 254 95 8
-21 56 226 96 9
-22 57 255 97 10
-23 11 58 182 98
-24 99 12 59 230
-25 253 100 13 60
-26 12 101 235 61
-27 103 114 62 76
-28 34 145 63 108
-29 77 102 93 64
-30 45 103 161 65
-31 33 66 104 162
-32 67 155 105 163
-33 68 156 31 97
-34 165 69 28 106
-35 112 70 40 219
-36 100 113 71 39
-37 233 72 84 107
-38 73 85 239 108
-39 36 74 109 175
-40 110 35 168 75
-41 143 111 5 197
-42 3 158 6 160
-43 132 253 112 7
-44 113 124 8 252
-45 233 159 30 9
-46 157 114 239 10
-47 11 168 115 160
-48 13 256 116 152
-49 12 14 136 117
-50 15 114 194 118
-51 145 16 249 119
-52 93 17 106 120
-53 121 210 18 161
-54 99 122 19 162
-55 154 123 20 163
-56 124 247 129 21
-57 22 125 96 164
-58 231 23 111 126
-59 24 156 245 127
-60 165 25 91 128
-61 254 26 129 140
-62 166 27 130 163
-63 167 28 162 131
-64 132 246 116 29
-65 133 168 237 30
-66 134 234 169 31
-67 135 170 227 32
-68 33 165 136 171
-69 34 224 137 172
-70 35 138 182 173
-71 36 139 174 164
-72 113 37 140 251
-73 38 107 141 175
-74 176 39 238 142
-75 143 177 225 40
-76 144 178 80 27
-77 29 172 85 185
-78 145 81 127 161
-79 90 101 178 146
-80 179 223 147 76
-81 78 148 226 84
-82 155 178 180 149
-83 169 213 150 10
-84 37 81 170 186
-85 77 232 38 181
-86 176 13 151 184
-87 112 248 150 152
-88 102 148 182 153
-89 14 183 205 131
-90 121 79 15 95
-91 245 16 60 94
-92 222 104 17 9
-93 18 29 52 10
-94 1 91 190 19
-95 11 90 189 20
-96 57 108 251 21
-97 22 33 214 107
-98 23 203 225 184
-99 100 24 249 54
-100 99 25 36 202
-101 79 26 219 252
-102 88 103 248 29
-103 221 102 27 30
-104 210 92 224 31
-105 209 223 185 32
-106 34 234 52 186
-107 37 247 73 97
-108 220 38 28 96
-109 187 39 228 207
-110 231 188 40 217
-111 58 4 117 41
-112 35 189 43 87
-113 44 36 190 72
-114 46 191 27 50
-115 47 192 215 185
-116 11 48 193 64
-117 111 49 161 194
-118 181 50 128 162
-119 146 159 51 163
-120 194 52 195 142
-121 243 90 53 196
-122 157 223 54 197
-123 55 198 224 127
-124 44 56 168 153
-125 132 199 57 225
-126 200 58 226 174
-127 78 123 178 59
-128 201 60 227 118
-129 1 56 202 61
-130 188 203 62 218
-131 187 89 199 63
-132 125 64 43 175
-133 204 140 228 65
-134 66 166 205 229
-135 67 167 206 230
-136 68 211 49 207
-137 69 180 183 208
-138 198 209 70 213
-139 210 71 186 197
-140 133 61 72 182
-141 231 211 73 152
-142 232 160 74 120
-143 233 212 41 75
-144 213 192 227 76
-145 78 214 28 51
-146 79 234 215 119
-147 80 235 171 216
-148 88 81 236 195
-149 82 204 184 217
-150 232 83 237 87
-151 154 86 196 229
-152 48 141 87 164
-153 88 124 238 218
-154 55 194 151 219
-155 82 236 240 32
-156 33 220 59 159
-157 165 122 46 196
-158 249 184 239 42
-159 45 156 195 119
-160 198 47 42 142
-161 78 117 30 53
-162 63 118 31 54
-163 55 62 119 32
-164 2 57 71 152
-165 34 68 157 60
-166 134 204 62 172
-167 211 135 179 63
-168 47 124 40 65
-169 66 180 83 241
-170 67 222 171 84
-171 199 68 147 170
-172 77 166 69 250
-173 176 70 215 18
-174 177 201 71 126
-175 132 5 39 73
-176 244 74 173 86
-177 12 243 75 174
-178 79 82 127 76
-179 242 167 80 9
-180 169 82 137 218
-181 255 85 118 240
-182 88 23 70 140
-183 89 13 15 137
-184 158 149 86 98
-185 77 115 105 241
-186 242 84 106 139
-187 243 4 109 131
-188 110 244 3 130
-189 112 201 223 95
-190 113 224 94 215
-191 211 114 225 236
-192 144 212 115 226
-193 116 227 197 219
-194 154 50 117 120
-195 243 148 159 120
-196 121 157 151 240
-197 122 193 139 41
-198 123 202 138 160
-199 221 125 171 131
-200 209 245 126 239
-201 189 17 128 174
-202 198 100 234 129
-203 235 206 130 98
-204 133 166 214 149
-205 89 134 246 252
-206 253 135 203 247
-207 136 229 109 208
-208 254 137 248 207
-209 200 233 105 138
-210 232 104 139 53
-211 167 136 191 141
-212 143 255 192 249
-213 144 83 138 250
-214 145 204 238 97
-215 146 190 115 173
-216 256 147 217 251
-217 110 149 216 230
-218 220 180 130 153
-219 154 35 101 193
-220 156 228 108 218
-221 231 199 103 240
-222 92 170 248 252
-223 122 189 80 105
-224 123 69 190 104
-225 125 191 75 98
-226 81 126 192 21
-227 67 144 193 128
-228 220 133 6 109
-229 134 7 151 207
-230 24 135 8 217
-231 110 221 58 141
-232 210 150 85 142
-233 143 209 45 37
-234 66 146 202 106
-235 26 147 16 203
-236 155 191 148 237
-237 246 236 150 65
-238 14 214 74 153
-239 46 200 158 38
-240 155 221 181 196
-241 253 169 185 251
-242 254 179 246 186
-243 121 187 177 195
-244 176 188 255 245
-245 200 244 91 59
-246 242 237 205 64
-247 56 107 206 250
-248 222 102 87 208
-249 99 212 158 51
-250 256 213 247 172
-251 72 216 96 241
-252 44 101 222 205
-253 25 206 43 241
-254 242 61 20 208
-255 22 244 212 181
-256 48 216 19 250
0