[Home] [Table] [Glossary]
[Families]
On this page are computer-accessible forms for the graph C4[ 256, 97 ] =
UG(ATD[256,203]).
(I) Following is a form readable by MAGMA:
g:=Graph<256|{ {60, 61}, {114, 115}, {240, 242}, {1, 2}, {181, 182}, {64, 68},
{75, 79}, {1, 4}, {233, 236}, {203, 206}, {88, 93}, {40, 45}, {3, 6}, {146,
151}, {106, 108}, {211, 213}, {185, 191}, {147, 149}, {2, 5}, {178, 181}, {25,
30}, {8, 15}, {3, 10}, {71, 78}, {54, 63}, {49, 56}, {7, 14}, {5, 12}, {131,
137}, {215, 221}, {197, 207}, {148, 158}, {2, 9}, {53, 62}, {6, 13}, {150, 157},
{160, 171}, {167, 172}, {96, 108}, {226, 238}, {161, 173}, {22, 27}, {229, 232},
{210, 223}, {183, 186}, {118, 120}, {195, 205}, {4, 11}, {240, 255}, {179, 188},
{4, 20}, {236, 252}, {234, 250}, {202, 218}, {200, 216}, {170, 186}, {75, 91},
{65, 81}, {15, 31}, {14, 30}, {13, 29}, {12, 28}, {11, 27}, {10, 26}, {9, 25},
{8, 24}, {7, 23}, {6, 22}, {5, 21}, {111, 127}, {135, 151}, {98, 112}, {231,
245}, {70, 85}, {200, 219}, {168, 187}, {134, 149}, {72, 92}, {224, 244}, {128,
148}, {132, 144}, {67, 86}, {232, 253}, {69, 80}, {143, 154}, {109, 123}, {229,
243}, {193, 215}, {192, 214}, {170, 189}, {204, 212}, {66, 88}, {228, 254},
{225, 251}, {96, 122}, {98, 121}, {234, 241}, {228, 255}, {227, 248}, {224,
251}, {194, 217}, {101, 126}, {107, 112}, {135, 156}, {133, 153}, {134, 155},
{227, 254}, {225, 252}, {169, 180}, {164, 185}, {32, 62}, {33, 63}, {226, 253},
{21, 53}, {208, 240}, {22, 54}, {18, 51}, {83, 114}, {25, 56}, {9, 43}, {31,
61}, {30, 60}, {27, 57}, {16, 50}, {13, 47}, {12, 46}, {132, 166}, {130, 161},
{218, 249}, {210, 241}, {198, 229}, {140, 175}, {157, 190}, {138, 174}, {221,
249}, {196, 224}, {151, 179}, {139, 174}, {210, 247}, {203, 238}, {144, 181},
{146, 183}, {10, 44}, {212, 242}, {201, 239}, {29, 59}, {28, 58}, {11, 45}, {19,
52}, {221, 250}, {202, 237}, {192, 231}, {145, 182}, {149, 178}, {159, 184},
{74, 98}, {216, 240}, {95, 119}, {73, 96}, {129, 171}, {220, 246}, {204, 230},
{195, 233}, {194, 232}, {142, 164}, {68, 111}, {201, 226}, {199, 236}, {89,
114}, {147, 184}, {65, 109}, {212, 248}, {199, 235}, {67, 110}, {218, 247},
{129, 172}, {148, 185}, {131, 173}, {24, 55}, {197, 234}, {196, 235}, {72, 103},
{16, 32}, {95, 111}, {94, 110}, {77, 125}, {19, 35}, {18, 34}, {17, 33}, {26,
43}, {219, 234}, {82, 99}, {80, 97}, {23, 37}, {130, 176}, {155, 169}, {137,
186}, {87, 99}, {152, 172}, {156, 168}, {138, 191}, {17, 39}, {219, 237}, {209,
231}, {89, 111}, {66, 116}, {64, 118}, {136, 190}, {83, 100}, {195, 244}, {90,
109}, {133, 189}, {21, 44}, {87, 110}, {72, 113}, {76, 118}, {139, 177}, {142,
180}, {20, 47}, {205, 246}, {12, 48}, {73, 117}, {67, 127}, {150, 170}, {88,
101}, {220, 225}, {206, 243}, {141, 176}, {14, 48}, {209, 239}, {203, 245}, {74,
116}, {15, 49}, {140, 178}, {141, 179}, {23, 40}, {211, 236}, {76, 115}, {131,
188}, {56, 123}, {61, 126}, {31, 91}, {58, 127}, {52, 114}, {59, 125}, {58,
124}, {153, 209}, {28, 85}, {26, 80}, {27, 81}, {29, 86}, {31, 84}, {43, 103},
{47, 99}, {53, 120}, {60, 113}, {57, 116}, {55, 122}, {28, 82}, {29, 83}, {142,
192}, {143, 193}, {54, 121}, {48, 96}, {49, 97}, {51, 98}, {59, 106}, {57, 104},
{53, 100}, {62, 108}, {144, 194}, {145, 195}, {54, 101}, {58, 105}, {180, 224},
{181, 225}, {157, 200}, {183, 226}, {159, 202}, {24, 78}, {61, 107}, {25, 79},
{146, 196}, {147, 197}, {145, 198}, {158, 201}, {20, 76}, {188, 228}, {187,
227}, {21, 77}, {44, 117}, {191, 230}, {46, 119}, {158, 199}, {154, 192}, {155,
193}, {156, 198}, {184, 227}, {191, 228}, {190, 229}, {45, 112}, {153, 196},
{154, 199}, {56, 102}, {152, 198}, {57, 102}, {46, 78}, {169, 201}, {162, 194},
{176, 209}, {183, 214}, {180, 213}, {34, 64}, {190, 220}, {189, 223}, {188,
222}, {39, 69}, {38, 68}, {35, 65}, {52, 87}, {176, 211}, {166, 197}, {63, 90},
{177, 212}, {175, 202}, {36, 66}, {37, 67}, {165, 205}, {167, 207}, {37, 76},
{186, 211}, {160, 203}, {163, 200}, {165, 206}, {38, 74}, {179, 223}, {42, 71},
{49, 92}, {161, 204}, {39, 73}, {185, 215}, {41, 70}, {177, 222}, {162, 205},
{45, 93}, {177, 193}, {173, 221}, {47, 95}, {46, 94}, {55, 70}, {189, 204}, {40,
90}, {51, 65}, {41, 91}, {168, 219}, {172, 216}, {32, 85}, {34, 87}, {42, 92},
{166, 208}, {33, 86}, {171, 220}, {50, 75}, {62, 71}, {60, 69}, {160, 217}, {50,
72}, {55, 77}, {35, 88}, {59, 64}, {174, 210}, {178, 206}, {36, 89}, {167, 218},
{43, 84}, {175, 208}, {38, 182}, {41, 182}, {89, 249}, {91, 248}, {92, 255},
{69, 238}, {86, 253}, {1, 173}, {1, 174}, {66, 241}, {3, 187}, {74, 242}, {70,
255}, {68, 254}, {7, 184}, {71, 248}, {77, 141}, {41, 235}, {18, 214}, {95,
155}, {94, 154}, {50, 247}, {16, 214}, {52, 242}, {17, 215}, {124, 187}, {23,
222}, {105, 160}, {107, 162}, {39, 237}, {63, 245}, {51, 249}, {105, 163}, {18,
217}, {82, 153}, {75, 128}, {36, 239}, {106, 161}, {2, 207}, {17, 223}, {79,
129}, {80, 128}, {81, 129}, {8, 217}, {84, 133}, {82, 131}, {113, 163}, {118,
164}, {3, 208}, {85, 134}, {81, 130}, {34, 241}, {10, 222}, {94, 138}, {93,
137}, {93, 136}, {119, 162}, {125, 168}, {127, 170}, {125, 171}, {36, 243}, {83,
132}, {44, 251}, {126, 169}, {78, 150}, {79, 151}, {119, 175}, {37, 252}, {48,
233}, {32, 250}, {121, 163}, {124, 167}, {40, 244}, {84, 136}, {42, 246}, {35,
254}, {90, 135}, {120, 165}, {123, 166}, {122, 164}, {123, 165}, {7, 216}, {6,
230}, {20, 245}, {16, 243}, {97, 130}, {117, 150}, {19, 246}, {30, 251}, {8,
239}, {120, 159}, {14, 230}, {102, 142}, {103, 143}, {104, 128}, {4, 237}, {101,
140}, {22, 252}, {5, 238}, {103, 140}, {115, 152}, {102, 139}, {33, 207}, {24,
247}, {100, 139}, {26, 233}, {38, 213}, {116, 135}, {117, 134}, {108, 152},
{124, 136}, {126, 138}, {15, 250}, {11, 253}, {104, 159}, {19, 235}, {104, 144},
{105, 145}, {106, 146}, {107, 147}, {113, 137}, {13, 244}, {109, 148}, {100,
158}, {110, 149}, {121, 133}, {97, 156}, {99, 157}, {115, 141}, {122, 132}, {42,
213}, {112, 143}, {9, 256}, {73, 256}, {231, 256}, {232, 256} }>;
(II) A more general form is to represent the graph as the orbit of {60, 61}
under the group generated by the following permutations:
a: (2, 173)(3, 214)(4, 174)(5, 131)(6, 192)(7, 239)(8, 216)(9, 161)(10, 183)(11,
139)(12, 82)(13, 154)(14, 209)(15, 172)(16, 187)(18, 208)(19, 205)(20, 138)(21,
137)(22, 142)(23, 201)(24, 200)(25, 130)(26, 146)(27, 102)(29, 143)(30, 176)(31,
152)(32, 124)(33, 215)(34, 175)(35, 165)(36, 184)(37, 169)(38, 181)(39, 223)(40,
158)(41, 145)(42, 220)(43, 106)(44, 186)(45, 100)(46, 99)(47, 94)(48, 153)(49,
129)(50, 168)(51, 166)(52, 162)(53, 93)(54, 164)(55, 163)(56, 81)(58, 85)(59,
103)(60, 141)(61, 115)(62, 136)(63, 185)(64, 140)(65, 123)(66, 159)(67, 155)(68,
178)(69, 179)(70, 105)(71, 190)(72, 125)(73, 189)(74, 144)(75, 156)(76, 126)(77,
113)(78, 157)(79, 97)(80, 151)(83, 112)(84, 108)(86, 193)(87, 119)(88, 120)(89,
147)(90, 148)(91, 198)(92, 171)(95, 110)(96, 133)(98, 132)(101, 118)(104,
116)(107, 114)(111, 149)(117, 170)(121, 122)(127, 134)(128, 135)(160, 255)(167,
250)(177, 253)(180, 252)(188, 238)(191, 245)(194, 242)(195, 235)(196, 233)(197,
249)(199, 244)(202, 241)(203, 228)(204, 256)(206, 254)(207, 221)(210, 237)(211,
251)(212, 232)(213, 225)(217, 240)(218, 234)(219, 247)(222, 226)(224, 236)(227,
243)(229, 248)(230, 231) (III) Last is Groups&Graphs. Copy everything between (not including)
the lines of asterisks into a plain text file and save it as "graph.txt". Then
launch G&G (Groups&Graphs) and select Read Text from the File menu.
**************
&Graph **************
b: (2, 4)(3, 7)(5, 11)(6, 14)(8, 18)(9, 20)(10, 23)(12, 27)(13, 30)(15, 34)(16,
36)(19, 42)(21, 45)(22, 48)(24, 51)(25, 47)(26, 37)(28, 57)(29, 60)(31, 64)(32,
66)(33, 39)(35, 71)(38, 41)(40, 44)(43, 76)(46, 81)(49, 87)(50, 89)(52, 92)(53,
93)(54, 96)(55, 98)(56, 99)(58, 104)(59, 61)(62, 88)(63, 73)(65, 78)(67, 80)(68,
91)(69, 86)(70, 74)(72, 114)(75, 111)(77, 112)(79, 95)(82, 102)(83, 113)(84,
118)(85, 116)(90, 117)(94, 130)(97, 110)(100, 137)(101, 108)(103, 115)(105,
144)(106, 126)(107, 125)(109, 150)(119, 129)(120, 136)(121, 122)(123, 157)(124,
159)(127, 128)(131, 139)(132, 163)(133, 164)(134, 135)(138, 161)(140, 152)(141,
143)(142, 153)(145, 181)(146, 169)(147, 168)(148, 170)(149, 156)(151, 155)(154,
176)(158, 186)(160, 194)(162, 171)(165, 190)(166, 200)(167, 202)(172, 175)(173,
174)(177, 188)(178, 198)(179, 193)(180, 196)(183, 201)(184, 187)(185, 189)(191,
204)(192, 209)(195, 225)(197, 219)(199, 211)(203, 232)(205, 220)(206, 229)(207,
237)(208, 216)(210, 221)(212, 228)(213, 235)(214, 239)(215, 223)(233, 252)(238,
253)(241, 250)(242, 255)(244, 251)(245, 256)(247, 249)(248, 254)
c: (1, 2)(3, 6)(4, 207)(5, 174)(7, 23)(8, 239)(9, 173)(10, 230)(11, 167)(12,
139)(13, 208)(14, 222)(15, 209)(16, 214)(17, 39)(18, 243)(19, 246)(20, 197)(21,
138)(22, 187)(24, 201)(25, 131)(26, 204)(27, 124)(28, 102)(29, 175)(30, 188)(31,
176)(32, 192)(33, 237)(34, 206)(35, 220)(36, 217)(37, 184)(38, 182)(40, 216)(41,
213)(42, 235)(43, 161)(44, 191)(45, 172)(46, 100)(47, 166)(48, 177)(49, 153)(50,
183)(51, 229)(52, 205)(53, 94)(54, 168)(55, 169)(56, 82)(57, 58)(59, 140)(60,
179)(61, 141)(62, 154)(63, 219)(64, 178)(65, 190)(66, 160)(67, 159)(68, 181)(69,
223)(70, 180)(71, 199)(72, 146)(73, 215)(74, 145)(75, 186)(76, 147)(77, 126)(78,
158)(79, 137)(80, 189)(81, 136)(83, 119)(84, 130)(85, 142)(86, 202)(87, 165)(88,
171)(89, 194)(90, 200)(91, 211)(92, 196)(93, 129)(95, 132)(96, 193)(97, 133)(98,
198)(99, 123)(101, 125)(103, 106)(104, 127)(105, 116)(107, 115)(108, 143)(109,
157)(110, 120)(111, 144)(112, 152)(113, 151)(114, 162)(117, 185)(118, 149)(121,
156)(122, 155)(128, 170)(134, 164)(135, 163)(148, 150)(195, 242)(203, 241)(210,
238)(212, 233)(218, 253)(221, 256)(224, 255)(225, 254)(226, 247)(227, 252)(228,
251)(231, 250)(232, 249)(234, 245)(236, 248)(240, 244)
C4[ 256, 97 ]
256
-1 2 4 173 174
-2 1 5 9 207
-3 187 6 10 208
-4 11 1 237 20
-5 12 2 238 21
-6 22 13 3 230
-7 23 14 216 184
-8 24 15 217 239
-9 2 25 256 43
-10 44 222 3 26
-11 253 45 4 27
-12 46 48 5 28
-13 244 47 6 29
-14 48 7 30 230
-15 49 8 250 31
-16 243 214 50 32
-17 33 223 39 215
-18 34 214 51 217
-19 35 235 246 52
-20 47 245 4 76
-21 44 77 5 53
-22 27 6 54 252
-23 222 37 7 40
-24 55 78 247 8
-25 56 79 30 9
-26 233 80 10 43
-27 11 22 57 81
-28 12 58 82 85
-29 13 59 83 86
-30 14 25 60 251
-31 91 15 61 84
-32 16 62 85 250
-33 17 63 86 207
-34 18 64 87 241
-35 88 254 19 65
-36 66 89 243 239
-37 23 67 76 252
-38 68 213 182 74
-39 69 17 237 73
-40 23 45 90 244
-41 91 70 235 182
-42 92 213 246 71
-43 26 103 84 9
-44 117 251 10 21
-45 11 112 93 40
-46 12 78 94 119
-47 99 13 95 20
-48 12 233 14 96
-49 56 15 92 97
-50 16 247 72 75
-51 18 249 65 98
-52 242 114 19 87
-53 100 62 21 120
-54 22 121 101 63
-55 77 122 24 70
-56 123 25 102 49
-57 102 27 104 116
-58 124 28 105 127
-59 125 29 106 64
-60 69 113 61 30
-61 60 126 107 31
-62 71 53 108 32
-63 33 90 245 54
-64 34 68 59 118
-65 35 81 51 109
-66 88 36 116 241
-67 110 37 127 86
-68 111 254 38 64
-69 80 60 39 238
-70 55 255 41 85
-71 78 248 62 42
-72 113 92 103 50
-73 256 39 117 96
-74 242 38 116 98
-75 79 91 50 128
-76 37 115 118 20
-77 55 125 141 21
-78 24 46 71 150
-79 25 129 151 75
-80 69 26 128 97
-81 27 129 130 65
-82 99 28 131 153
-83 132 100 114 29
-84 133 136 31 43
-85 134 70 28 32
-86 33 253 67 29
-87 99 110 34 52
-88 66 35 101 93
-89 111 36 114 249
-90 135 40 63 109
-91 248 41 31 75
-92 255 49 72 42
-93 88 45 136 137
-94 110 154 46 138
-95 111 155 47 119
-96 122 48 73 108
-97 156 80 49 130
-98 121 112 51 74
-99 47 157 82 87
-100 158 83 139 53
-101 88 126 140 54
-102 56 57 139 142
-103 143 72 140 43
-104 144 57 159 128
-105 145 58 160 163
-106 146 59 161 108
-107 112 147 61 162
-108 62 106 96 152
-109 90 123 148 65
-110 67 94 149 87
-111 89 68 127 95
-112 143 45 107 98
-113 60 137 72 163
-114 89 115 83 52
-115 114 141 152 76
-116 66 57 135 74
-117 44 134 73 150
-118 64 76 120 164
-119 46 95 162 175
-120 165 159 118 53
-121 133 163 54 98
-122 55 132 96 164
-123 165 56 166 109
-124 187 167 58 136
-125 77 168 59 171
-126 101 169 61 138
-127 67 111 58 170
-128 80 104 148 75
-129 79 81 171 172
-130 176 81 161 97
-131 188 82 137 173
-132 122 144 166 83
-133 121 189 84 153
-134 155 149 117 85
-135 90 156 116 151
-136 124 190 93 84
-137 113 93 131 186
-138 191 126 94 174
-139 100 177 102 174
-140 101 178 103 175
-141 77 176 179 115
-142 102 180 192 164
-143 154 112 103 193
-144 132 104 181 194
-145 198 105 182 195
-146 106 183 151 196
-147 149 107 184 197
-148 158 128 185 109
-149 110 134 178 147
-150 78 157 170 117
-151 79 135 146 179
-152 198 115 172 108
-153 209 133 82 196
-154 143 199 192 94
-155 134 169 193 95
-156 198 135 168 97
-157 99 200 190 150
-158 100 199 201 148
-159 202 104 184 120
-160 203 105 171 217
-161 204 106 173 130
-162 194 205 107 119
-163 121 200 113 105
-164 122 118 185 142
-165 123 205 206 120
-166 132 123 197 208
-167 124 172 207 218
-168 187 156 125 219
-169 155 201 180 126
-170 189 127 150 186
-171 220 125 160 129
-172 167 216 129 152
-173 1 221 161 131
-174 1 210 138 139
-175 202 140 119 208
-176 209 211 130 141
-177 222 212 193 139
-178 181 149 140 206
-179 188 223 151 141
-180 169 213 224 142
-181 144 178 225 182
-182 145 38 181 41
-183 146 214 226 186
-184 147 159 7 227
-185 191 148 215 164
-186 211 137 170 183
-187 3 124 168 227
-188 222 179 228 131
-189 133 223 170 204
-190 220 157 136 229
-191 138 228 185 230
-192 154 231 214 142
-193 143 155 177 215
-194 144 232 162 217
-195 145 233 244 205
-196 146 224 235 153
-197 166 234 147 207
-198 145 156 152 229
-199 154 158 235 236
-200 157 216 163 219
-201 158 169 226 239
-202 159 237 218 175
-203 245 160 238 206
-204 189 212 161 230
-205 165 246 162 195
-206 165 243 178 203
-207 33 2 167 197
-208 166 3 240 175
-209 176 231 239 153
-210 223 247 174 241
-211 176 213 236 186
-212 242 177 204 248
-213 211 180 38 42
-214 16 192 18 183
-215 221 17 193 185
-216 200 7 172 240
-217 160 18 194 8
-218 167 202 247 249
-219 200 168 234 237
-220 190 246 225 171
-221 215 249 173 250
-222 23 177 188 10
-223 210 189 179 17
-224 244 180 196 251
-225 220 181 251 252
-226 253 201 183 238
-227 187 254 248 184
-228 188 254 255 191
-229 198 232 243 190
-230 14 191 6 204
-231 209 245 256 192
-232 253 256 194 229
-233 26 48 236 195
-234 250 197 219 241
-235 199 19 41 196
-236 199 211 233 252
-237 4 202 39 219
-238 69 5 203 226
-239 209 36 201 8
-240 242 255 216 208
-241 66 34 210 234
-242 212 52 74 240
-243 36 16 206 229
-244 13 224 40 195
-245 231 203 63 20
-246 220 205 19 42
-247 210 24 50 218
-248 91 212 71 227
-249 89 221 51 218
-250 221 234 15 32
-251 44 224 225 30
-252 22 37 225 236
-253 11 232 226 86
-254 35 68 227 228
-255 70 92 228 240
-256 231 232 73 9
0