C4graphGraph forms for C4 [ 256, 98 ] = UG(ATD[256,206])

[Home] [Table] [Glossary] [Families]

On this page are computer-accessible forms for the graph C4[ 256, 98 ] = UG(ATD[256,206]).

(I) Following is a form readable by MAGMA:

g:=Graph<256|{ {86, 87}, {164, 165}, {130, 131}, {1, 2}, {172, 175}, {73, 74}, {1, 5}, {219, 223}, {64, 68}, {3, 7}, {2, 6}, {160, 165}, {112, 120}, {243, 251}, {225, 233}, {128, 136}, {50, 57}, {242, 249}, {240, 251}, {199, 204}, {198, 205}, {197, 206}, {135, 140}, {2, 14}, {4, 8}, {3, 15}, {99, 111}, {208, 221}, {162, 172}, {229, 235}, {242, 253}, {74, 91}, {238, 255}, {108, 125}, {196, 214}, {233, 251}, {197, 215}, {4, 16}, {229, 241}, {202, 222}, {13, 25}, {12, 24}, {7, 19}, {6, 18}, {5, 17}, {33, 52}, {164, 177}, {75, 94}, {142, 155}, {130, 148}, {160, 182}, {166, 190}, {170, 179}, {32, 58}, {228, 254}, {165, 191}, {136, 146}, {39, 60}, {109, 118}, {8, 20}, {11, 23}, {10, 22}, {9, 21}, {72, 85}, {100, 121}, {143, 146}, {43, 53}, {169, 183}, {134, 152}, {64, 95}, {149, 181}, {92, 126}, {139, 169}, {27, 56}, {8, 44}, {200, 236}, {27, 63}, {26, 62}, {25, 61}, {24, 60}, {19, 55}, {18, 54}, {17, 53}, {16, 52}, {11, 47}, {10, 46}, {9, 45}, {128, 164}, {148, 176}, {95, 122}, {196, 226}, {159, 184}, {208, 247}, {138, 163}, {216, 241}, {142, 167}, {89, 115}, {204, 230}, {28, 55}, {87, 124}, {5, 41}, {218, 246}, {216, 244}, {212, 248}, {204, 224}, {158, 178}, {23, 59}, {22, 58}, {21, 57}, {20, 56}, {7, 43}, {6, 42}, {153, 181}, {148, 185}, {201, 228}, {157, 179}, {218, 244}, {220, 243}, {211, 227}, {90, 107}, {199, 246}, {140, 189}, {220, 239}, {211, 231}, {151, 161}, {71, 112}, {155, 172}, {80, 103}, {154, 162}, {31, 38}, {81, 104}, {30, 36}, {201, 242}, {12, 48}, {31, 35}, {15, 51}, {14, 50}, {13, 49}, {142, 178}, {146, 174}, {150, 170}, {83, 109}, {147, 173}, {72, 119}, {41, 105}, {143, 207}, {167, 230}, {169, 235}, {189, 255}, {188, 254}, {157, 217}, {32, 101}, {185, 252}, {29, 85}, {17, 88}, {161, 232}, {52, 126}, {191, 245}, {53, 127}, {23, 92}, {42, 102}, {159, 211}, {141, 193}, {46, 99}, {49, 124}, {158, 208}, {176, 254}, {26, 85}, {50, 125}, {38, 118}, {39, 119}, {10, 91}, {190, 239}, {42, 120}, {175, 253}, {173, 255}, {170, 248}, {43, 121}, {145, 195}, {165, 246}, {150, 194}, {168, 252}, {27, 78}, {191, 234}, {46, 123}, {33, 116}, {138, 223}, {144, 197}, {44, 122}, {186, 236}, {176, 230}, {174, 248}, {51, 101}, {34, 117}, {47, 120}, {137, 222}, {151, 192}, {177, 233}, {178, 234}, {40, 113}, {133, 220}, {47, 117}, {135, 221}, {63, 100}, {25, 69}, {154, 198}, {60, 96}, {30, 66}, {29, 65}, {28, 64}, {18, 79}, {34, 127}, {181, 235}, {132, 219}, {144, 240}, {40, 73}, {53, 84}, {139, 234}, {36, 70}, {37, 71}, {32, 67}, {184, 219}, {168, 203}, {138, 233}, {152, 251}, {163, 199}, {34, 68}, {180, 210}, {45, 75}, {35, 69}, {9, 110}, {48, 87}, {168, 192}, {185, 209}, {15, 102}, {182, 223}, {51, 90}, {129, 232}, {14, 101}, {139, 224}, {145, 250}, {28, 112}, {153, 245}, {31, 115}, {30, 114}, {29, 113}, {141, 225}, {32, 77}, {162, 207}, {38, 72}, {54, 89}, {158, 238}, {44, 93}, {170, 219}, {160, 209}, {129, 240}, {49, 67}, {159, 237}, {145, 226}, {20, 97}, {184, 205}, {163, 214}, {161, 212}, {154, 239}, {43, 94}, {26, 111}, {24, 109}, {143, 250}, {16, 103}, {25, 110}, {149, 226}, {166, 222}, {17, 104}, {164, 221}, {37, 92}, {18, 107}, {19, 105}, {175, 213}, {22, 108}, {147, 232}, {173, 214}, {45, 81}, {174, 210}, {56, 68}, {144, 237}, {20, 106}, {21, 107}, {153, 230}, {90, 218}, {48, 177}, {73, 200}, {68, 198}, {69, 199}, {5, 134}, {77, 206}, {11, 136}, {122, 249}, {77, 201}, {65, 196}, {119, 242}, {66, 197}, {80, 215}, {102, 238}, {109, 228}, {51, 185}, {38, 173}, {69, 206}, {61, 182}, {104, 227}, {59, 183}, {123, 247}, {9, 132}, {41, 167}, {49, 191}, {44, 188}, {89, 201}, {42, 187}, {47, 190}, {106, 248}, {127, 237}, {15, 156}, {70, 213}, {46, 189}, {41, 186}, {54, 163}, {102, 241}, {76, 213}, {82, 203}, {124, 229}, {81, 202}, {87, 204}, {88, 195}, {27, 133}, {121, 231}, {35, 130}, {99, 193}, {113, 211}, {122, 216}, {59, 152}, {89, 250}, {94, 253}, {118, 213}, {67, 231}, {126, 218}, {81, 244}, {88, 254}, {104, 206}, {105, 207}, {90, 253}, {115, 212}, {98, 203}, {74, 224}, {82, 249}, {96, 205}, {100, 202}, {118, 216}, {121, 215}, {98, 205}, {98, 210}, {11, 186}, {65, 240}, {45, 156}, {88, 234}, {6, 176}, {97, 215}, {114, 196}, {3, 180}, {64, 247}, {55, 128}, {97, 217}, {56, 129}, {62, 135}, {60, 133}, {58, 131}, {86, 236}, {114, 200}, {57, 130}, {61, 134}, {94, 229}, {107, 208}, {14, 178}, {101, 217}, {110, 210}, {108, 209}, {35, 157}, {93, 227}, {52, 139}, {59, 132}, {91, 228}, {105, 214}, {91, 155}, {123, 187}, {33, 227}, {84, 151}, {100, 167}, {82, 150}, {95, 155}, {92, 153}, {4, 194}, {73, 143}, {72, 142}, {12, 202}, {93, 154}, {111, 168}, {57, 241}, {78, 134}, {127, 183}, {24, 209}, {67, 138}, {65, 136}, {117, 188}, {70, 140}, {71, 141}, {114, 184}, {125, 183}, {39, 236}, {66, 137}, {62, 243}, {97, 172}, {36, 235}, {78, 158}, {36, 246}, {76, 159}, {83, 128}, {80, 131}, {103, 180}, {28, 200}, {106, 190}, {126, 171}, {124, 171}, {37, 252}, {112, 169}, {74, 144}, {79, 149}, {78, 148}, {75, 145}, {117, 175}, {125, 166}, {3, 223}, {84, 137}, {34, 252}, {77, 147}, {76, 146}, {63, 225}, {93, 131}, {16, 207}, {108, 179}, {110, 177}, {23, 247}, {86, 182}, {119, 151}, {12, 237}, {116, 149}, {99, 129}, {2, 225}, {22, 243}, {80, 181}, {19, 244}, {76, 171}, {30, 249}, {29, 245}, {83, 187}, {1, 232}, {85, 188}, {40, 193}, {4, 238}, {8, 226}, {66, 174}, {79, 162}, {86, 187}, {123, 150}, {1, 239}, {98, 140}, {48, 192}, {116, 132}, {58, 203}, {75, 186}, {13, 255}, {83, 161}, {79, 189}, {50, 192}, {111, 157}, {71, 180}, {96, 147}, {40, 220}, {84, 160}, {55, 195}, {54, 194}, {70, 179}, {106, 156}, {115, 133}, {13, 250}, {31, 231}, {33, 217}, {113, 137}, {82, 171}, {95, 166}, {116, 141}, {26, 224}, {39, 221}, {37, 222}, {61, 193}, {63, 195}, {62, 194}, {96, 156}, {10, 245}, {103, 152}, {120, 135}, {7, 256}, {21, 256}, {198, 256}, {212, 256} }>;

(II) A more general form is to represent the graph as the orbit of {86, 87} under the group generated by the following permutations:

a: (3, 9)(4, 35)(6, 14)(7, 45)(8, 31)(11, 84)(12, 28)(13, 80)(15, 21)(16, 69)(17, 41)(18, 101)(19, 81)(20, 115)(22, 46)(23, 160)(24, 64)(25, 103)(30, 76)(32, 79)(33, 163)(34, 39)(36, 171)(37, 164)(38, 44)(40, 240)(42, 50)(43, 75)(47, 151)(48, 112)(49, 181)(51, 107)(52, 199)(53, 186)(54, 217)(55, 202)(56, 133)(57, 102)(58, 189)(59, 182)(60, 68)(61, 152)(62, 111)(65, 113)(66, 146)(67, 149)(70, 82)(71, 177)(72, 188)(73, 144)(77, 162)(83, 166)(86, 183)(87, 169)(88, 167)(89, 97)(92, 165)(93, 173)(95, 109)(96, 198)(99, 243)(100, 195)(104, 105)(106, 212)(108, 123)(110, 180)(114, 159)(116, 138)(117, 119)(118, 122)(120, 192)(121, 145)(124, 235)(125, 187)(126, 246)(127, 236)(128, 222)(129, 220)(130, 238)(131, 255)(132, 223)(135, 168)(136, 137)(139, 204)(140, 203)(141, 233)(142, 254)(143, 197)(147, 154)(148, 158)(150, 179)(153, 191)(155, 228)(156, 256)(157, 194)(161, 190)(172, 201)(175, 242)(176, 178)(185, 208)(193, 251)(196, 211)(200, 237)(206, 207)(209, 247)(213, 249)(214, 227)(215, 250)(221, 252)(226, 231)(230, 234)(232, 239)
b: (1, 2)(3, 7)(4, 31)(5, 225)(6, 232)(8, 35)(9, 45)(10, 91)(11, 48)(12, 23)(13, 250)(14, 239)(15, 256)(16, 231)(17, 141)(18, 147)(19, 223)(20, 130)(21, 156)(22, 155)(24, 247)(25, 145)(26, 85)(27, 78)(28, 160)(29, 224)(30, 36)(32, 162)(33, 227)(34, 252)(37, 127)(38, 194)(39, 221)(40, 234)(41, 233)(42, 161)(43, 180)(44, 157)(46, 228)(47, 192)(49, 143)(50, 190)(51, 198)(52, 211)(53, 71)(54, 173)(55, 182)(56, 148)(57, 106)(58, 172)(59, 202)(60, 208)(61, 195)(62, 72)(63, 134)(64, 209)(65, 204)(66, 235)(67, 207)(68, 185)(69, 226)(70, 249)(73, 191)(74, 245)(75, 110)(76, 171)(77, 79)(80, 215)(81, 132)(82, 213)(83, 187)(84, 112)(86, 128)(87, 136)(88, 193)(89, 255)(90, 205)(92, 237)(93, 217)(94, 210)(95, 108)(96, 107)(97, 131)(98, 253)(99, 254)(100, 152)(101, 154)(102, 212)(103, 121)(104, 116)(105, 138)(109, 123)(111, 188)(113, 139)(114, 246)(115, 238)(117, 168)(118, 150)(119, 135)(120, 151)(122, 179)(124, 146)(125, 166)(126, 159)(129, 176)(133, 158)(137, 169)(140, 242)(142, 243)(144, 153)(149, 206)(163, 214)(164, 236)(165, 200)(167, 251)(170, 216)(174, 229)(175, 203)(177, 186)(178, 220)(181, 197)(183, 222)(184, 218)(189, 201)(196, 199)(219, 244)(230, 240)(241, 248)
c: (2, 5)(3, 9)(4, 12)(6, 17)(7, 21)(8, 24)(10, 29)(11, 32)(13, 37)(14, 41)(15, 45)(16, 48)(18, 53)(19, 57)(20, 60)(22, 65)(23, 67)(25, 71)(26, 74)(28, 35)(30, 70)(31, 64)(33, 86)(34, 89)(38, 95)(39, 97)(40, 99)(42, 104)(43, 107)(44, 109)(46, 113)(47, 77)(49, 92)(50, 105)(51, 75)(52, 87)(54, 127)(55, 130)(56, 133)(58, 136)(59, 138)(61, 141)(62, 144)(63, 78)(66, 140)(68, 115)(69, 112)(72, 155)(73, 111)(76, 82)(79, 84)(80, 164)(81, 102)(83, 93)(85, 91)(88, 176)(90, 94)(96, 106)(98, 174)(100, 158)(101, 186)(103, 177)(108, 196)(110, 180)(114, 179)(116, 182)(117, 201)(118, 122)(119, 172)(120, 206)(121, 208)(123, 211)(124, 126)(125, 214)(128, 131)(129, 220)(132, 223)(134, 225)(135, 197)(137, 189)(139, 204)(143, 168)(145, 185)(146, 203)(147, 190)(148, 195)(149, 160)(150, 159)(151, 162)(152, 233)(153, 191)(154, 161)(157, 200)(163, 183)(165, 181)(166, 173)(167, 178)(169, 199)(170, 184)(175, 242)(187, 227)(188, 228)(192, 207)(194, 237)(198, 212)(202, 238)(205, 248)(209, 226)(213, 249)(215, 221)(217, 236)(218, 229)(222, 255)(230, 234)(231, 247)(232, 239)(235, 246)(240, 243)(241, 244)(250, 252)
d: (2, 239, 5, 232)(3, 91, 9, 85)(4, 215, 12, 221)(6, 154, 17, 161)(7, 228, 21, 188)(8, 121, 24, 208)(10, 132, 29, 223)(11, 214, 32, 125)(13, 157, 37, 200)(14, 190, 41, 147)(15, 155, 45, 72)(16, 197, 48, 135)(18, 93, 53, 83)(19, 201, 57, 117)(20, 100, 60, 158)(22, 59, 65, 138)(23, 196, 67, 108)(25, 111, 71, 73)(26, 180, 74, 110)(28, 250, 35, 252)(30, 124, 70, 126)(31, 185, 64, 145)(33, 137, 86, 189)(34, 55, 89, 130)(36, 171)(38, 51, 95, 75)(39, 238, 97, 202)(40, 61, 99, 141)(42, 162, 104, 151)(43, 109, 107, 44)(46, 116, 113, 182)(47, 105, 77, 50)(49, 179, 92, 114)(52, 66, 87, 140)(54, 131, 127, 128)(56, 63, 133, 78)(58, 183, 136, 163)(62, 103, 144, 177)(68, 195, 115, 148)(69, 168, 112, 143)(76, 246, 82, 235)(79, 227, 84, 187)(80, 237, 164, 194)(81, 119, 102, 172)(88, 212, 176, 198)(90, 122, 94, 118)(96, 178, 106, 167)(98, 139, 174, 204)(101, 166, 186, 173)(120, 207, 206, 192)(123, 149, 211, 160)(129, 225, 220, 134)(142, 156)(146, 199, 203, 169)(150, 181, 159, 165)(152, 240, 233, 243)(153, 184, 191, 170)(175, 244, 242, 241)(205, 234, 248, 230)(209, 247, 226, 231)(210, 224)(213, 218, 249, 229)(216, 253)(217, 222, 236, 255)(219, 245)(254, 256)

(III) Last is Groups&Graphs. Copy everything between (not including) the lines of asterisks into a plain text file and save it as "graph.txt". Then launch G&G (Groups&Graphs) and select Read Text from the File menu.

**************

&Graph
C4[ 256, 98 ]
256
-1 232 2 5 239
-2 1 14 225 6
-3 223 15 180 7
-4 16 194 238 8
-5 1 134 17 41
-6 176 2 18 42
-7 3 256 19 43
-8 44 4 226 20
-9 110 132 45 21
-10 22 46 91 245
-11 23 47 136 186
-12 24 48 202 237
-13 255 25 49 250
-14 2 101 178 50
-15 156 3 102 51
-16 4 103 52 207
-17 88 5 104 53
-18 79 6 107 54
-19 55 244 105 7
-20 56 106 8 97
-21 57 256 107 9
-22 243 58 108 10
-23 11 59 92 247
-24 209 12 60 109
-25 110 13 69 61
-26 111 224 62 85
-27 56 78 133 63
-28 55 112 200 64
-29 113 245 85 65
-30 66 36 114 249
-31 231 35 38 115
-32 77 67 101 58
-33 116 227 52 217
-34 68 127 117 252
-35 69 157 31 130
-36 70 235 246 30
-37 222 92 71 252
-38 72 118 173 31
-39 221 60 236 119
-40 220 113 193 73
-41 167 5 105 186
-42 187 102 6 120
-43 121 94 7 53
-44 122 188 93 8
-45 156 81 9 75
-46 99 123 189 10
-47 11 190 117 120
-48 12 177 192 87
-49 67 13 124 191
-50 57 14 125 192
-51 90 101 15 185
-52 33 16 126 139
-53 17 127 84 43
-54 89 18 194 163
-55 28 128 19 195
-56 68 27 129 20
-57 50 130 21 241
-58 22 203 32 131
-59 132 23 183 152
-60 133 24 39 96
-61 134 25 182 193
-62 243 135 26 194
-63 100 27 225 195
-64 68 247 28 95
-65 136 29 196 240
-66 137 30 174 197
-67 231 49 138 32
-68 198 34 56 64
-69 199 35 25 206
-70 36 179 213 140
-71 112 37 180 141
-72 38 85 119 142
-73 143 200 40 74
-74 144 91 224 73
-75 45 145 94 186
-76 146 213 159 171
-77 201 147 206 32
-78 134 158 27 148
-79 189 149 18 162
-80 103 181 215 131
-81 45 244 202 104
-82 203 171 150 249
-83 187 128 161 109
-84 137 160 151 53
-85 188 26 72 29
-86 187 236 182 87
-87 124 48 204 86
-88 254 234 17 195
-89 201 115 250 54
-90 253 51 107 218
-91 155 74 228 10
-92 23 37 126 153
-93 44 154 227 131
-94 253 75 229 43
-95 122 155 166 64
-96 156 147 60 205
-97 215 172 217 20
-98 210 203 205 140
-99 111 46 193 129
-100 121 167 202 63
-101 14 51 217 32
-102 15 238 42 241
-103 80 180 16 152
-104 81 17 227 206
-105 214 19 41 207
-106 156 190 248 20
-107 90 18 21 208
-108 22 209 179 125
-109 24 83 118 228
-110 177 210 25 9
-111 99 157 168 26
-112 169 71 28 120
-113 211 137 29 40
-114 200 30 184 196
-115 89 133 212 31
-116 33 132 149 141
-117 34 188 47 175
-118 213 38 216 109
-119 242 39 72 151
-120 112 47 135 42
-121 231 100 215 43
-122 44 95 216 249
-123 187 46 247 150
-124 49 171 229 87
-125 166 50 183 108
-126 92 171 52 218
-127 34 237 183 53
-128 55 136 83 164
-129 99 56 232 240
-130 35 57 148 131
-131 58 80 93 130
-132 59 116 9 219
-133 220 27 60 115
-134 78 5 61 152
-135 221 62 140 120
-136 11 146 128 65
-137 66 222 113 84
-138 67 233 223 163
-139 234 169 224 52
-140 189 135 70 98
-141 71 225 116 193
-142 155 167 178 72
-143 146 73 250 207
-144 237 74 240 197
-145 226 195 250 75
-146 143 136 174 76
-147 77 232 96 173
-148 176 78 130 185
-149 79 181 116 226
-150 123 82 170 194
-151 192 84 161 119
-152 134 59 103 251
-153 245 92 181 230
-154 198 93 162 239
-155 91 95 172 142
-156 45 15 106 96
-157 111 35 179 217
-158 78 178 238 208
-159 211 237 184 76
-160 165 209 182 84
-161 232 212 83 151
-162 154 79 172 207
-163 199 214 138 54
-164 165 177 221 128
-165 191 246 160 164
-166 222 190 125 95
-167 100 41 142 230
-168 111 192 203 252
-169 112 235 139 183
-170 179 248 150 219
-171 124 82 126 76
-172 155 162 97 175
-173 255 147 38 214
-174 66 210 146 248
-175 253 213 117 172
-176 254 148 6 230
-177 110 233 48 164
-178 14 234 158 142
-179 157 70 170 108
-180 210 3 103 71
-181 80 235 149 153
-182 223 61 160 86
-183 59 125 169 127
-184 114 159 205 219
-185 209 148 51 252
-186 11 236 41 75
-187 123 83 42 86
-188 44 254 117 85
-189 46 79 255 140
-190 166 47 106 239
-191 165 234 245 49
-192 168 48 50 151
-193 99 61 40 141
-194 4 62 150 54
-195 55 88 145 63
-196 114 214 226 65
-197 66 144 215 206
-198 154 68 256 205
-199 69 246 204 163
-200 114 236 28 73
-201 77 242 89 228
-202 12 100 222 81
-203 58 168 82 98
-204 199 224 87 230
-205 198 96 184 98
-206 77 69 104 197
-207 143 16 105 162
-208 221 158 247 107
-209 24 160 108 185
-210 110 180 174 98
-211 231 113 159 227
-212 256 115 248 161
-213 70 118 76 175
-214 105 173 163 196
-215 121 80 97 197
-216 122 244 118 241
-217 33 101 157 97
-218 90 244 246 126
-219 132 223 170 184
-220 133 243 40 239
-221 135 39 164 208
-222 166 37 202 137
-223 3 138 182 219
-224 26 204 139 74
-225 2 233 63 141
-226 145 149 8 196
-227 33 211 93 104
-228 254 91 201 109
-229 124 235 94 241
-230 176 167 204 153
-231 121 67 211 31
-232 1 147 161 129
-233 177 225 138 251
-234 88 178 191 139
-235 36 169 181 229
-236 200 39 86 186
-237 12 144 159 127
-238 255 102 4 158
-239 154 220 1 190
-240 144 129 251 65
-241 57 102 216 229
-242 253 201 249 119
-243 22 220 62 251
-244 81 216 19 218
-245 191 29 10 153
-246 165 199 36 218
-247 23 123 64 208
-248 212 170 106 174
-249 242 122 82 30
-250 143 89 13 145
-251 243 233 152 240
-252 34 168 37 185
-253 242 90 94 175
-254 88 176 188 228
-255 13 189 238 173
-256 198 212 7 21
0

**************