C4graphGraph forms for C4 [ 256, 100 ] = UG(ATD[256,210])

[Home] [Table] [Glossary] [Families]

On this page are computer-accessible forms for the graph C4[ 256, 100 ] = UG(ATD[256,210]).

(I) Following is a form readable by MAGMA:

g:=Graph<256|{ {4, 5}, {76, 78}, {1, 5}, {171, 175}, {171, 174}, {219, 222}, {178, 183}, {73, 78}, {178, 181}, {89, 94}, {1, 9}, {34, 40}, {144, 154}, {35, 40}, {144, 155}, {1, 13}, {147, 159}, {1, 12}, {3, 13}, {147, 157}, {207, 223}, {9, 24}, {139, 154}, {66, 80}, {230, 244}, {205, 223}, {108, 126}, {168, 186}, {67, 80}, {137, 154}, {5, 17}, {9, 29}, {79, 90}, {11, 29}, {75, 93}, {74, 93}, {230, 241}, {77, 90}, {105, 126}, {198, 222}, {227, 251}, {8, 17}, {198, 223}, {34, 56}, {225, 251}, {68, 95}, {5, 25}, {226, 254}, {36, 56}, {9, 21}, {139, 151}, {160, 188}, {139, 150}, {226, 255}, {7, 25}, {65, 95}, {165, 186}, {12, 44}, {155, 186}, {157, 188}, {76, 110}, {202, 233}, {17, 53}, {220, 248}, {74, 110}, {12, 41}, {91, 126}, {21, 48}, {145, 180}, {19, 53}, {202, 236}, {147, 180}, {208, 247}, {155, 188}, {21, 61}, {85, 124}, {135, 174}, {23, 61}, {220, 246}, {82, 121}, {215, 252}, {87, 124}, {132, 175}, {13, 33}, {149, 184}, {82, 124}, {215, 249}, {129, 175}, {151, 184}, {193, 241}, {211, 227}, {16, 33}, {211, 226}, {20, 37}, {66, 112}, {220, 238}, {197, 247}, {10, 57}, {216, 235}, {197, 246}, {17, 37}, {218, 238}, {68, 112}, {12, 57}, {196, 241}, {135, 176}, {145, 166}, {21, 45}, {89, 96}, {208, 233}, {206, 247}, {145, 168}, {85, 111}, {142, 180}, {85, 110}, {219, 224}, {208, 235}, {13, 49}, {15, 49}, {213, 235}, {202, 244}, {142, 177}, {203, 244}, {24, 88}, {190, 254}, {36, 101}, {141, 207}, {148, 214}, {50, 113}, {141, 206}, {148, 215}, {170, 238}, {56, 125}, {155, 222}, {50, 116}, {174, 232}, {153, 222}, {33, 105}, {174, 230}, {53, 125}, {37, 109}, {137, 193}, {177, 248}, {35, 105}, {39, 109}, {179, 248}, {36, 104}, {160, 236}, {24, 85}, {45, 96}, {140, 193}, {167, 234}, {163, 237}, {162, 237}, {165, 234}, {4, 84}, {169, 249}, {34, 115}, {52, 101}, {20, 70}, {178, 224}, {171, 249}, {47, 125}, {20, 71}, {52, 103}, {34, 113}, {28, 72}, {180, 224}, {45, 121}, {163, 247}, {4, 81}, {49, 100}, {47, 121}, {163, 245}, {51, 100}, {25, 65}, {29, 69}, {132, 221}, {179, 234}, {28, 70}, {60, 102}, {147, 201}, {170, 240}, {44, 119}, {146, 201}, {148, 207}, {164, 255}, {28, 65}, {42, 119}, {146, 207}, {162, 255}, {18, 76}, {19, 76}, {179, 236}, {57, 102}, {46, 78}, {46, 79}, {22, 117}, {187, 216}, {132, 224}, {159, 251}, {32, 69}, {40, 77}, {159, 250}, {142, 232}, {143, 232}, {33, 73}, {37, 77}, {41, 64}, {59, 82}, {156, 246}, {43, 64}, {134, 237}, {151, 251}, {154, 246}, {24, 117}, {187, 214}, {36, 73}, {151, 249}, {59, 84}, {41, 89}, {52, 68}, {45, 93}, {32, 81}, {158, 236}, {2, 113}, {32, 83}, {4, 113}, {184, 205}, {49, 68}, {41, 92}, {166, 211}, {131, 245}, {176, 198}, {134, 240}, {166, 209}, {176, 199}, {20, 108}, {38, 94}, {29, 101}, {25, 97}, {170, 210}, {39, 94}, {164, 221}, {171, 210}, {27, 97}, {31, 101}, {131, 248}, {182, 205}, {164, 223}, {183, 203}, {59, 70}, {182, 203}, {18, 108}, {186, 196}, {57, 70}, {187, 196}, {40, 168}, {87, 215}, {99, 226}, {87, 213}, {127, 252}, {84, 208}, {127, 250}, {99, 228}, {102, 225}, {110, 233}, {55, 191}, {104, 225}, {124, 245}, {8, 130}, {74, 192}, {55, 189}, {8, 131}, {3, 141}, {38, 168}, {6, 136}, {7, 136}, {31, 144}, {122, 245}, {115, 227}, {31, 142}, {114, 227}, {16, 130}, {92, 206}, {42, 184}, {3, 144}, {16, 132}, {90, 206}, {87, 195}, {114, 230}, {86, 195}, {114, 231}, {90, 204}, {91, 204}, {39, 191}, {39, 190}, {84, 205}, {64, 217}, {112, 233}, {22, 138}, {79, 211}, {71, 219}, {61, 161}, {22, 139}, {79, 210}, {63, 161}, {71, 217}, {42, 181}, {55, 149}, {67, 225}, {38, 133}, {54, 149}, {8, 172}, {121, 221}, {48, 149}, {123, 221}, {67, 228}, {48, 152}, {53, 157}, {48, 153}, {6, 172}, {55, 157}, {26, 176}, {106, 192}, {23, 188}, {118, 218}, {119, 218}, {3, 173}, {38, 136}, {23, 185}, {2, 173}, {47, 128}, {54, 134}, {120, 200}, {60, 141}, {96, 209}, {116, 197}, {120, 201}, {60, 143}, {116, 199}, {120, 203}, {83, 231}, {96, 212}, {82, 231}, {118, 195}, {26, 173}, {46, 153}, {118, 193}, {44, 148}, {98, 216}, {103, 220}, {111, 212}, {61, 129}, {100, 216}, {105, 213}, {18, 175}, {44, 145}, {111, 210}, {54, 136}, {103, 217}, {107, 213}, {118, 200}, {18, 173}, {43, 235}, {69, 133}, {123, 187}, {43, 234}, {97, 160}, {64, 129}, {7, 197}, {11, 201}, {123, 185}, {99, 160}, {58, 254}, {92, 152}, {88, 156}, {77, 137}, {59, 254}, {88, 158}, {11, 204}, {88, 159}, {15, 200}, {10, 194}, {98, 170}, {81, 153}, {52, 252}, {127, 183}, {10, 195}, {58, 243}, {15, 198}, {104, 161}, {112, 185}, {27, 209}, {92, 150}, {86, 156}, {125, 183}, {26, 209}, {58, 241}, {104, 163}, {116, 191}, {75, 135}, {72, 133}, {81, 156}, {75, 134}, {114, 191}, {14, 192}, {98, 172}, {51, 253}, {50, 252}, {7, 200}, {15, 192}, {60, 239}, {94, 138}, {106, 190}, {109, 185}, {58, 239}, {95, 138}, {117, 162}, {43, 243}, {42, 243}, {80, 137}, {103, 189}, {120, 162}, {91, 128}, {102, 189}, {35, 255}, {32, 253}, {35, 253}, {26, 250}, {83, 179}, {54, 214}, {6, 231}, {97, 128}, {83, 178}, {6, 229}, {30, 253}, {22, 242}, {100, 128}, {65, 165}, {23, 242}, {14, 232}, {80, 182}, {67, 165}, {50, 212}, {28, 250}, {51, 212}, {62, 217}, {89, 177}, {93, 181}, {72, 161}, {14, 228}, {95, 181}, {91, 177}, {30, 244}, {14, 229}, {66, 169}, {30, 242}, {75, 167}, {72, 164}, {69, 169}, {46, 194}, {107, 135}, {47, 194}, {11, 229}, {73, 167}, {71, 169}, {66, 172}, {56, 214}, {30, 240}, {107, 133}, {10, 229}, {31, 240}, {2, 242}, {86, 166}, {115, 131}, {122, 138}, {2, 243}, {86, 167}, {108, 158}, {115, 129}, {126, 140}, {63, 204}, {127, 140}, {16, 228}, {27, 239}, {106, 158}, {123, 143}, {63, 202}, {119, 130}, {122, 143}, {27, 237}, {122, 140}, {74, 189}, {117, 130}, {63, 199}, {78, 182}, {62, 199}, {62, 196}, {98, 152}, {99, 152}, {19, 239}, {62, 194}, {106, 150}, {19, 238}, {107, 150}, {111, 146}, {109, 146}, {51, 256}, {190, 256}, {218, 256}, {219, 256} }>;

(II) A more general form is to represent the graph as the orbit of {4, 5} under the group generated by the following permutations:

a: (2, 229)(3, 57, 4, 29)(5, 9, 13, 12)(6, 242, 14, 243)(7, 61, 15, 64)(8, 117, 16, 119)(10, 113, 11, 173)(17, 24, 33, 44)(18, 195, 34, 201)(19, 124, 35, 180)(20, 156, 36, 207)(21, 49, 41, 25)(22, 228, 42, 172)(23, 192, 43, 136)(26, 194, 50, 204)(27, 121, 51, 177)(28, 153, 52, 206)(30, 232, 58, 231)(31, 60, 59, 32)(37, 88, 73, 148)(38, 188, 74, 235)(39, 236, 75, 187)(40, 147, 76, 87)(45, 100, 89, 97)(46, 252, 90, 250)(47, 212, 91, 209)(48, 68, 92, 65)(53, 85, 105, 145)(54, 185, 106, 234)(55, 233, 107, 186)(56, 146, 108, 86)(62, 116, 63, 176)(66, 139, 67, 184)(69, 144, 102, 84)(70, 81, 101, 141)(71, 246, 104, 223)(72, 222, 103, 247)(77, 159, 78, 215)(79, 127)(80, 151)(82, 253, 142, 239)(83, 240, 143, 254)(93, 216, 94, 160)(95, 152)(96, 128)(98, 138, 99, 181)(109, 158, 167, 214)(110, 213, 168, 157)(111, 126, 166, 125)(112, 150, 165, 149)(114, 244, 174, 241)(115, 120, 175, 118)(122, 226, 178, 170)(123, 190, 179, 134)(129, 200)(131, 162, 132, 218)(133, 155, 189, 208)(135, 196, 191, 202)(137, 251, 182, 249)(140, 211, 183, 210)(154, 225, 205, 169)(161, 198, 217, 197)(163, 164, 219, 220)(171, 193, 227, 203)(221, 256, 248, 237)(224, 238, 245, 255)
b: (1, 3, 2, 4)(5, 13, 173, 113)(6, 14, 174, 114)(7, 16, 176, 115)(8, 15, 175, 116)(9, 141, 242, 84)(10, 142, 241, 83)(11, 143, 244, 82)(12, 144, 243, 81)(17, 49, 18, 50)(19, 51, 20, 52)(21, 206, 22, 205)(23, 208, 24, 207)(25, 33, 26, 34)(27, 35, 28, 36)(29, 60, 30, 59)(31, 58, 32, 57)(37, 68, 76, 212)(38, 67, 75, 211)(39, 66, 74, 210)(40, 65, 73, 209)(41, 154, 42, 153)(43, 156, 44, 155)(45, 90, 138, 182)(46, 89, 137, 181)(47, 91, 140, 183)(48, 92, 139, 184)(53, 100, 108, 252)(54, 99, 107, 251)(55, 98, 106, 249)(56, 97, 105, 250)(61, 247, 117, 223)(62, 248, 118, 224)(63, 245, 120, 221)(64, 246, 119, 222)(69, 102, 240, 254)(70, 101, 239, 253)(71, 103, 238, 256)(72, 104, 237, 255)(77, 95, 78, 96)(79, 94, 80, 93)(85, 146, 185, 233)(86, 145, 186, 234)(87, 147, 187, 236)(88, 148, 188, 235)(109, 112, 110, 111)(121, 204, 122, 203)(123, 202, 124, 201)(125, 128, 126, 127)(129, 197, 130, 198)(131, 200, 132, 199)(133, 225, 134, 226)(135, 227, 136, 228)(149, 152, 150, 151)(157, 216, 158, 215)(159, 214, 160, 213)(161, 163, 162, 164)(165, 167, 166, 168)(169, 189, 170, 190)(171, 191, 172, 192)(177, 193, 178, 194)(179, 195, 180, 196)(217, 220, 218, 219)(229, 232, 230, 231)
c: (3, 4)(5, 13)(6, 14)(7, 15)(8, 16)(9, 12)(10, 11)(17, 33)(18, 34)(19, 35)(20, 36)(21, 41)(22, 42)(23, 43)(24, 44)(25, 49)(26, 50)(27, 51)(28, 52)(29, 57)(30, 58)(31, 59)(32, 60)(37, 73)(38, 74)(39, 75)(40, 76)(45, 89)(46, 90)(47, 91)(48, 92)(53, 105)(54, 106)(55, 107)(56, 108)(61, 64)(62, 63)(65, 68)(66, 67)(69, 102)(70, 101)(71, 104)(72, 103)(77, 78)(81, 141)(82, 142)(83, 143)(84, 144)(85, 145)(86, 146)(87, 147)(88, 148)(93, 94)(97, 100)(98, 99)(109, 167)(110, 168)(111, 166)(112, 165)(113, 173)(114, 174)(115, 175)(116, 176)(117, 119)(118, 120)(121, 177)(122, 178)(123, 179)(124, 180)(125, 126)(131, 132)(133, 189)(134, 190)(135, 191)(136, 192)(137, 182)(138, 181)(139, 184)(140, 183)(149, 150)(153, 206)(154, 205)(155, 208)(156, 207)(157, 213)(158, 214)(159, 215)(160, 216)(161, 217)(162, 218)(163, 219)(164, 220)(169, 225)(170, 226)(171, 227)(172, 228)(185, 234)(186, 233)(187, 236)(188, 235)(193, 203)(194, 204)(195, 201)(196, 202)(197, 198)(209, 212)(210, 211)(221, 248)(222, 247)(223, 246)(224, 245)(231, 232)(237, 256)(238, 255)(239, 253)(240, 254)(241, 244)(242, 243)(249, 251)(250, 252)
d: (1, 2, 230, 229)(3, 58, 232, 57)(4, 30, 231, 29)(5, 242, 114, 11)(6, 9, 113, 244)(7, 117, 115, 63)(8, 61, 116, 120)(10, 13, 243, 174)(12, 173, 241, 14)(15, 119, 175, 62)(16, 64, 176, 118)(17, 23, 191, 201)(18, 196, 192, 44)(19, 123, 189, 207)(20, 155, 190, 180)(21, 50, 203, 172)(22, 227, 204, 25)(24, 34, 202, 136)(26, 193, 228, 41)(27, 122, 225, 206)(28, 154, 226, 177)(31, 59)(33, 43, 135, 195)(35, 179, 133, 156)(36, 208, 134, 124)(37, 188, 39, 147)(38, 88, 40, 236)(42, 171, 194, 49)(45, 252, 182, 98)(46, 100, 181, 249)(47, 68, 184, 210)(48, 212, 183, 66)(51, 178, 169, 153)(52, 205, 170, 121)(53, 185, 55, 146)(54, 85, 56, 233)(65, 139, 211, 91)(67, 92, 209, 140)(69, 81, 253, 83)(70, 144, 254, 142)(71, 222, 256, 224)(72, 246, 255, 248)(73, 235, 75, 87)(74, 148, 76, 187)(77, 160, 94, 159)(78, 216, 93, 215)(79, 128, 95, 151)(80, 152, 96, 127)(82, 101, 84, 240)(86, 105, 234, 107)(89, 250, 137, 99)(90, 97, 138, 251)(102, 141, 239, 143)(103, 223, 238, 221)(104, 247, 237, 245)(106, 145, 108, 186)(109, 157)(110, 214)(111, 125, 112, 149)(126, 165, 150, 166)(129, 199, 200, 130)(131, 161, 197, 162)(132, 217, 198, 218)(158, 168)(164, 220)(167, 213)
e: (1, 5, 17, 37, 77, 137, 193, 241, 230, 174, 135, 75, 93, 45, 21, 9)(2, 6, 18, 38, 78, 138, 194, 242, 229, 173, 136, 76, 94, 46, 22, 10)(3, 7, 19, 39, 79, 139, 195, 243, 231, 175, 133, 73, 95, 47, 23, 11)(4, 8, 20, 40, 80, 140, 196, 244, 232, 176, 134, 74, 96, 48, 24, 12)(13, 25, 53, 109, 90, 154, 118, 58, 114, 171, 107, 167, 181, 121, 61, 29)(14, 26, 54, 110, 89, 153, 117, 57, 113, 172, 108, 168, 182, 122, 62, 30)(15, 27, 55, 111, 92, 156, 119, 59, 115, 169, 105, 165, 183, 123, 63, 31)(16, 28, 56, 112, 91, 155, 120, 60, 116, 170, 106, 166, 184, 124, 64, 32)(33, 65, 125, 185, 204, 144, 200, 239, 191, 210, 150, 86, 42, 82, 129, 69)(34, 66, 126, 186, 203, 143, 199, 240, 192, 209, 149, 85, 41, 81, 130, 70)(35, 67, 127, 187, 202, 142, 198, 237, 189, 212, 152, 88, 44, 84, 131, 71)(36, 68, 128, 188, 201, 141, 197, 238, 190, 211, 151, 87, 43, 83, 132, 72)(49, 97, 157, 146, 206, 246, 218, 254, 227, 249, 213, 234, 178, 221, 161, 101)(50, 98, 158, 145, 205, 245, 217, 253, 228, 250, 214, 233, 177, 222, 162, 102)(51, 99, 159, 148, 208, 248, 219, 255, 225, 252, 216, 236, 180, 223, 163, 103)(52, 100, 160, 147, 207, 247, 220, 256, 226, 251, 215, 235, 179, 224, 164, 104)

(III) Last is Groups&Graphs. Copy everything between (not including) the lines of asterisks into a plain text file and save it as "graph.txt". Then launch G&G (Groups&Graphs) and select Read Text from the File menu.

**************

&Graph
C4[ 256, 100 ]
256
-1 12 13 5 9
-2 242 243 113 173
-3 144 13 173 141
-4 113 81 5 84
-5 1 25 4 17
-6 231 136 172 229
-7 200 25 136 197
-8 17 172 130 131
-9 1 24 29 21
-10 57 194 195 229
-11 201 204 29 229
-12 44 1 57 41
-13 33 1 3 49
-14 232 192 228 229
-15 198 200 49 192
-16 33 132 228 130
-17 37 5 8 53
-18 173 108 76 175
-19 238 239 53 76
-20 37 70 71 108
-21 45 48 61 9
-22 242 138 117 139
-23 242 188 61 185
-24 88 117 85 9
-25 5 7 97 65
-26 176 209 173 250
-27 209 237 239 97
-28 70 72 250 65
-29 11 101 69 9
-30 242 253 244 240
-31 144 101 240 142
-32 253 69 81 83
-33 13 16 105 73
-34 56 113 115 40
-35 253 255 105 40
-36 56 101 104 73
-37 77 17 20 109
-38 133 168 136 94
-39 190 191 94 109
-40 77 34 35 168
-41 12 89 92 64
-42 243 181 184 119
-43 243 234 235 64
-44 12 145 148 119
-45 121 93 96 21
-46 78 79 194 153
-47 121 125 128 194
-48 149 152 21 153
-49 100 13 68 15
-50 113 212 116 252
-51 253 100 212 256
-52 68 101 103 252
-53 157 125 17 19
-54 134 136 214 149
-55 189 157 191 149
-56 34 36 125 214
-57 12 102 70 10
-58 243 254 239 241
-59 254 70 82 84
-60 143 102 239 141
-61 23 161 129 21
-62 199 194 217 196
-63 199 202 204 161
-64 41 129 217 43
-65 165 25 28 95
-66 112 80 169 172
-67 165 80 225 228
-68 112 49 95 52
-69 133 169 29 32
-70 57 59 28 20
-71 169 217 20 219
-72 133 28 161 164
-73 33 78 167 36
-74 110 189 93 192
-75 134 167 135 93
-76 110 78 18 19
-77 90 37 137 40
-78 46 182 73 76
-79 210 46 90 211
-80 66 67 137 182
-81 156 4 32 153
-82 121 231 124 59
-83 231 178 179 32
-84 4 59 205 208
-85 110 111 24 124
-86 166 156 167 195
-87 124 213 215 195
-88 24 156 158 159
-89 177 94 41 96
-90 77 79 204 206
-91 177 126 204 128
-92 150 41 206 152
-93 45 181 74 75
-94 89 38 39 138
-95 68 181 138 65
-96 209 45 89 212
-97 25 27 160 128
-98 170 172 216 152
-99 160 226 228 152
-100 49 51 128 216
-101 36 29 52 31
-102 57 189 60 225
-103 220 189 52 217
-104 36 225 161 163
-105 33 35 213 126
-106 190 158 192 150
-107 133 135 213 150
-108 158 126 18 20
-109 146 37 39 185
-110 233 74 85 76
-111 210 146 212 85
-112 66 68 233 185
-113 34 2 4 50
-114 231 191 227 230
-115 34 227 129 131
-116 199 191 50 197
-117 22 24 162 130
-118 200 193 195 218
-119 44 42 130 218
-120 200 201 203 162
-121 45 221 47 82
-122 143 245 138 140
-123 143 187 221 185
-124 245 82 85 87
-125 56 47 183 53
-126 91 105 140 108
-127 183 140 250 252
-128 100 47 91 97
-129 115 61 64 175
-130 16 117 8 119
-131 245 115 248 8
-132 221 224 16 175
-133 69 38 72 107
-134 237 75 240 54
-135 176 107 75 174
-136 38 6 7 54
-137 77 154 80 193
-138 22 122 94 95
-139 22 154 150 151
-140 122 126 127 193
-141 3 60 206 207
-142 177 232 180 31
-143 122 232 123 60
-144 154 155 3 31
-145 44 166 168 180
-146 111 201 207 109
-147 157 201 180 159
-148 44 214 215 207
-149 55 48 184 54
-150 92 106 139 107
-151 139 249 184 251
-152 99 48 92 98
-153 46 222 48 81
-154 144 246 137 139
-155 144 188 222 186
-156 88 81 246 86
-157 55 188 147 53
-158 88 236 106 108
-159 88 147 250 251
-160 99 188 236 97
-161 104 61 72 63
-162 255 237 117 120
-163 245 104 247 237
-164 221 255 223 72
-165 67 234 65 186
-166 209 145 211 86
-167 234 73 75 86
-168 145 38 40 186
-169 66 69 71 249
-170 210 238 240 98
-171 210 249 174 175
-172 66 6 8 98
-173 2 3 26 18
-174 232 135 171 230
-175 132 171 18 129
-176 198 199 135 26
-177 89 91 248 142
-178 224 181 83 183
-179 234 236 83 248
-180 145 147 224 142
-181 178 93 95 42
-182 78 80 203 205
-183 178 125 203 127
-184 149 205 151 42
-185 23 112 123 109
-186 165 155 168 196
-187 123 214 216 196
-188 23 155 157 160
-189 55 102 103 74
-190 254 256 39 106
-191 55 114 39 116
-192 14 15 106 74
-193 137 118 140 241
-194 46 47 62 10
-195 118 86 10 87
-196 187 62 186 241
-197 246 247 116 7
-198 176 222 223 15
-199 176 116 62 63
-200 15 7 118 120
-201 11 146 147 120
-202 233 244 236 63
-203 244 182 183 120
-204 11 90 91 63
-205 223 182 84 184
-206 90 92 247 141
-207 146 223 148 141
-208 233 235 247 84
-209 166 26 27 96
-210 111 79 170 171
-211 166 79 226 227
-212 111 50 51 96
-213 235 105 107 87
-214 187 56 148 54
-215 148 249 87 252
-216 187 100 235 98
-217 103 71 62 64
-218 256 238 118 119
-219 222 256 224 71
-220 103 246 248 238
-221 121 132 123 164
-222 198 155 153 219
-223 198 205 207 164
-224 132 178 180 219
-225 67 102 104 251
-226 99 254 211 255
-227 211 114 115 251
-228 99 67 14 16
-229 11 14 6 10
-230 244 114 174 241
-231 114 82 6 83
-232 143 14 174 142
-233 110 112 202 208
-234 165 167 179 43
-235 213 216 43 208
-236 179 158 202 160
-237 134 27 162 163
-238 220 170 19 218
-239 58 27 60 19
-240 134 170 30 31
-241 58 193 196 230
-242 22 23 2 30
-243 2 58 42 43
-244 202 203 30 230
-245 122 124 163 131
-246 154 220 156 197
-247 206 163 197 208
-248 220 177 179 131
-249 169 171 215 151
-250 26 159 28 127
-251 159 225 227 151
-252 50 127 215 52
-253 35 51 30 32
-254 58 190 59 226
-255 35 226 162 164
-256 190 51 218 219
0

**************