C4graphGraph forms for C4 [ 256, 101 ] = UG(ATD[256,211])

[Home] [Table] [Glossary] [Families]

On this page are computer-accessible forms for the graph C4[ 256, 101 ] = UG(ATD[256,211]).

(I) Following is a form readable by MAGMA:

g:=Graph<256|{ {40, 42}, {240, 242}, {60, 63}, {92, 95}, {140, 143}, {1, 5}, {186, 190}, {120, 124}, {112, 117}, {49, 55}, {227, 229}, {105, 111}, {1, 9}, {150, 159}, {150, 156}, {129, 138}, {1, 13}, {211, 223}, {199, 203}, {16, 29}, {241, 252}, {166, 171}, {98, 111}, {147, 158}, {21, 27}, {83, 93}, {148, 155}, {245, 250}, {9, 25}, {168, 184}, {203, 218}, {205, 220}, {135, 149}, {42, 57}, {224, 243}, {174, 189}, {106, 121}, {1, 21}, {5, 17}, {40, 62}, {207, 216}, {5, 29}, {14, 20}, {72, 82}, {97, 123}, {136, 147}, {238, 245}, {201, 210}, {78, 82}, {168, 180}, {162, 190}, {32, 61}, {236, 241}, {65, 92}, {234, 245}, {157, 191}, {194, 225}, {94, 122}, {208, 244}, {130, 166}, {21, 48}, {11, 45}, {220, 250}, {81, 119}, {72, 110}, {138, 172}, {199, 224}, {216, 255}, {5, 45}, {216, 240}, {13, 37}, {9, 33}, {13, 36}, {24, 49}, {8, 34}, {221, 247}, {17, 61}, {220, 240}, {25, 53}, {151, 187}, {64, 109}, {198, 235}, {6, 40}, {91, 116}, {212, 251}, {147, 188}, {82, 98}, {8, 57}, {30, 44}, {145, 163}, {23, 36}, {93, 110}, {13, 57}, {77, 123}, {218, 236}, {144, 167}, {9, 49}, {17, 41}, {139, 179}, {151, 175}, {89, 99}, {205, 247}, {201, 243}, {133, 191}, {219, 224}, {71, 123}, {216, 228}, {203, 247}, {139, 183}, {152, 164}, {84, 105}, {147, 173}, {210, 236}, {16, 47}, {198, 249}, {80, 111}, {187, 251}, {39, 102}, {148, 213}, {152, 219}, {17, 85}, {184, 252}, {61, 121}, {48, 116}, {41, 109}, {33, 101}, {25, 93}, {52, 113}, {161, 228}, {4, 66}, {172, 234}, {131, 203}, {191, 247}, {46, 103}, {189, 244}, {54, 124}, {32, 107}, {137, 194}, {146, 217}, {21, 89}, {179, 255}, {57, 117}, {37, 105}, {48, 125}, {2, 76}, {160, 238}, {139, 197}, {152, 215}, {167, 232}, {187, 235}, {30, 76}, {29, 78}, {188, 239}, {176, 227}, {163, 240}, {50, 97}, {158, 202}, {12, 89}, {60, 105}, {133, 208}, {154, 207}, {3, 85}, {178, 228}, {56, 110}, {42, 124}, {36, 114}, {172, 251}, {183, 224}, {25, 65}, {29, 69}, {18, 72}, {60, 102}, {20, 78}, {154, 192}, {130, 222}, {163, 254}, {182, 235}, {18, 76}, {38, 120}, {140, 211}, {176, 239}, {39, 71}, {176, 208}, {150, 246}, {4, 101}, {46, 76}, {30, 125}, {170, 201}, {156, 255}, {19, 119}, {165, 193}, {159, 251}, {53, 81}, {33, 68}, {136, 237}, {148, 242}, {185, 223}, {133, 226}, {189, 218}, {146, 245}, {33, 73}, {190, 214}, {37, 77}, {30, 119}, {52, 93}, {131, 234}, {152, 241}, {27, 113}, {62, 84}, {58, 80}, {140, 231}, {19, 127}, {39, 75}, {59, 86}, {144, 254}, {168, 198}, {45, 66}, {162, 205}, {160, 207}, {53, 90}, {3, 114}, {58, 73}, {185, 202}, {167, 212}, {144, 227}, {158, 234}, {170, 222}, {45, 88}, {186, 207}, {155, 238}, {18, 101}, {51, 68}, {34, 85}, {32, 87}, {31, 104}, {41, 81}, {129, 249}, {27, 97}, {154, 225}, {182, 202}, {58, 71}, {160, 221}, {20, 106}, {40, 86}, {103, 230}, {2, 128}, {74, 200}, {70, 196}, {44, 174}, {6, 132}, {14, 141}, {87, 212}, {38, 165}, {35, 167}, {108, 232}, {114, 246}, {122, 254}, {91, 222}, {94, 219}, {32, 166}, {116, 242}, {42, 162}, {75, 195}, {77, 196}, {7, 141}, {14, 132}, {22, 157}, {91, 208}, {67, 200}, {50, 190}, {4, 137}, {28, 145}, {110, 227}, {112, 253}, {10, 132}, {63, 177}, {55, 185}, {27, 149}, {68, 212}, {86, 199}, {118, 231}, {22, 132}, {82, 192}, {99, 241}, {59, 168}, {90, 201}, {70, 213}, {98, 246}, {121, 237}, {31, 138}, {56, 173}, {48, 165}, {11, 157}, {55, 161}, {126, 232}, {73, 209}, {122, 226}, {88, 193}, {89, 192}, {79, 213}, {84, 206}, {44, 177}, {63, 162}, {20, 138}, {67, 220}, {112, 239}, {49, 145}, {92, 252}, {115, 211}, {118, 214}, {15, 172}, {70, 229}, {52, 151}, {35, 128}, {16, 179}, {109, 206}, {24, 188}, {41, 141}, {12, 169}, {103, 194}, {3, 165}, {64, 230}, {47, 137}, {38, 128}, {16, 182}, {94, 248}, {62, 153}, {79, 232}, {36, 140}, {54, 158}, {114, 219}, {44, 134}, {37, 137}, {74, 230}, {53, 153}, {95, 243}, {24, 181}, {108, 193}, {83, 253}, {102, 200}, {6, 169}, {126, 209}, {54, 134}, {7, 182}, {11, 186}, {43, 153}, {83, 225}, {90, 233}, {113, 197}, {121, 205}, {19, 166}, {99, 214}, {91, 237}, {60, 139}, {67, 244}, {96, 215}, {98, 218}, {127, 198}, {8, 178}, {84, 238}, {66, 248}, {58, 128}, {61, 134}, {104, 211}, {120, 195}, {107, 215}, {22, 171}, {88, 229}, {126, 195}, {11, 181}, {7, 199}, {69, 133}, {65, 129}, {79, 142}, {6, 196}, {10, 200}, {104, 170}, {81, 146}, {108, 175}, {116, 183}, {26, 222}, {74, 142}, {123, 191}, {77, 136}, {85, 144}, {83, 150}, {97, 164}, {23, 209}, {72, 142}, {59, 253}, {47, 233}, {39, 225}, {117, 179}, {75, 131}, {125, 181}, {92, 149}, {125, 180}, {51, 249}, {100, 174}, {14, 197}, {56, 243}, {15, 196}, {43, 230}, {2, 204}, {90, 148}, {54, 248}, {23, 217}, {106, 164}, {35, 236}, {64, 143}, {115, 188}, {103, 183}, {109, 189}, {10, 217}, {47, 252}, {115, 160}, {26, 206}, {86, 130}, {78, 155}, {118, 163}, {126, 171}, {26, 204}, {115, 171}, {35, 250}, {50, 235}, {95, 134}, {96, 185}, {104, 177}, {8, 210}, {26, 192}, {38, 253}, {117, 174}, {51, 239}, {70, 154}, {12, 209}, {66, 159}, {24, 197}, {15, 210}, {3, 221}, {59, 228}, {100, 187}, {107, 180}, {22, 246}, {88, 184}, {31, 255}, {56, 217}, {75, 170}, {7, 229}, {55, 213}, {112, 146}, {100, 135}, {46, 202}, {80, 180}, {108, 136}, {23, 242}, {87, 178}, {28, 249}, {106, 143}, {71, 161}, {102, 129}, {15, 231}, {69, 173}, {65, 169}, {63, 215}, {43, 195}, {101, 143}, {2, 233}, {79, 164}, {52, 223}, {119, 156}, {19, 254}, {124, 145}, {34, 204}, {64, 175}, {122, 149}, {18, 226}, {95, 175}, {107, 155}, {28, 237}, {127, 142}, {10, 248}, {46, 221}, {113, 130}, {28, 233}, {69, 178}, {12, 244}, {73, 177}, {111, 151}, {96, 153}, {100, 157}, {67, 184}, {118, 141}, {127, 131}, {31, 226}, {80, 173}, {51, 206}, {43, 214}, {34, 223}, {4, 250}, {87, 169}, {68, 186}, {50, 204}, {62, 193}, {74, 181}, {94, 161}, {96, 159}, {99, 156}, {120, 135}, {135, 256}, {176, 256}, {194, 256}, {231, 256} }>;

(II) A more general form is to represent the graph as the orbit of {40, 42} under the group generated by the following permutations:

a: (1, 5, 17, 41, 81, 53, 25, 9)(2, 6, 18, 42, 82, 54, 26, 10)(3, 7, 19, 43, 83, 55, 27, 11)(4, 8, 20, 44, 84, 56, 28, 12)(13, 29, 61, 109, 146, 90, 65, 33)(14, 30, 62, 110, 145, 89, 66, 34)(15, 31, 63, 111, 147, 91, 67, 35)(16, 32, 64, 112, 148, 92, 68, 36)(21, 45, 85, 141, 119, 153, 93, 49)(22, 46, 86, 142, 120, 154, 94, 50)(23, 47, 87, 143, 117, 155, 95, 51)(24, 48, 88, 144, 118, 156, 96, 52)(37, 69, 121, 189, 245, 201, 129, 73)(38, 70, 122, 190, 246, 202, 130, 74)(39, 71, 123, 191, 247, 203, 131, 75)(40, 72, 124, 192, 248, 204, 132, 76)(57, 78, 134, 206, 217, 233, 169, 101)(58, 77, 133, 205, 218, 234, 170, 102)(59, 79, 135, 207, 219, 235, 171, 103)(60, 80, 136, 208, 220, 236, 172, 104)(97, 157, 221, 199, 127, 195, 225, 161)(98, 158, 222, 200, 128, 196, 226, 162)(99, 159, 223, 197, 125, 193, 227, 163)(100, 160, 224, 198, 126, 194, 228, 164)(105, 173, 237, 244, 250, 210, 138, 177)(106, 174, 238, 243, 249, 209, 137, 178)(107, 175, 239, 242, 252, 212, 140, 179)(108, 176, 240, 241, 251, 211, 139, 180)(113, 181, 165, 229, 254, 214, 150, 185)(114, 182, 166, 230, 253, 213, 149, 186)(115, 183, 168, 232, 256, 216, 152, 187)(116, 184, 167, 231, 255, 215, 151, 188)
b: (3, 4)(5, 13)(6, 14)(7, 15)(8, 16)(9, 21)(10, 22)(11, 23)(12, 24)(17, 37)(18, 38)(19, 39)(20, 40)(25, 27)(26, 28)(29, 57)(30, 58)(31, 59)(32, 60)(33, 48)(34, 47)(35, 46)(36, 45)(41, 77)(42, 78)(43, 79)(44, 80)(49, 89)(50, 90)(51, 91)(52, 92)(53, 97)(54, 98)(55, 99)(56, 100)(61, 105)(62, 106)(63, 107)(64, 108)(65, 113)(66, 114)(67, 115)(68, 116)(69, 117)(70, 118)(71, 119)(72, 120)(73, 125)(74, 126)(75, 127)(76, 128)(81, 123)(82, 124)(83, 122)(84, 121)(85, 137)(86, 138)(87, 139)(88, 140)(93, 149)(94, 150)(95, 151)(96, 152)(101, 165)(102, 166)(103, 167)(104, 168)(109, 136)(110, 135)(111, 134)(112, 133)(129, 130)(141, 196)(142, 195)(143, 193)(144, 194)(145, 192)(146, 191)(147, 189)(148, 190)(153, 164)(154, 163)(155, 162)(156, 161)(157, 217)(158, 218)(159, 219)(160, 220)(169, 197)(170, 198)(171, 200)(172, 199)(173, 174)(177, 180)(178, 179)(181, 209)(182, 210)(183, 212)(184, 211)(185, 241)(186, 242)(187, 243)(188, 244)(201, 235)(202, 236)(203, 234)(204, 233)(205, 238)(206, 237)(207, 240)(208, 239)(213, 214)(221, 250)(222, 249)(223, 252)(224, 251)(225, 254)(226, 253)(227, 256)(228, 255)(229, 231)(230, 232)(245, 247)(246, 248)
c: (2, 132)(3, 209, 4, 181)(5, 21, 13, 9)(6, 233, 14, 204)(7, 222, 15, 249)(8, 65, 16, 113)(10, 76, 22, 128)(11, 165, 23, 101)(12, 137, 24, 85)(17, 89, 37, 49)(18, 157, 38, 217)(19, 218, 39, 158)(20, 50, 40, 90)(25, 29, 27, 57)(26, 196, 28, 141)(30, 246, 58, 248)(31, 187, 59, 243)(32, 241, 60, 185)(33, 45, 48, 36)(34, 169, 47, 197)(35, 200, 46, 171)(41, 192, 77, 145)(42, 53, 78, 97)(43, 238, 79, 205)(44, 150, 80, 94)(51, 229, 91, 231)(52, 178, 92, 179)(54, 119, 98, 71)(55, 61, 99, 105)(56, 226, 100, 253)(62, 148, 106, 190)(63, 96, 107, 152)(64, 207, 108, 240)(66, 125, 114, 73)(67, 103, 115, 167)(68, 88, 116, 140)(69, 149, 117, 93)(70, 237, 118, 206)(72, 191, 120, 146)(74, 221, 126, 250)(75, 234, 127, 203)(81, 82, 123, 124)(83, 173, 122, 174)(84, 213, 121, 214)(86, 201, 138, 235)(87, 252, 139, 223)(95, 255, 151, 228)(102, 202, 166, 236)(104, 251, 168, 224)(109, 154, 136, 163)(110, 133, 135, 112)(111, 161, 134, 156)(129, 182, 130, 210)(142, 247, 195, 245)(143, 186, 193, 242)(144, 244, 194, 188)(147, 254, 189, 225)(153, 155, 164, 162)(159, 180, 219, 177)(160, 232, 220, 230)(170, 172, 198, 199)(175, 216)(183, 211, 212, 184)(208, 256, 239, 227)
d: (1, 2)(3, 4)(5, 76)(6, 75)(7, 74)(8, 73)(9, 204)(10, 203)(11, 202)(12, 201)(13, 128)(14, 127)(15, 126)(16, 125)(17, 18)(19, 20)(21, 233)(22, 234)(23, 236)(24, 235)(25, 26)(27, 28)(29, 30)(31, 32)(33, 34)(35, 36)(37, 38)(39, 40)(41, 72)(42, 71)(43, 70)(44, 69)(45, 46)(47, 48)(49, 50)(51, 52)(53, 192)(54, 191)(55, 190)(56, 189)(57, 58)(59, 60)(61, 226)(62, 225)(63, 228)(64, 227)(65, 222)(66, 221)(67, 224)(68, 223)(77, 120)(78, 119)(79, 118)(80, 117)(81, 82)(83, 84)(85, 101)(86, 102)(87, 104)(88, 103)(89, 90)(91, 92)(93, 206)(94, 205)(95, 208)(96, 207)(97, 145)(98, 146)(99, 148)(100, 147)(105, 253)(106, 254)(107, 255)(108, 256)(109, 110)(111, 112)(113, 249)(114, 250)(115, 251)(116, 252)(121, 122)(123, 124)(129, 130)(131, 132)(133, 134)(135, 136)(137, 165)(138, 166)(139, 168)(140, 167)(141, 142)(143, 144)(149, 237)(150, 238)(151, 239)(152, 240)(153, 154)(155, 156)(157, 158)(159, 160)(161, 162)(163, 164)(169, 170)(171, 172)(173, 174)(175, 176)(177, 178)(179, 180)(181, 182)(183, 184)(185, 186)(187, 188)(193, 194)(195, 196)(197, 198)(199, 200)(209, 210)(211, 212)(213, 214)(215, 216)(217, 218)(219, 220)(229, 230)(231, 232)(241, 242)(243, 244)(245, 246)(247, 248)
e: (1, 3)(2, 4)(5, 85)(6, 86)(7, 87)(8, 88)(9, 221)(10, 222)(11, 223)(12, 224)(13, 165)(14, 166)(15, 168)(16, 167)(19, 20)(21, 114)(22, 113)(23, 116)(24, 115)(25, 247)(26, 248)(27, 246)(28, 245)(29, 144)(30, 143)(31, 142)(32, 141)(33, 46)(34, 45)(35, 47)(36, 48)(37, 38)(41, 61)(42, 62)(43, 63)(44, 64)(49, 160)(50, 159)(51, 158)(52, 157)(53, 205)(54, 206)(55, 207)(56, 208)(57, 193)(58, 194)(59, 196)(60, 195)(65, 203)(66, 204)(67, 201)(68, 202)(69, 227)(70, 228)(71, 225)(72, 226)(73, 103)(74, 104)(75, 102)(76, 101)(77, 253)(78, 254)(79, 255)(80, 256)(81, 121)(82, 122)(83, 123)(84, 124)(89, 219)(90, 220)(91, 217)(92, 218)(93, 191)(94, 192)(95, 189)(96, 190)(97, 150)(98, 149)(99, 152)(100, 151)(105, 120)(106, 119)(107, 118)(108, 117)(109, 134)(110, 133)(111, 135)(112, 136)(125, 140)(126, 139)(127, 138)(128, 137)(129, 131)(130, 132)(145, 238)(146, 237)(147, 239)(148, 240)(153, 162)(154, 161)(155, 163)(156, 164)(169, 199)(170, 200)(171, 197)(172, 198)(173, 176)(174, 175)(177, 230)(178, 229)(179, 232)(180, 231)(181, 211)(182, 212)(183, 209)(184, 210)(185, 186)(213, 216)(214, 215)(233, 250)(234, 249)(235, 251)(236, 252)(243, 244)

(III) Last is Groups&Graphs. Copy everything between (not including) the lines of asterisks into a plain text file and save it as "graph.txt". Then launch G&G (Groups&Graphs) and select Read Text from the File menu.

**************

&Graph
C4[ 256, 101 ]
256
-1 13 5 9 21
-2 233 204 128 76
-3 165 221 114 85
-4 66 101 137 250
-5 1 45 17 29
-6 132 169 40 196
-7 199 182 141 229
-8 34 210 57 178
-9 33 1 25 49
-10 132 200 248 217
-11 45 157 181 186
-12 209 89 244 169
-13 1 57 36 37
-14 132 20 141 197
-15 231 210 172 196
-16 47 179 182 29
-17 5 61 41 85
-18 101 72 226 76
-19 166 254 127 119
-20 78 14 138 106
-21 1 89 48 27
-22 132 157 246 171
-23 209 242 36 217
-24 188 49 181 197
-25 93 9 53 65
-26 222 192 204 206
-27 113 149 97 21
-28 145 233 237 249
-29 78 69 5 16
-30 44 125 119 76
-31 255 104 138 226
-32 166 61 107 87
-33 68 101 73 9
-34 223 204 8 85
-35 167 236 128 250
-36 23 13 114 140
-37 77 13 137 105
-38 165 253 128 120
-39 102 71 225 75
-40 6 62 42 86
-41 81 17 141 109
-42 57 124 40 162
-43 214 195 153 230
-44 177 134 30 174
-45 11 66 88 5
-46 221 103 202 76
-47 233 16 137 252
-48 165 125 116 21
-49 55 24 145 9
-50 190 235 204 97
-51 68 249 206 239
-52 113 223 93 151
-53 90 25 81 153
-54 134 124 158 248
-55 213 49 161 185
-56 110 243 173 217
-57 13 117 8 42
-58 80 71 73 128
-59 253 168 228 86
-60 102 105 139 63
-61 121 134 17 32
-62 193 40 84 153
-63 177 60 215 162
-64 143 109 175 230
-65 25 92 169 129
-66 45 4 159 248
-67 220 200 244 184
-68 33 212 51 186
-69 133 178 29 173
-70 154 213 196 229
-71 123 58 39 161
-72 110 82 18 142
-73 33 209 177 58
-74 200 181 142 230
-75 170 39 195 131
-76 2 46 18 30
-77 123 37 136 196
-78 155 82 29 20
-79 232 213 142 164
-80 111 58 180 173
-81 146 41 53 119
-82 78 192 72 98
-83 253 93 225 150
-84 105 62 238 206
-85 34 144 3 17
-86 199 59 40 130
-87 178 212 169 32
-88 45 193 184 229
-89 99 12 192 21
-90 233 201 148 53
-91 222 116 237 208
-92 149 95 65 252
-93 110 25 83 52
-94 122 248 161 219
-95 243 134 92 175
-96 159 215 185 153
-97 123 27 50 164
-98 111 246 82 218
-99 89 156 214 241
-100 187 135 157 174
-101 33 143 4 18
-102 200 60 39 129
-103 46 183 194 230
-104 177 211 170 31
-105 111 37 60 84
-106 121 143 20 164
-107 155 180 215 32
-108 232 136 193 175
-109 189 41 206 64
-110 56 93 72 227
-111 80 105 151 98
-112 253 146 117 239
-113 27 52 130 197
-114 3 36 246 219
-115 188 211 160 171
-116 242 91 48 183
-117 57 112 179 174
-118 231 214 141 163
-119 156 81 19 30
-120 124 135 38 195
-121 61 237 106 205
-122 254 94 149 226
-123 77 191 71 97
-124 145 42 54 120
-125 48 180 181 30
-126 209 232 171 195
-127 198 19 131 142
-128 2 35 58 38
-129 102 138 249 65
-130 166 222 113 86
-131 234 203 127 75
-132 22 14 6 10
-133 69 191 226 208
-134 44 61 95 54
-135 100 256 149 120
-136 77 147 237 108
-137 47 4 37 194
-138 172 129 20 31
-139 179 60 183 197
-140 143 231 211 36
-141 14 7 41 118
-142 79 72 127 74
-143 101 106 140 64
-144 254 167 227 85
-145 124 49 28 163
-146 112 245 81 217
-147 188 136 158 173
-148 242 155 90 213
-149 122 135 92 27
-150 156 246 159 83
-151 187 111 52 175
-152 215 164 219 241
-153 62 96 53 43
-154 70 192 225 207
-155 78 148 238 107
-156 99 255 150 119
-157 11 22 100 191
-158 234 147 202 54
-159 66 150 96 251
-160 221 115 238 207
-161 55 71 94 228
-162 190 205 63 42
-163 254 145 118 240
-164 79 106 97 152
-165 3 48 38 193
-166 171 19 130 32
-167 144 232 35 212
-168 198 59 180 184
-169 12 6 65 87
-170 222 201 104 75
-171 22 166 115 126
-172 234 15 138 251
-173 56 69 80 147
-174 44 100 189 117
-175 95 151 64 108
-176 256 227 239 208
-177 44 104 73 63
-178 69 8 228 87
-179 255 16 117 139
-180 80 168 125 107
-181 11 24 125 74
-182 202 235 16 7
-183 103 224 116 139
-184 88 67 168 252
-185 55 223 202 96
-186 11 68 190 207
-187 100 235 151 251
-188 24 147 115 239
-189 244 174 218 109
-190 214 50 162 186
-191 133 123 157 247
-192 154 89 26 82
-193 88 165 62 108
-194 256 103 137 225
-195 126 75 43 120
-196 77 15 70 6
-197 24 14 113 139
-198 168 235 127 249
-199 224 203 7 86
-200 67 102 74 10
-201 210 243 90 170
-202 46 158 182 185
-203 199 247 218 131
-204 34 2 26 50
-205 121 220 247 162
-206 26 51 84 109
-207 154 160 216 186
-208 176 133 244 91
-209 12 23 126 73
-210 201 15 236 8
-211 223 104 115 140
-212 68 167 251 87
-213 55 79 70 148
-214 99 190 118 43
-215 63 96 107 152
-216 255 228 207 240
-217 23 56 146 10
-218 189 203 236 98
-219 114 224 94 152
-220 67 205 250 240
-221 46 3 247 160
-222 91 26 170 130
-223 34 211 52 185
-224 199 243 183 219
-225 154 39 83 194
-226 122 133 18 31
-227 110 176 144 229
-228 178 59 161 216
-229 88 70 7 227
-230 103 74 64 43
-231 256 15 118 140
-232 79 167 126 108
-233 2 90 47 28
-234 245 158 172 131
-235 187 198 50 182
-236 210 35 218 241
-237 121 91 136 28
-238 155 245 160 84
-239 176 188 112 51
-240 220 242 216 163
-241 99 236 152 252
-242 23 148 116 240
-243 56 201 224 95
-244 12 67 189 208
-245 146 234 238 250
-246 22 114 150 98
-247 221 191 203 205
-248 66 94 10 54
-249 198 28 51 129
-250 220 35 245 4
-251 187 212 159 172
-252 47 92 184 241
-253 112 59 38 83
-254 122 144 19 163
-255 156 179 216 31
-256 176 231 135 194
0

**************