[Home] [Table] [Glossary]
[Families]
On this page are computer-accessible forms for the graph C4[ 256, 104 ] =
PL(ATD[8,1]#ATD[16,2]).
(I) Following is a form readable by MAGMA:
g:=Graph<256|{ {128, 130}, {128, 199}, {128, 226}, {128, 255}, {12, 140}, {39,
167}, {78, 206}, {88, 216}, {61, 188}, {111, 238}, {100, 229}, {93, 220}, {71,
198}, {23, 149}, {84, 215}, {124, 255}, {17, 149}, {95, 219}, {32, 164}, {19,
150}, {75, 205}, {110, 232}, {16, 151}, {120, 255}, {118, 241}, {54, 177}, {120,
240}, {2, 139}, {48, 185}, {39, 174}, {19, 154}, {18, 155}, {14, 132}, {100,
238}, {63, 181}, {80, 218}, {49, 186}, {97, 234}, {51, 184}, {4, 136}, {106,
230}, {37, 169}, {82, 222}, {21, 152}, {111, 226}, {99, 238}, {51, 190}, {65,
204}, {20, 154}, {109, 227}, {52, 186}, {48, 190}, {76, 194}, {35, 172}, {77,
194}, {84, 219}, {88, 215}, {30, 142}, {118, 230}, {101, 245}, {58, 170}, {44,
188}, {36, 180}, {39, 182}, {96, 241}, {49, 160}, {87, 198}, {15, 157}, {89,
203}, {9, 154}, {101, 246}, {44, 191}, {37, 182}, {14, 157}, {69, 214}, {74,
217}, {2, 150}, {47, 187}, {28, 136}, {81, 197}, {8, 157}, {32, 181}, {20, 129},
{80, 197}, {49, 167}, {101, 243}, {1, 150}, {101, 242}, {50, 165}, {7, 144},
{64, 215}, {98, 250}, {14, 151}, {96, 249}, {70, 223}, {72, 209}, {45, 183},
{121, 227}, {103, 253}, {94, 196}, {92, 198}, {79, 213}, {86, 204}, {46, 181},
{114, 233}, {105, 242}, {53, 174}, {64, 219}, {82, 201}, {68, 216}, {126, 226},
{122, 230}, {121, 229}, {103, 251}, {13, 144}, {115, 238}, {26, 135}, {17, 140},
{83, 206}, {85, 200}, {8, 150}, {38, 184}, {18, 140}, {11, 149}, {55, 168},
{127, 224}, {119, 232}, {110, 241}, {57, 166}, {64, 223}, {69, 218}, {76, 211},
{22, 182}, {21, 180}, {127, 222}, {123, 218}, {36, 133}, {29, 188}, {7, 165},
{91, 249}, {35, 129}, {29, 191}, {18, 177}, {125, 222}, {43, 136}, {25, 186},
{85, 246}, {4, 160}, {117, 209}, {59, 159}, {49, 149}, {42, 142}, {1, 164},
{102, 195}, {100, 193}, {46, 139}, {6, 160}, {53, 147}, {39, 129}, {24, 190},
{12, 171}, {116, 211}, {55, 144}, {13, 170}, {62, 153}, {71, 224}, {87, 240},
{13, 165}, {113, 217}, {31, 183}, {88, 240}, {56, 145}, {121, 208}, {6, 172},
{122, 208}, {105, 195}, {31, 181}, {27, 177}, {15, 165}, {75, 225}, {37, 142},
{107, 192}, {60, 151}, {83, 248}, {19, 191}, {56, 148}, {55, 155}, {69, 232},
{1, 175}, {91, 245}, {41, 135}, {22, 185}, {120, 215}, {104, 199}, {100, 203},
{50, 157}, {23, 184}, {3, 179}, {40, 152}, {81, 225}, {6, 183}, {2, 176}, {123,
201}, {117, 199}, {116, 198}, {93, 239}, {77, 255}, {67, 240}, {125, 206}, {109,
222}, {108, 223}, {7, 179}, {125, 201}, {60, 136}, {84, 224}, {30, 171}, {75,
254}, {24, 174}, {123, 205}, {116, 194}, {95, 233}, {58, 140}, {66, 244}, {74,
252}, {81, 231}, {83, 229}, {8, 191}, {119, 192}, {23, 160}, {34, 154}, {121,
193}, {115, 203}, {104, 208}, {60, 132}, {36, 156}, {81, 233}, {43, 146}, {126,
199}, {104, 209}, {66, 251}, {78, 247}, {3, 185}, {92, 230}, {18, 168}, {64,
250}, {61, 134}, {79, 244}, {5, 185}, {94, 226}, {92, 224}, {54, 138}, {36,
152}, {12, 177}, {109, 208}, {98, 223}, {94, 227}, {68, 249}, {34, 156}, {117,
203}, {56, 134}, {47, 145}, {22, 169}, {24, 167}, {61, 130}, {12, 204}, {112,
176}, {75, 139}, {94, 159}, {16, 210}, {93, 159}, {23, 213}, {65, 131}, {89,
155}, {126, 189}, {86, 146}, {28, 217}, {34, 231}, {50, 244}, {105, 175}, {62,
248}, {26, 221}, {124, 187}, {108, 171}, {45, 234}, {42, 237}, {40, 239}, {29,
218}, {77, 138}, {85, 146}, {2, 202}, {106, 162}, {63, 247}, {3, 202}, {33,
232}, {31, 214}, {52, 254}, {102, 172}, {69, 143}, {1, 202}, {25, 210}, {60,
247}, {70, 141}, {17, 221}, {106, 166}, {45, 225}, {40, 228}, {24, 212}, {7,
202}, {110, 163}, {105, 164}, {96, 173}, {73, 132}, {83, 158}, {10, 196}, {124,
178}, {22, 216}, {67, 141}, {51, 252}, {114, 189}, {108, 163}, {98, 173}, {29,
205}, {118, 166}, {113, 161}, {107, 187}, {41, 249}, {82, 130}, {44, 253}, {102,
183}, {14, 220}, {59, 233}, {47, 253}, {30, 204}, {28, 207}, {122, 169}, {65,
146}, {8, 220}, {119, 163}, {59, 239}, {38, 242}, {16, 196}, {62, 234}, {82,
134}, {87, 131}, {35, 246}, {52, 225}, {47, 250}, {41, 252}, {11, 221}, {91,
141}, {37, 243}, {66, 148}, {44, 251}, {106, 189}, {99, 180}, {79, 152}, {10,
210}, {99, 187}, {53, 237}, {72, 144}, {16, 201}, {113, 168}, {107, 178}, {90,
131}, {27, 193}, {112, 170}, {57, 227}, {78, 148}, {15, 212}, {111, 180}, {93,
134}, {90, 129}, {42, 241}, {33, 250}, {32, 251}, {27, 192}, {62, 229}, {79,
148}, {84, 143}, {33, 253}, {126, 162}, {59, 231}, {41, 245}, {9, 212}, {35,
254}, {70, 155}, {13, 211}, {115, 173}, {113, 175}, {17, 207}, {89, 135}, {76,
147}, {78, 145}, {80, 143}, {10, 235}, {108, 141}, {48, 209}, {34, 195}, {67,
161}, {103, 133}, {95, 189}, {74, 168}, {76, 174}, {43, 200}, {125, 158}, {95,
188}, {46, 205}, {73, 170}, {43, 207}, {97, 133}, {56, 220}, {71, 163}, {87,
179}, {9, 236}, {38, 195}, {26, 252}, {52, 210}, {46, 200}, {61, 219}, {66,
164}, {68, 162}, {51, 212}, {109, 138}, {28, 244}, {97, 137}, {53, 221}, {48,
216}, {45, 197}, {32, 200}, {5, 236}, {122, 147}, {119, 158}, {58, 211}, {63,
214}, {68, 173}, {20, 254}, {90, 176}, {15, 228}, {98, 137}, {89, 178}, {50,
217}, {42, 193}, {71, 171}, {123, 151}, {90, 182}, {6, 235}, {30, 243}, {21,
248}, {9, 228}, {73, 167}, {96, 142}, {3, 236}, {118, 153}, {4, 235}, {5, 245},
{127, 143}, {111, 159}, {67, 179}, {63, 206}, {65, 176}, {10, 248}, {117, 135},
{99, 145}, {74, 184}, {4, 247}, {38, 213}, {73, 186}, {19, 231}, {112, 132},
{54, 194}, {70, 178}, {31, 234}, {127, 138}, {107, 158}, {92, 169}, {58, 207},
{25, 239}, {54, 192}, {27, 237}, {72, 190}, {80, 166}, {5, 242}, {116, 131},
{114, 133}, {110, 153}, {33, 214}, {26, 237}, {86, 161}, {11, 243}, {97, 153},
{20, 236}, {85, 172}, {86, 175}, {88, 162}, {115, 137}, {102, 156}, {91, 161},
{103, 156}, {114, 137}, {112, 139}, {104, 147}, {57, 197}, {11, 246}, {57, 196},
{40, 213}, {25, 228}, {21, 235}, {124, 130}, {55, 256}, {72, 256}, {77, 256},
{120, 256} }>;
(II) A more general form is to represent the graph as the orbit of {128, 130}
under the group generated by the following permutations:
a: (1, 2)(3, 8)(4, 11)(5, 14)(6, 17)(7, 19)(9, 15)(10, 26)(12, 31)(13, 34)(16,
41)(18, 45)(20, 50)(21, 53)(22, 56)(23, 49)(24, 40)(25, 51)(27, 62)(28, 35)(29,
67)(30, 63)(32, 65)(33, 71)(36, 76)(37, 78)(38, 73)(39, 79)(42, 83)(43, 85)(44,
87)(46, 86)(47, 92)(48, 93)(52, 74)(54, 97)(55, 81)(57, 89)(58, 102)(59, 72)(60,
101)(61, 88)(64, 84)(66, 90)(68, 82)(69, 108)(70, 80)(75, 113)(77, 114)(91,
123)(94, 117)(95, 120)(96, 125)(98, 127)(99, 122)(100, 121)(103, 116)(104,
111)(105, 112)(106, 124)(107, 118)(109, 115)(110, 119)(126, 128)(129, 244)(130,
162)(131, 251)(132, 242)(133, 194)(134, 216)(135, 196)(136, 246)(137, 138)(139,
175)(140, 183)(141, 218)(142, 206)(143, 223)(144, 231)(145, 169)(146, 200)(147,
180)(148, 182)(149, 160)(150, 202)(151, 245)(152, 174)(153, 192)(154, 165)(155,
197)(156, 211)(157, 236)(158, 241)(159, 209)(161, 205)(163, 232)(164, 176)(166,
178)(167, 213)(168, 225)(170, 195)(171, 214)(172, 207)(173, 222)(177, 234)(179,
191)(181, 204)(184, 186)(185, 220)(187, 230)(188, 240)(189, 255)(190, 239)(193,
229)(198, 253)(199, 226)(201, 249)(203, 227)(208, 238)(210, 252)(212, 228)(215,
219)(217, 254)(221, 235)(224, 250)(233, 256)(237, 248)(243, 247) (III) Last is Groups&Graphs. Copy everything between (not including)
the lines of asterisks into a plain text file and save it as "graph.txt". Then
launch G&G (Groups&Graphs) and select Read Text from the File menu.
**************
&Graph **************
b: (3, 19)(4, 17)(5, 34)(6, 11)(7, 8)(10, 53)(12, 63)(13, 14)(16, 76)(18,
78)(21, 26)(22, 81)(24, 25)(27, 83)(29, 87)(30, 31)(32, 86)(33, 108)(36, 41)(37,
45)(39, 52)(40, 51)(42, 62)(44, 67)(46, 65)(47, 70)(48, 59)(54, 125)(55, 56)(57,
122)(58, 60)(61, 120)(66, 113)(68, 114)(69, 71)(72, 93)(74, 79)(75, 90)(77,
82)(80, 92)(88, 95)(89, 99)(91, 103)(94, 104)(96, 97)(101, 102)(111, 117)(116,
123)(129, 254)(130, 255)(131, 205)(132, 170)(133, 249)(134, 256)(135, 180)(136,
207)(137, 173)(138, 222)(139, 176)(140, 247)(141, 253)(142, 234)(143, 224)(144,
220)(145, 155)(146, 200)(147, 196)(148, 168)(149, 160)(150, 202)(151, 211)(152,
252)(153, 241)(154, 236)(156, 245)(157, 165)(158, 192)(159, 209)(161, 251)(162,
189)(163, 232)(164, 175)(166, 230)(167, 186)(169, 197)(171, 214)(172, 246)(174,
210)(177, 206)(178, 187)(179, 191)(181, 204)(182, 225)(183, 243)(184, 213)(185,
231)(188, 240)(190, 239)(193, 229)(194, 201)(195, 242)(198, 218)(199, 226)(203,
238)(208, 227)(212, 228)(215, 219)(216, 233)(217, 244)(221, 235)(223, 250)(237,
248)
c: (2, 105)(3, 86)(4, 25)(5, 65)(6, 52)(7, 113)(8, 66)(9, 43)(11, 39)(12,
48)(13, 74)(14, 79)(15, 28)(16, 21)(17, 24)(18, 72)(19, 32)(20, 85)(22, 30)(23,
73)(26, 76)(27, 104)(29, 103)(31, 81)(33, 95)(34, 46)(36, 123)(38, 112)(40,
60)(41, 116)(42, 122)(47, 61)(51, 58)(54, 117)(57, 62)(59, 63)(68, 71)(69,
114)(70, 120)(75, 102)(77, 89)(78, 93)(80, 97)(82, 99)(83, 94)(84, 98)(87,
91)(88, 108)(90, 101)(92, 96)(100, 109)(106, 110)(107, 128)(111, 125)(115,
127)(119, 126)(129, 246)(130, 187)(131, 245)(132, 213)(133, 218)(134, 145)(135,
194)(136, 228)(137, 143)(138, 203)(139, 195)(140, 190)(141, 240)(142, 169)(144,
168)(146, 236)(147, 237)(148, 220)(149, 167)(150, 164)(151, 152)(153, 166)(154,
200)(155, 256)(156, 205)(157, 244)(158, 226)(159, 206)(160, 186)(161, 179)(162,
163)(165, 217)(170, 184)(171, 216)(172, 254)(173, 224)(174, 221)(175, 202)(176,
242)(177, 209)(178, 255)(180, 201)(181, 231)(182, 243)(183, 225)(185, 204)(188,
253)(189, 232)(191, 251)(192, 199)(193, 208)(196, 248)(197, 234)(198, 249)(207,
212)(210, 235)(211, 252)(214, 233)(215, 223)(219, 250)(222, 238)(227, 229)(230,
241)(239, 247)
d: (1, 3, 9, 24, 49, 17, 43, 86)(2, 5, 15, 39, 23, 58, 85, 113)(4, 12, 32, 67,
19, 48, 25, 53)(6, 18, 46, 91, 8, 22, 40, 76)(7, 20, 51, 73, 11, 28, 65,
105)(10, 27, 63, 108, 44, 88, 59, 104)(13, 35, 74, 112, 101, 50, 90, 38)(14, 37,
79, 116, 102, 55, 75, 41)(16, 42, 78, 71, 103, 120, 81, 117)(21, 54, 31, 70, 29,
68, 93, 122)(26, 60, 30, 66, 87, 34, 72, 52)(33, 64, 95, 126, 94, 121, 83,
119)(36, 77, 45, 89, 123, 96, 56, 92)(47, 84, 114, 128, 57, 100, 125, 110)(61,
106, 111, 109, 62, 107, 69, 98)(80, 115, 82, 118, 99, 127, 97, 124)(129, 184,
170, 246, 217, 176, 242, 165)(130, 166, 238, 222, 153, 187, 143, 137)(131, 195,
144, 254, 252, 132, 243, 244)(133, 255, 197, 203, 201, 241, 145, 224)(134, 230,
180, 138, 234, 178, 218, 173)(135, 151, 142, 148, 198, 156, 256, 225)(136, 204,
164, 179, 154, 190, 186, 221)(139, 245, 157, 182, 213, 211, 172, 168)(140, 200,
161, 150, 185, 228, 174, 160)(141, 191, 216, 239, 147, 235, 177, 181)(146, 175,
202, 236, 212, 167, 149, 207)(152, 194, 183, 155, 205, 249, 220, 169)(158, 232,
250, 219, 189, 226, 227, 229)(159, 208, 248, 192, 214, 223, 188, 162)(163, 253,
215, 233, 199, 196, 193, 206)(171, 251, 240, 231, 209, 210, 237, 247)
C4[ 256, 104 ]
256
-1 202 150 164 175
-2 176 202 139 150
-3 179 202 236 185
-4 136 235 247 160
-5 242 245 236 185
-6 235 160 172 183
-7 165 144 179 202
-8 220 157 191 150
-9 154 212 236 228
-10 210 235 248 196
-11 221 243 246 149
-12 177 171 204 140
-13 165 144 211 170
-14 132 220 157 151
-15 165 157 212 228
-16 210 201 151 196
-17 221 149 140 207
-18 155 177 168 140
-19 154 231 191 150
-20 154 254 236 129
-21 180 235 248 152
-22 169 182 216 185
-23 213 149 160 184
-24 167 190 212 174
-25 210 228 239 186
-26 221 135 237 252
-27 177 192 193 237
-28 244 136 217 207
-29 188 191 205 218
-30 243 171 204 142
-31 234 181 214 183
-32 200 181 251 164
-33 253 232 214 250
-34 154 231 156 195
-35 254 246 172 129
-36 133 156 180 152
-37 243 169 182 142
-38 242 213 184 195
-39 167 182 129 174
-40 213 228 239 152
-41 135 245 249 252
-42 193 237 142 241
-43 200 146 136 207
-44 253 188 191 251
-45 234 225 183 197
-46 200 181 139 205
-47 187 253 145 250
-48 209 190 216 185
-49 167 149 160 186
-50 165 244 157 217
-51 190 212 184 252
-52 210 254 225 186
-53 221 147 237 174
-54 177 192 138 194
-55 144 155 168 256
-56 220 134 145 148
-57 166 227 196 197
-58 211 170 140 207
-59 231 233 159 239
-60 132 136 247 151
-61 188 134 130 219
-62 234 248 229 153
-63 181 214 247 206
-64 223 215 250 219
-65 176 146 204 131
-66 244 148 251 164
-67 179 161 141 240
-68 216 249 162 173
-69 143 232 214 218
-70 155 178 223 141
-71 198 224 171 163
-72 209 144 190 256
-73 132 167 170 186
-74 168 184 217 252
-75 254 225 139 205
-76 211 147 194 174
-77 255 256 138 194
-78 145 148 247 206
-79 244 213 148 152
-80 143 166 218 197
-81 231 233 225 197
-82 134 222 201 130
-83 158 248 206 229
-84 143 224 215 219
-85 200 146 246 172
-86 146 204 161 175
-87 198 179 240 131
-88 215 216 162 240
-89 155 178 135 203
-90 176 182 129 131
-91 245 161 249 141
-92 198 169 224 230
-93 220 134 159 239
-94 159 226 227 196
-95 188 189 233 219
-96 249 173 142 241
-97 133 234 137 153
-98 223 137 173 250
-99 187 145 180 238
-100 203 193 238 229
-101 242 243 245 246
-102 156 172 183 195
-103 253 133 156 251
-104 209 199 147 208
-105 242 195 164 175
-106 166 189 162 230
-107 187 178 158 192
-108 223 171 141 163
-109 222 138 227 208
-110 232 163 153 241
-111 180 159 226 238
-112 132 176 170 139
-113 168 161 217 175
-114 133 189 233 137
-115 137 203 238 173
-116 198 211 194 131
-117 209 199 135 203
-118 166 153 230 241
-119 232 158 192 163
-120 255 256 215 240
-121 193 227 229 208
-122 147 169 208 230
-123 201 205 151 218
-124 187 178 255 130
-125 222 201 158 206
-126 199 189 226 162
-127 143 222 224 138
-128 199 255 226 130
-129 35 90 39 20
-130 124 82 61 128
-131 90 116 65 87
-132 112 14 60 73
-133 36 103 114 97
-134 56 82 93 61
-135 89 26 117 41
-136 4 60 28 43
-137 114 115 97 98
-138 77 127 54 109
-139 2 46 112 75
-140 12 58 17 18
-141 67 91 70 108
-142 37 30 96 42
-143 69 80 127 84
-144 55 13 72 7
-145 99 56 78 47
-146 85 86 43 65
-147 122 104 53 76
-148 66 56 78 79
-149 11 23 49 17
-150 1 2 8 19
-151 123 14 16 60
-152 79 36 40 21
-153 110 62 118 97
-154 34 19 9 20
-155 55 89 70 18
-156 34 36 102 103
-157 14 15 50 8
-158 125 83 107 119
-159 111 59 93 94
-160 23 4 49 6
-161 67 91 113 86
-162 88 68 126 106
-163 110 71 108 119
-164 66 1 105 32
-165 13 15 50 7
-166 57 80 106 118
-167 24 49 39 73
-168 55 113 18 74
-169 22 122 37 92
-170 13 112 58 73
-171 12 71 30 108
-172 35 102 6 85
-173 68 115 96 98
-174 24 39 53 76
-175 1 113 105 86
-176 2 90 112 65
-177 12 27 18 54
-178 89 124 70 107
-179 67 3 7 87
-180 99 111 36 21
-181 46 63 31 32
-182 22 90 37 39
-183 45 102 6 31
-184 23 38 51 74
-185 22 3 48 5
-186 25 49 73 52
-187 99 47 124 107
-188 44 61 29 95
-189 114 126 95 106
-190 24 48 72 51
-191 44 29 8 19
-192 27 107 119 54
-193 121 100 27 42
-194 77 116 54 76
-195 34 102 38 105
-196 57 16 94 10
-197 45 57 80 81
-198 92 71 116 87
-199 104 126 117 128
-200 46 85 32 43
-201 123 125 16 82
-202 1 2 3 7
-203 89 100 115 117
-204 12 30 86 65
-205 46 123 29 75
-206 78 125 83 63
-207 58 17 28 43
-208 121 122 104 109
-209 48 104 72 117
-210 25 16 52 10
-211 13 58 116 76
-212 24 15 51 9
-213 23 79 38 40
-214 33 69 63 31
-215 88 84 64 120
-216 22 88 68 48
-217 113 28 50 74
-218 123 69 80 29
-219 61 84 95 64
-220 56 14 93 8
-221 11 26 17 53
-222 125 82 127 109
-223 70 64 108 98
-224 92 71 127 84
-225 45 81 52 75
-226 111 126 94 128
-227 121 57 94 109
-228 25 15 40 9
-229 121 100 83 62
-230 122 92 106 118
-231 34 59 81 19
-232 33 110 69 119
-233 59 81 114 95
-234 45 62 31 97
-235 4 6 10 21
-236 3 5 9 20
-237 26 27 42 53
-238 99 100 111 115
-239 25 59 93 40
-240 88 67 87 120
-241 110 96 118 42
-242 101 5 38 105
-243 11 101 37 30
-244 66 79 28 50
-245 101 91 5 41
-246 11 35 101 85
-247 78 4 60 63
-248 83 62 10 21
-249 68 91 41 96
-250 33 47 64 98
-251 44 66 103 32
-252 26 51 41 74
-253 33 44 47 103
-254 35 52 20 75
-255 77 124 128 120
-256 55 77 72 120
0