C4graphGraph forms for C4 [ 256, 105 ] = PL(ATD[8,1]#ATD[16,5])

[Home] [Table] [Glossary] [Families]

On this page are computer-accessible forms for the graph C4[ 256, 105 ] = PL(ATD[8,1]#ATD[16,5]).

(I) Following is a form readable by MAGMA:

g:=Graph<256|{ {128, 192}, {128, 198}, {128, 208}, {128, 248}, {83, 211}, {119, 247}, {117, 245}, {84, 212}, {38, 167}, {113, 240}, {105, 232}, {100, 229}, {12, 142}, {48, 178}, {43, 169}, {39, 165}, {28, 158}, {19, 144}, {121, 250}, {94, 221}, {49, 178}, {29, 158}, {24, 155}, {61, 190}, {72, 203}, {18, 150}, {106, 238}, {32, 164}, {25, 157}, {23, 147}, {2, 135}, {109, 232}, {42, 175}, {21, 144}, {94, 216}, {117, 242}, {126, 249}, {7, 143}, {120, 240}, {119, 255}, {103, 239}, {39, 175}, {71, 206}, {120, 241}, {114, 251}, {107, 226}, {90, 208}, {52, 191}, {111, 228}, {32, 172}, {56, 180}, {34, 174}, {11, 134}, {123, 246}, {98, 239}, {54, 187}, {53, 184}, {71, 202}, {10, 132}, {95, 209}, {58, 180}, {54, 185}, {116, 251}, {88, 215}, {29, 141}, {88, 200}, {28, 141}, {113, 224}, {108, 253}, {95, 206}, {43, 186}, {50, 160}, {101, 247}, {59, 169}, {74, 216}, {83, 193}, {33, 178}, {89, 202}, {57, 170}, {45, 190}, {44, 191}, {3, 151}, {37, 177}, {80, 196}, {85, 193}, {16, 134}, {49, 167}, {26, 140}, {62, 168}, {48, 167}, {123, 236}, {115, 228}, {80, 199}, {64, 216}, {120, 224}, {68, 220}, {104, 241}, {15, 149}, {125, 231}, {116, 238}, {58, 160}, {41, 179}, {24, 130}, {86, 202}, {2, 159}, {112, 237}, {105, 244}, {55, 170}, {53, 168}, {1, 159}, {117, 235}, {97, 255}, {4, 154}, {73, 215}, {81, 207}, {84, 202}, {10, 149}, {99, 252}, {62, 161}, {69, 218}, {78, 209}, {82, 205}, {6, 166}, {34, 130}, {73, 233}, {53, 148}, {115, 210}, {88, 249}, {55, 150}, {4, 166}, {103, 197}, {90, 248}, {80, 242}, {95, 252}, {125, 222}, {32, 132}, {114, 214}, {54, 146}, {51, 151}, {45, 137}, {25, 188}, {37, 131}, {127, 217}, {39, 129}, {24, 191}, {98, 197}, {63, 152}, {76, 235}, {83, 244}, {4, 172}, {125, 213}, {64, 232}, {102, 207}, {124, 213}, {112, 217}, {8, 162}, {51, 153}, {31, 181}, {19, 184}, {116, 223}, {104, 195}, {96, 203}, {88, 243}, {50, 153}, {42, 129}, {40, 131}, {30, 181}, {63, 148}, {72, 227}, {33, 141}, {126, 210}, {113, 221}, {97, 205}, {68, 232}, {77, 225}, {23, 186}, {99, 206}, {63, 146}, {65, 236}, {75, 230}, {30, 176}, {19, 188}, {39, 136}, {36, 139}, {78, 225}, {55, 135}, {108, 220}, {93, 237}, {1, 176}, {115, 194}, {17, 163}, {117, 199}, {55, 133}, {33, 147}, {22, 164}, {61, 143}, {81, 227}, {11, 184}, {70, 245}, {85, 230}, {20, 160}, {61, 137}, {41, 156}, {106, 223}, {71, 242}, {24, 174}, {127, 201}, {126, 200}, {122, 204}, {84, 226}, {44, 155}, {59, 140}, {47, 152}, {65, 246}, {74, 253}, {29, 165}, {38, 158}, {66, 250}, {69, 253}, {14, 183}, {112, 201}, {54, 143}, {49, 136}, {76, 245}, {38, 156}, {105, 211}, {52, 142}, {63, 133}, {73, 243}, {10, 177}, {123, 192}, {120, 195}, {48, 139}, {47, 148}, {45, 150}, {57, 133}, {126, 194}, {102, 218}, {96, 220}, {31, 162}, {123, 198}, {84, 233}, {7, 185}, {35, 157}, {9, 183}, {28, 163}, {107, 212}, {100, 219}, {46, 145}, {37, 154}, {85, 234}, {86, 233}, {89, 153}, {121, 185}, {105, 169}, {93, 157}, {3, 194}, {119, 182}, {109, 172}, {34, 227}, {20, 213}, {70, 135}, {72, 137}, {82, 147}, {10, 200}, {91, 153}, {26, 216}, {22, 212}, {60, 254}, {62, 252}, {16, 211}, {57, 250}, {2, 198}, {109, 169}, {58, 254}, {31, 219}, {27, 223}, {26, 222}, {27, 222}, {111, 170}, {45, 235}, {56, 254}, {74, 140}, {1, 198}, {46, 233}, {40, 239}, {35, 228}, {18, 213}, {15, 200}, {5, 194}, {66, 138}, {5, 204}, {98, 171}, {85, 156}, {3, 201}, {107, 161}, {100, 174}, {40, 226}, {9, 195}, {22, 221}, {100, 175}, {5, 201}, {59, 247}, {9, 197}, {70, 138}, {14, 195}, {44, 225}, {64, 142}, {91, 149}, {83, 156}, {104, 167}, {103, 168}, {93, 146}, {1, 209}, {116, 164}, {94, 142}, {90, 138}, {20, 196}, {8, 217}, {74, 155}, {18, 192}, {46, 252}, {44, 254}, {86, 132}, {8, 219}, {101, 182}, {40, 251}, {22, 197}, {75, 152}, {20, 192}, {122, 174}, {118, 162}, {111, 187}, {101, 177}, {92, 136}, {36, 240}, {6, 211}, {122, 175}, {102, 179}, {7, 210}, {79, 154}, {23, 193}, {114, 164}, {108, 186}, {92, 138}, {51, 229}, {35, 244}, {42, 253}, {23, 207}, {93, 133}, {73, 145}, {102, 191}, {127, 166}, {110, 183}, {8, 210}, {96, 186}, {30, 196}, {12, 214}, {77, 151}, {60, 231}, {35, 255}, {110, 178}, {43, 247}, {87, 139}, {9, 212}, {106, 183}, {94, 131}, {56, 229}, {47, 242}, {60, 225}, {7, 217}, {37, 251}, {76, 146}, {79, 145}, {87, 137}, {53, 234}, {124, 163}, {33, 193}, {48, 208}, {77, 173}, {80, 176}, {11, 234}, {118, 151}, {47, 206}, {19, 241}, {125, 159}, {92, 190}, {52, 214}, {60, 222}, {67, 161}, {81, 179}, {13, 238}, {124, 159}, {110, 141}, {56, 219}, {50, 209}, {78, 173}, {79, 172}, {14, 234}, {99, 135}, {90, 190}, {51, 215}, {43, 207}, {41, 205}, {28, 248}, {21, 241}, {79, 171}, {50, 215}, {3, 229}, {11, 237}, {86, 177}, {14, 230}, {96, 136}, {69, 173}, {17, 248}, {111, 134}, {109, 132}, {46, 199}, {34, 203}, {67, 170}, {13, 231}, {127, 149}, {75, 161}, {82, 184}, {87, 189}, {12, 231}, {38, 205}, {27, 240}, {67, 168}, {31, 243}, {89, 181}, {65, 173}, {71, 171}, {13, 224}, {112, 157}, {59, 214}, {30, 243}, {52, 218}, {91, 181}, {82, 188}, {77, 162}, {15, 255}, {42, 218}, {17, 224}, {61, 204}, {69, 180}, {68, 182}, {113, 131}, {97, 147}, {89, 171}, {98, 145}, {107, 152}, {103, 148}, {36, 208}, {118, 130}, {81, 165}, {87, 163}, {41, 220}, {122, 143}, {115, 134}, {99, 150}, {57, 204}, {65, 180}, {72, 189}, {26, 236}, {104, 158}, {64, 182}, {2, 245}, {124, 139}, {118, 129}, {108, 155}, {27, 236}, {21, 226}, {68, 179}, {75, 188}, {76, 187}, {67, 187}, {121, 129}, {18, 235}, {92, 165}, {62, 199}, {12, 246}, {106, 144}, {49, 203}, {21, 239}, {13, 246}, {121, 130}, {36, 223}, {15, 244}, {66, 185}, {70, 189}, {4, 249}, {91, 166}, {32, 221}, {25, 228}, {16, 237}, {29, 227}, {114, 140}, {110, 144}, {58, 196}, {78, 176}, {5, 250}, {101, 154}, {95, 160}, {25, 230}, {17, 238}, {6, 249}, {66, 189}, {6, 256}, {16, 256}, {97, 256}, {119, 256} }>;

(II) A more general form is to represent the graph as the orbit of {128, 192} under the group generated by the following permutations:

a: (1, 2)(3, 5)(4, 25)(6, 35)(7, 8)(9, 22)(10, 11)(12, 28)(13, 17)(14, 32)(15, 16)(18, 20)(19, 37)(21, 40)(23, 43)(24, 34)(26, 48)(27, 36)(29, 52)(30, 76)(31, 54)(33, 59)(38, 64)(39, 42)(41, 68)(44, 72)(45, 58)(46, 47)(49, 74)(50, 55)(51, 57)(53, 86)(56, 61)(60, 87)(62, 71)(63, 73)(65, 90)(66, 77)(67, 89)(69, 92)(70, 78)(75, 79)(80, 117)(81, 102)(82, 101)(83, 105)(84, 103)(85, 109)(88, 93)(91, 111)(94, 104)(95, 99)(96, 108)(97, 119)(98, 107)(100, 122)(106, 116)(110, 114)(112, 126)(113, 120)(115, 127)(118, 121)(123, 128)(124, 125)(131, 241)(132, 234)(133, 215)(134, 149)(135, 209)(136, 253)(137, 254)(138, 173)(139, 222)(140, 178)(141, 214)(142, 158)(143, 219)(144, 251)(145, 152)(146, 243)(147, 247)(148, 233)(150, 160)(151, 250)(153, 170)(154, 188)(155, 203)(156, 232)(157, 249)(161, 171)(162, 185)(163, 231)(164, 183)(165, 218)(166, 228)(167, 216)(168, 202)(169, 193)(172, 230)(176, 245)(177, 184)(180, 190)(181, 187)(182, 205)(189, 225)(191, 227)(194, 201)(195, 221)(196, 235)(197, 212)(199, 242)(200, 237)(204, 229)(206, 252)(208, 236)(210, 217)(211, 244)(226, 239)(246, 248)(255, 256)
b: (3, 8)(5, 7)(30, 50)(31, 51)(54, 57)(55, 76)(80, 95)(99, 117)(133, 146)(135, 245)(143, 204)(150, 235)(151, 162)(153, 181)(160, 196)(170, 187)(176, 209)(185, 250)(194, 210)(199, 252)(201, 217)(206, 242)(215, 243)(219, 229)
c: (23, 41)(33, 38)(43, 68)(59, 64)(94, 114)(104, 110)(106, 120)(113, 116)(131, 251)(140, 216)(141, 158)(142, 214)(144, 241)(147, 205)(156, 193)(164, 221)(167, 178)(169, 232)(179, 207)(182, 247)(183, 195)(186, 220)(223, 240)(224, 238)
d: (12, 26)(13, 27)(17, 36)(23, 41)(28, 48)(29, 49)(33, 38)(43, 68)(52, 74)(59, 64)(81, 96)(94, 114)(102, 108)(104, 110)(106, 120)(113, 116)(131, 251)(136, 165)(139, 163)(140, 142)(141, 167)(144, 241)(147, 205)(155, 191)(156, 193)(158, 178)(164, 221)(169, 232)(179, 186)(182, 247)(183, 195)(203, 227)(207, 220)(208, 248)(214, 216)(218, 253)(222, 231)(223, 224)(236, 246)(238, 240)
e: (4, 10)(6, 15)(11, 25)(16, 35)(46, 71)(47, 62)(53, 75)(63, 67)(73, 89)(79, 86)(84, 98)(88, 91)(93, 111)(103, 107)(112, 115)(126, 127)(132, 172)(133, 170)(134, 157)(145, 202)(146, 187)(148, 161)(149, 249)(152, 168)(153, 215)(154, 177)(166, 200)(171, 233)(181, 243)(184, 188)(194, 201)(197, 212)(199, 242)(206, 252)(210, 217)(211, 244)(226, 239)(228, 237)(230, 234)(255, 256)
f: (9, 21)(14, 19)(22, 40)(32, 37)(82, 85)(83, 97)(101, 109)(105, 119)(131, 221)(132, 177)(144, 183)(147, 193)(154, 172)(156, 205)(164, 251)(169, 247)(182, 232)(184, 234)(188, 230)(195, 241)(197, 239)(211, 256)(212, 226)(244, 255)
g: (24, 42)(34, 39)(44, 69)(60, 65)(72, 92)(87, 90)(123, 125)(124, 128)(129, 130)(136, 203)(137, 190)(138, 189)(139, 208)(155, 253)(159, 198)(163, 248)(165, 227)(173, 225)(174, 175)(180, 254)(191, 218)(192, 213)(222, 236)(231, 246)
h: (1, 3)(2, 5)(4, 26, 10, 12)(6, 27, 15, 13)(7, 18)(8, 20)(9, 23, 21, 41)(11, 48, 25, 28)(14, 33, 19, 38)(16, 36, 35, 17)(22, 43, 40, 68)(24, 71, 42, 46)(29, 53, 49, 75)(30, 56)(31, 58)(32, 59, 37, 64)(34, 47, 39, 62)(44, 89, 69, 73)(45, 54)(50, 77)(51, 78)(52, 79, 74, 86)(55, 66)(57, 70)(60, 91, 65, 88)(61, 76)(63, 92, 67, 72)(80, 100)(81, 103, 96, 107)(82, 104, 85, 110)(83, 106, 97, 120)(84, 102, 98, 108)(87, 93, 90, 111)(94, 109, 114, 101)(95, 118)(99, 121)(105, 116, 119, 113)(112, 128, 115, 124)(117, 122)(123, 126, 125, 127)(129, 252, 130, 206)(131, 232, 164, 247)(132, 214, 154, 216)(133, 138, 170, 189)(134, 139, 157, 248)(135, 250)(136, 161, 227, 148)(137, 146, 190, 187)(140, 177, 142, 172)(141, 184, 167, 230)(143, 235)(144, 205, 195, 193)(145, 155, 202, 218)(147, 241, 156, 183)(149, 246, 249, 222)(150, 185)(151, 209)(152, 165, 168, 203)(153, 173, 215, 225)(158, 234, 178, 188)(159, 201, 198, 194)(160, 162)(163, 237, 208, 228)(166, 236, 200, 231)(169, 251, 182, 221)(171, 253, 233, 191)(174, 242, 175, 199)(176, 229)(179, 197, 186, 226)(180, 243, 254, 181)(192, 210, 213, 217)(196, 219)(204, 245)(207, 239, 220, 212)(211, 223, 255, 224)(238, 256, 240, 244)
m: (2, 78)(3, 72)(4, 104)(5, 34)(6, 38)(7, 39)(8, 92)(9, 32)(10, 110)(11, 68)(12, 62)(13, 46)(14, 109)(15, 33)(16, 41)(17, 73)(18, 58)(19, 101)(21, 37)(23, 35)(24, 57)(25, 43)(26, 47)(27, 71)(28, 88)(29, 126)(30, 128)(31, 90)(36, 89)(42, 54)(44, 55)(45, 56)(48, 91)(49, 127)(50, 124)(51, 87)(52, 67)(53, 64)(59, 75)(60, 99)(61, 100)(63, 74)(65, 117)(66, 118)(69, 76)(70, 77)(79, 120)(80, 123)(81, 115)(82, 119)(84, 116)(85, 105)(86, 106)(93, 108)(94, 103)(95, 125)(96, 112)(98, 113)(102, 111)(107, 114)(129, 185)(130, 250)(131, 239)(132, 183)(133, 155)(134, 179)(135, 225)(136, 217)(137, 229)(138, 162)(139, 153)(140, 152)(141, 200)(142, 168)(143, 175)(144, 177)(145, 224)(146, 253)(147, 255)(148, 216)(149, 178)(150, 254)(151, 189)(154, 241)(156, 211)(157, 186)(158, 249)(159, 209)(160, 213)(161, 214)(163, 215)(164, 212)(165, 210)(166, 167)(169, 230)(170, 191)(171, 240)(172, 195)(173, 245)(174, 204)(176, 198)(180, 235)(181, 208)(182, 184)(187, 218)(188, 247)(190, 219)(192, 196)(193, 244)(194, 227)(197, 221)(199, 246)(201, 203)(202, 223)(205, 256)(206, 222)(207, 228)(220, 237)(226, 251)(231, 252)(232, 234)(233, 238)(236, 242)(243, 248)

(III) Last is Groups&Graphs. Copy everything between (not including) the lines of asterisks into a plain text file and save it as "graph.txt". Then launch G&G (Groups&Graphs) and select Read Text from the File menu.

**************

&Graph
C4[ 256, 105 ]
256
-1 176 198 209 159
-2 198 135 245 159
-3 201 194 151 229
-4 154 166 172 249
-5 201 204 194 250
-6 166 211 256 249
-7 143 210 217 185
-8 210 162 217 219
-9 212 183 195 197
-10 132 177 200 149
-11 134 234 237 184
-12 231 246 214 142
-13 231 224 246 238
-14 234 183 195 230
-15 200 244 255 149
-16 134 211 256 237
-17 224 248 238 163
-18 213 235 192 150
-19 144 188 184 241
-20 213 192 160 196
-21 144 226 239 241
-22 221 212 164 197
-23 147 193 207 186
-24 155 191 130 174
-25 188 157 228 230
-26 222 236 216 140
-27 222 223 236 240
-28 158 248 141 163
-29 165 158 227 141
-30 176 243 181 196
-31 243 181 162 219
-32 132 221 172 164
-33 178 147 193 141
-34 203 227 130 174
-35 244 255 157 228
-36 223 139 240 208
-37 154 177 251 131
-38 156 167 158 205
-39 165 136 129 175
-40 226 239 251 131
-41 220 156 179 205
-42 253 129 218 175
-43 169 247 207 186
-44 155 254 191 225
-45 190 235 137 150
-46 199 145 233 252
-47 242 148 206 152
-48 167 178 139 208
-49 167 178 136 203
-50 209 160 215 153
-51 215 151 229 153
-52 191 214 218 142
-53 168 234 148 184
-54 143 187 146 185
-55 133 135 170 150
-56 254 180 229 219
-57 133 170 204 250
-58 254 180 160 196
-59 169 214 247 140
-60 231 254 222 225
-61 143 190 137 204
-62 199 168 161 252
-63 133 146 148 152
-64 232 182 216 142
-65 180 246 236 173
-66 189 138 250 185
-67 187 168 170 161
-68 220 232 179 182
-69 253 180 173 218
-70 189 135 245 138
-71 242 202 171 206
-72 189 137 203 227
-73 243 145 233 215
-74 253 155 216 140
-75 188 161 152 230
-76 187 146 245 235
-77 225 151 162 173
-78 176 209 225 173
-79 154 145 171 172
-80 176 242 199 196
-81 165 179 227 207
-82 188 147 205 184
-83 156 211 244 193
-84 233 212 202 226
-85 156 234 193 230
-86 132 177 233 202
-87 189 137 139 163
-88 243 200 215 249
-89 202 181 171 153
-90 190 138 248 208
-91 166 181 149 153
-92 165 190 136 138
-93 133 146 157 237
-94 221 216 131 142
-95 209 160 206 252
-96 220 136 203 186
-97 255 256 147 205
-98 145 171 239 197
-99 135 150 206 252
-100 174 229 175 219
-101 154 177 247 182
-102 179 191 207 218
-103 168 148 239 197
-104 167 158 195 241
-105 232 211 244 169
-106 144 223 183 238
-107 212 226 161 152
-108 220 253 155 186
-109 132 232 169 172
-110 144 178 183 141
-111 187 134 170 228
-112 157 201 237 217
-113 221 224 240 131
-114 214 140 251 164
-115 210 134 194 228
-116 223 238 251 164
-117 242 199 245 235
-118 129 151 162 130
-119 255 256 247 182
-120 224 195 240 241
-121 129 250 130 185
-122 143 204 174 175
-123 198 246 192 236
-124 213 159 139 163
-125 231 222 213 159
-126 210 200 194 249
-127 166 201 149 217
-128 198 192 248 208
-129 121 39 118 42
-130 121 34 24 118
-131 113 37 94 40
-132 86 10 32 109
-133 55 57 93 63
-134 11 111 16 115
-135 55 99 2 70
-136 92 49 39 96
-137 45 61 72 87
-138 66 90 70 92
-139 36 124 48 87
-140 26 59 114 74
-141 33 110 28 29
-142 12 94 52 64
-143 122 61 7 54
-144 110 106 19 21
-145 46 79 73 98
-146 93 63 54 76
-147 33 23 82 97
-148 47 103 63 53
-149 91 15 127 10
-150 55 99 45 18
-151 77 3 51 118
-152 47 63 107 75
-153 89 91 50 51
-154 79 101 4 37
-155 44 24 74 108
-156 38 83 41 85
-157 35 112 25 93
-158 38 104 28 29
-159 1 2 124 125
-160 58 50 95 20
-161 67 62 107 75
-162 77 8 118 31
-163 124 17 28 87
-164 22 114 116 32
-165 81 92 39 29
-166 91 4 6 127
-167 48 38 49 104
-168 67 103 62 53
-169 59 105 43 109
-170 55 67 111 57
-171 89 79 71 98
-172 79 4 32 109
-173 77 78 69 65
-174 34 100 122 24
-175 100 122 39 42
-176 1 78 80 30
-177 101 37 86 10
-178 33 110 48 49
-179 68 102 81 41
-180 56 58 69 65
-181 89 91 30 31
-182 68 101 64 119
-183 110 14 106 9
-184 11 82 19 53
-185 66 121 7 54
-186 23 96 108 43
-187 67 111 54 76
-188 25 82 19 75
-189 66 70 72 87
-190 45 90 92 61
-191 44 24 102 52
-192 123 18 128 20
-193 33 23 83 85
-194 3 5 115 126
-195 14 104 9 120
-196 58 80 30 20
-197 22 103 9 98
-198 1 2 123 128
-199 46 80 62 117
-200 88 15 126 10
-201 112 3 5 127
-202 89 71 84 86
-203 34 49 72 96
-204 122 57 5 61
-205 38 82 41 97
-206 99 47 71 95
-207 23 102 81 43
-208 90 36 48 128
-209 1 78 50 95
-210 115 126 7 8
-211 16 6 83 105
-212 22 84 107 9
-213 124 125 18 20
-214 12 59 114 52
-215 88 50 51 73
-216 26 94 74 64
-217 112 127 7 8
-218 69 102 52 42
-219 56 100 8 31
-220 68 41 96 108
-221 22 113 94 32
-222 26 125 27 60
-223 36 27 116 106
-224 13 113 17 120
-225 44 77 78 60
-226 40 84 107 21
-227 34 81 72 29
-228 111 35 25 115
-229 56 100 3 51
-230 14 25 85 75
-231 12 13 125 60
-232 68 105 64 109
-233 46 73 84 86
-234 11 14 85 53
-235 45 18 117 76
-236 123 26 27 65
-237 11 112 16 93
-238 13 17 116 106
-239 103 40 21 98
-240 36 113 27 120
-241 104 19 21 120
-242 47 80 71 117
-243 88 73 30 31
-244 35 15 83 105
-245 2 70 117 76
-246 12 13 123 65
-247 101 59 119 43
-248 90 17 28 128
-249 88 4 126 6
-250 66 121 57 5
-251 37 114 116 40
-252 99 46 62 95
-253 69 74 42 108
-254 44 56 58 60
-255 35 15 97 119
-256 16 6 97 119
0

**************