C4graphGraph forms for C4 [ 256, 107 ] = PL(ATD[8,2]#ATD[32,1])

[Home] [Table] [Glossary] [Families]

On this page are computer-accessible forms for the graph C4[ 256, 107 ] = PL(ATD[8,2]#ATD[32,1]).

(I) Following is a form readable by MAGMA:

g:=Graph<256|{ {128, 131}, {128, 151}, {128, 175}, {128, 210}, {46, 174}, {127, 255}, {55, 183}, {69, 197}, {79, 207}, {8, 137}, {121, 251}, {52, 183}, {93, 222}, {90, 217}, {66, 193}, {72, 203}, {79, 204}, {79, 202}, {115, 246}, {111, 234}, {80, 213}, {81, 212}, {68, 194}, {11, 140}, {95, 216}, {47, 168}, {16, 151}, {4, 140}, {112, 248}, {59, 178}, {119, 254}, {42, 160}, {108, 230}, {53, 191}, {81, 219}, {34, 169}, {102, 237}, {41, 162}, {19, 159}, {105, 229}, {101, 233}, {39, 171}, {18, 159}, {109, 224}, {104, 229}, {16, 158}, {94, 208}, {59, 181}, {55, 185}, {43, 165}, {51, 188}, {125, 242}, {116, 251}, {31, 143}, {99, 243}, {53, 164}, {114, 227}, {82, 195}, {20, 134}, {51, 161}, {47, 189}, {33, 178}, {109, 254}, {91, 200}, {89, 202}, {75, 223}, {101, 241}, {7, 146}, {114, 231}, {40, 189}, {39, 178}, {28, 137}, {24, 141}, {45, 187}, {127, 233}, {116, 226}, {102, 240}, {100, 242}, {96, 246}, {15, 152}, {119, 224}, {107, 252}, {103, 240}, {54, 161}, {38, 177}, {28, 139}, {27, 140}, {43, 179}, {127, 231}, {110, 246}, {6, 159}, {113, 232}, {110, 247}, {72, 209}, {76, 213}, {76, 214}, {101, 255}, {96, 250}, {42, 177}, {121, 226}, {49, 170}, {2, 158}, {102, 250}, {91, 199}, {90, 198}, {57, 165}, {44, 176}, {80, 204}, {15, 146}, {123, 230}, {106, 247}, {35, 190}, {61, 160}, {65, 220}, {85, 200}, {23, 137}, {95, 193}, {33, 191}, {73, 215}, {7, 152}, {121, 230}, {115, 236}, {23, 136}, {8, 151}, {80, 207}, {43, 139}, {105, 201}, {103, 199}, {15, 174}, {119, 214}, {44, 141}, {41, 136}, {21, 180}, {21, 183}, {58, 152}, {25, 187}, {76, 238}, {78, 236}, {31, 188}, {114, 209}, {8, 172}, {125, 217}, {119, 211}, {110, 202}, {35, 135}, {12, 169}, {62, 155}, {40, 142}, {97, 199}, {95, 249}, {63, 153}, {91, 252}, {98, 197}, {24, 176}, {113, 217}, {30, 182}, {4, 173}, {122, 211}, {106, 195}, {82, 251}, {85, 252}, {5, 175}, {95, 245}, {94, 244}, {89, 243}, {65, 235}, {86, 252}, {5, 174}, {6, 173}, {72, 227}, {2, 174}, {122, 214}, {21, 185}, {3, 175}, {86, 250}, {1, 172}, {14, 163}, {83, 254}, {17, 191}, {124, 210}, {101, 203}, {89, 247}, {30, 176}, {25, 182}, {60, 147}, {71, 232}, {43, 155}, {55, 135}, {54, 134}, {46, 158}, {45, 159}, {105, 219}, {60, 142}, {13, 190}, {93, 238}, {27, 168}, {63, 140}, {20, 161}, {23, 162}, {22, 163}, {62, 139}, {67, 246}, {70, 243}, {9, 191}, {92, 234}, {60, 138}, {42, 156}, {31, 169}, {26, 172}, {29, 170}, {41, 158}, {73, 254}, {31, 167}, {103, 223}, {69, 253}, {13, 180}, {40, 145}, {72, 241}, {74, 240}, {104, 210}, {92, 230}, {84, 238}, {23, 172}, {40, 147}, {66, 249}, {75, 240}, {86, 237}, {10, 182}, {51, 143}, {80, 236}, {32, 157}, {78, 243}, {38, 152}, {70, 248}, {6, 198}, {57, 249}, {42, 234}, {20, 212}, {17, 208}, {96, 161}, {46, 239}, {29, 220}, {70, 132}, {100, 166}, {83, 145}, {7, 196}, {90, 153}, {16, 211}, {73, 138}, {76, 143}, {85, 150}, {1, 197}, {126, 186}, {125, 185}, {32, 228}, {21, 209}, {12, 200}, {25, 220}, {49, 244}, {36, 226}, {98, 164}, {2, 197}, {56, 255}, {50, 245}, {36, 227}, {11, 204}, {3, 196}, {6, 206}, {94, 150}, {93, 149}, {18, 218}, {69, 141}, {77, 133}, {85, 157}, {17, 216}, {111, 166}, {51, 250}, {37, 236}, {64, 137}, {4, 206}, {35, 233}, {7, 205}, {73, 131}, {47, 228}, {64, 139}, {88, 147}, {1, 205}, {107, 167}, {100, 168}, {59, 247}, {36, 232}, {27, 215}, {17, 221}, {9, 196}, {103, 170}, {93, 144}, {74, 135}, {87, 154}, {3, 205}, {106, 164}, {33, 239}, {16, 222}, {13, 194}, {113, 190}, {109, 162}, {108, 163}, {10, 218}, {112, 160}, {56, 232}, {52, 228}, {64, 144}, {83, 131}, {9, 216}, {105, 184}, {30, 207}, {77, 156}, {15, 221}, {104, 186}, {87, 132}, {117, 166}, {19, 198}, {64, 149}, {75, 157}, {97, 183}, {92, 138}, {26, 205}, {122, 173}, {120, 175}, {28, 203}, {61, 234}, {65, 150}, {3, 219}, {115, 171}, {45, 245}, {12, 212}, {5, 221}, {61, 229}, {67, 155}, {36, 253}, {108, 181}, {99, 186}, {68, 157}, {34, 248}, {97, 187}, {56, 226}, {53, 239}, {8, 211}, {84, 143}, {13, 209}, {39, 251}, {37, 249}, {33, 253}, {24, 196}, {20, 200}, {29, 192}, {100, 185}, {92, 129}, {48, 237}, {30, 195}, {68, 153}, {75, 150}, {5, 219}, {109, 179}, {55, 233}, {48, 238}, {19, 204}, {107, 180}, {106, 181}, {58, 229}, {46, 241}, {74, 149}, {81, 177}, {35, 194}, {102, 135}, {49, 208}, {71, 166}, {9, 235}, {114, 144}, {32, 194}, {86, 180}, {87, 181}, {22, 242}, {120, 156}, {118, 146}, {117, 145}, {112, 148}, {67, 167}, {2, 231}, {111, 138}, {99, 134}, {89, 188}, {4, 225}, {78, 171}, {1, 231}, {94, 184}, {39, 193}, {38, 192}, {18, 244}, {63, 217}, {70, 160}, {18, 245}, {115, 148}, {99, 132}, {90, 189}, {84, 179}, {62, 214}, {63, 215}, {22, 255}, {122, 147}, {54, 223}, {47, 198}, {81, 184}, {11, 225}, {126, 148}, {123, 145}, {118, 156}, {50, 216}, {67, 169}, {79, 165}, {10, 225}, {60, 215}, {37, 206}, {34, 201}, {26, 241}, {11, 224}, {62, 213}, {88, 179}, {14, 227}, {104, 133}, {74, 167}, {48, 222}, {124, 146}, {116, 154}, {108, 130}, {52, 218}, {83, 189}, {61, 210}, {127, 144}, {120, 151}, {117, 154}, {98, 141}, {71, 168}, {37, 213}, {117, 133}, {116, 132}, {113, 129}, {28, 237}, {91, 170}, {50, 195}, {49, 192}, {45, 220}, {44, 221}, {84, 165}, {38, 212}, {112, 130}, {66, 176}, {78, 188}, {14, 253}, {58, 201}, {57, 202}, {52, 199}, {24, 235}, {19, 224}, {12, 248}, {124, 136}, {66, 182}, {87, 163}, {26, 239}, {111, 154}, {88, 173}, {29, 235}, {120, 142}, {82, 164}, {41, 222}, {57, 206}, {69, 178}, {77, 186}, {25, 225}, {126, 134}, {118, 142}, {97, 153}, {65, 184}, {71, 190}, {82, 171}, {32, 218}, {123, 129}, {110, 148}, {59, 193}, {58, 192}, {88, 162}, {48, 203}, {121, 130}, {96, 155}, {14, 242}, {126, 130}, {125, 129}, {44, 208}, {77, 177}, {34, 223}, {50, 207}, {10, 244}, {123, 133}, {118, 136}, {107, 149}, {27, 228}, {124, 131}, {54, 201}, {68, 187}, {22, 256}, {53, 256}, {56, 256}, {98, 256} }>;

(II) A more general form is to represent the graph as the orbit of {128, 131} under the group generated by the following permutations:

a: (3, 8)(4, 34)(5, 16)(6, 54)(7, 23)(9, 28)(10, 31)(11, 12)(13, 82)(14, 22)(15, 41)(17, 48)(18, 51)(19, 20)(21, 106)(24, 64)(25, 67)(27, 70)(29, 43)(30, 107)(32, 78)(33, 101)(35, 39)(36, 56)(37, 75)(38, 109)(40, 104)(42, 73)(44, 93)(45, 96)(47, 99)(49, 84)(50, 86)(52, 89)(53, 72)(55, 59)(57, 103)(58, 88)(60, 61)(62, 65)(63, 112)(66, 74)(68, 115)(69, 127)(71, 116)(76, 94)(77, 83)(79, 91)(80, 85)(81, 119)(87, 100)(90, 126)(95, 102)(97, 110)(98, 114)(105, 122)(108, 125)(113, 121)(118, 124)(120, 128)(129, 230)(130, 217)(131, 156)(132, 168)(133, 145)(134, 198)(135, 193)(136, 146)(137, 196)(138, 234)(139, 235)(140, 248)(141, 144)(142, 210)(143, 244)(147, 229)(148, 153)(149, 176)(150, 213)(151, 175)(152, 162)(154, 166)(155, 220)(157, 236)(158, 174)(159, 161)(160, 215)(163, 242)(164, 209)(165, 170)(167, 182)(169, 225)(171, 194)(172, 205)(173, 201)(177, 254)(178, 233)(179, 192)(180, 195)(181, 185)(183, 247)(184, 214)(186, 189)(187, 246)(188, 218)(190, 251)(191, 203)(197, 231)(199, 202)(200, 204)(206, 223)(207, 252)(208, 238)(211, 219)(212, 224)(216, 237)(221, 222)(226, 232)(227, 256)(228, 243)(239, 241)(240, 249)(245, 250)(253, 255)
b: (1, 3, 24, 65, 25, 68, 63, 113, 92, 121, 112, 115, 67, 62, 64, 8)(2, 5, 44, 94, 10, 32, 27, 71, 111, 116, 70, 78, 31, 76, 93, 16)(4, 35, 60, 56, 42, 82, 12, 80, 107, 119, 114, 128, 69, 105, 66, 75)(6, 55, 40, 22, 77, 106, 20, 79, 86, 109, 72, 124, 33, 58, 95, 103)(7, 9, 29, 45, 97, 90, 125, 123, 108, 126, 110, 96, 43, 28, 23, 26)(11, 13, 73, 36, 61, 39, 34, 37, 74, 122, 127, 120, 98, 81, 30, 85)(14, 104, 59, 54, 57, 102, 88, 101, 118, 53, 38, 50, 91, 19, 21, 83)(15, 17, 49, 18, 52, 47, 100, 117, 87, 99, 89, 51, 84, 48, 41, 46)(129, 230, 130, 148, 246, 155, 139, 137, 172, 205, 196, 235, 220, 187, 153, 217)(131, 253, 229, 193, 223, 206, 135, 147, 255, 156, 164, 212, 207, 252, 224, 209)(132, 243, 188, 143, 238, 222, 158, 174, 221, 208, 244, 218, 228, 168, 166, 154)(133, 181, 134, 202, 250, 179, 203, 136, 239, 152, 216, 170, 159, 183, 189, 242)(138, 226, 160, 171, 169, 213, 149, 211, 231, 175, 141, 184, 182, 157, 140, 190)(142, 256, 177, 195, 200, 204, 180, 254, 227, 210, 178, 201, 249, 240, 173, 233)(144, 151, 197, 219, 176, 150, 225, 194, 215, 232, 234, 251, 248, 236, 167, 214)(145, 163, 186, 247, 161, 165, 237, 162, 241, 146, 191, 192, 245, 199, 198, 185)
c: (3, 7)(5, 15)(8, 23)(13, 21)(14, 36)(16, 41)(22, 56)(29, 65)(32, 52)(35, 55)(37, 57)(38, 81)(39, 59)(43, 62)(49, 94)(58, 105)(68, 97)(71, 100)(75, 103)(76, 84)(78, 89)(79, 80)(82, 106)(85, 91)(87, 116)(88, 122)(108, 121)(109, 119)(110, 115)(113, 125)(118, 120)(124, 128)(136, 151)(146, 175)(150, 170)(152, 219)(157, 199)(162, 211)(163, 226)(165, 213)(171, 247)(179, 214)(181, 251)(183, 194)(184, 192)(185, 190)(202, 236)(232, 242)
d: (1, 2, 46, 26)(3, 98, 15, 33)(4, 32, 19, 97)(5, 53, 7, 69)(6, 68, 11, 52)(8, 127, 41, 72)(9, 24, 44, 17)(10, 18, 45, 25)(12, 78, 54, 110)(13, 119, 55, 88)(14, 120, 56, 124)(16, 101, 23, 114)(20, 115, 34, 89)(21, 122, 35, 109)(22, 118, 36, 128)(27, 47, 90, 63)(28, 64, 93, 48)(29, 66, 94, 50)(30, 49, 95, 65)(31, 51, 96, 67)(37, 75, 79, 91)(38, 39, 105, 106)(40, 113, 73, 100)(42, 116, 104, 108)(43, 107, 76, 102)(57, 85, 80, 103)(58, 59, 81, 82)(60, 71, 83, 125)(61, 87, 77, 121)(62, 74, 84, 86)(70, 99, 126, 112)(92, 111, 117, 123)(129, 138, 166, 145)(130, 160, 132, 186)(131, 242, 142, 232)(133, 230, 234, 154)(134, 148, 248, 243)(135, 179, 180, 214)(136, 227, 151, 255)(137, 144, 222, 203)(139, 149, 238, 237)(140, 228, 198, 153)(141, 221, 191, 196)(143, 250, 155, 167)(146, 253, 175, 256)(147, 190, 254, 185)(150, 207, 170, 249)(152, 178, 219, 164)(156, 226, 210, 163)(157, 204, 199, 206)(158, 241, 172, 231)(159, 187, 225, 218)(161, 246, 169, 188)(162, 209, 211, 233)(165, 252, 213, 240)(168, 189, 217, 215)(171, 201, 247, 212)(173, 194, 224, 183)(174, 239, 205, 197)(176, 208, 216, 235)(177, 251, 229, 181)(182, 244, 245, 220)(184, 195, 192, 193)(200, 236, 223, 202)
e: (3, 7)(4, 11)(5, 15)(6, 19)(8, 23)(12, 34)(13, 55)(14, 56)(16, 41)(20, 54)(21, 35)(22, 36)(29, 65)(30, 66)(32, 52)(33, 53)(37, 79)(38, 105)(39, 106)(40, 83)(42, 61)(43, 62)(49, 94)(50, 95)(57, 80)(58, 81)(59, 82)(60, 73)(68, 97)(69, 98)(71, 100)(72, 101)(74, 107)(75, 91)(76, 84)(77, 104)(78, 89)(85, 103)(86, 102)(87, 116)(88, 119)(108, 121)(109, 122)(110, 115)(113, 125)(114, 127)(118, 128)(120, 124)(131, 142)(135, 180)(136, 151)(146, 175)(147, 254)(150, 170)(152, 219)(156, 210)(157, 199)(162, 211)(163, 226)(164, 178)(165, 213)(171, 247)(173, 224)(177, 229)(179, 214)(181, 251)(183, 194)(184, 192)(185, 190)(193, 195)(200, 223)(201, 212)(202, 236)(204, 206)(207, 249)(209, 233)(227, 255)(232, 242)(240, 252)(253, 256)
f: (2, 26)(3, 98, 7, 69)(4, 68, 11, 97)(5, 53, 15, 33)(6, 32, 19, 52)(8, 127, 23, 114)(9, 44)(10, 45)(12, 115, 34, 110)(13, 119, 55, 88)(14, 120, 56, 124)(16, 101, 41, 72)(20, 78, 54, 89)(21, 122, 35, 109)(22, 118, 36, 128)(27, 90)(28, 93)(29, 66, 65, 30)(31, 96)(37, 75, 79, 91)(38, 39, 105, 106)(40, 71, 83, 100)(42, 121, 61, 108)(43, 107, 62, 74)(49, 95, 94, 50)(57, 85, 80, 103)(58, 59, 81, 82)(60, 113, 73, 125)(70, 126)(76, 102, 84, 86)(77, 116, 104, 87)(111, 123)(129, 138)(130, 160)(131, 242, 142, 232)(132, 186)(133, 154)(134, 243)(135, 179, 180, 214)(136, 227, 151, 255)(137, 144)(139, 149)(140, 153)(141, 196)(143, 250)(145, 166)(146, 253, 175, 256)(147, 190, 254, 185)(148, 248)(150, 207, 170, 249)(152, 178, 219, 164)(155, 167)(156, 226, 210, 163)(157, 204, 199, 206)(158, 241)(159, 218)(161, 188)(162, 209, 211, 233)(165, 252, 213, 240)(168, 189)(169, 246)(171, 201, 247, 212)(172, 231)(173, 194, 224, 183)(174, 239)(176, 235)(177, 251, 229, 181)(182, 220)(184, 195, 192, 193)(187, 225)(191, 221)(197, 205)(198, 228)(200, 236, 223, 202)(203, 222)(208, 216)(215, 217)(230, 234)(237, 238)(244, 245)

(III) Last is Groups&Graphs. Copy everything between (not including) the lines of asterisks into a plain text file and save it as "graph.txt". Then launch G&G (Groups&Graphs) and select Read Text from the File menu.

**************

&Graph
C4[ 256, 107 ]
256
-1 231 172 205 197
-2 231 158 174 197
-3 205 196 175 219
-4 225 140 173 206
-5 221 174 175 219
-6 198 159 173 206
-7 146 205 152 196
-8 211 137 172 151
-9 191 235 216 196
-10 244 225 182 218
-11 224 225 204 140
-12 200 212 169 248
-13 209 190 180 194
-14 242 253 227 163
-15 221 146 152 174
-16 211 222 158 151
-17 221 191 216 208
-18 244 245 159 218
-19 198 224 159 204
-20 134 200 212 161
-21 209 180 183 185
-22 242 255 256 163
-23 136 137 172 162
-24 176 235 141 196
-25 187 220 225 182
-26 172 205 239 241
-27 168 215 140 228
-28 137 203 237 139
-29 220 235 170 192
-30 176 182 195 207
-31 143 188 167 169
-32 157 194 228 218
-33 253 178 191 239
-34 201 223 169 248
-35 233 135 190 194
-36 253 232 226 227
-37 213 236 249 206
-38 177 212 192 152
-39 178 171 193 251
-40 145 189 147 142
-41 222 136 158 162
-42 177 156 234 160
-43 165 155 179 139
-44 176 221 141 208
-45 187 220 245 159
-46 158 239 174 241
-47 198 189 168 228
-48 222 203 237 238
-49 244 170 192 208
-50 245 216 195 207
-51 143 188 161 250
-52 199 183 228 218
-53 256 191 239 164
-54 134 201 223 161
-55 233 135 183 185
-56 232 255 256 226
-57 165 202 249 206
-58 201 192 152 229
-59 178 181 247 193
-60 147 138 215 142
-61 210 234 160 229
-62 155 213 214 139
-63 215 140 217 153
-64 144 137 149 139
-65 220 235 150 184
-66 176 182 193 249
-67 155 167 169 246
-68 187 157 194 153
-69 253 178 141 197
-70 132 243 160 248
-71 166 232 168 190
-72 209 203 227 241
-73 254 138 215 131
-74 167 135 149 240
-75 157 223 150 240
-76 143 213 214 238
-77 133 177 156 186
-78 188 243 236 171
-79 165 202 204 207
-80 213 236 204 207
-81 177 212 184 219
-82 171 195 251 164
-83 254 145 189 131
-84 143 165 179 238
-85 200 157 150 252
-86 180 237 250 252
-87 132 154 181 163
-88 179 147 162 173
-89 188 243 202 247
-90 198 189 217 153
-91 199 200 170 252
-92 234 138 129 230
-93 144 222 149 238
-94 244 150 184 208
-95 245 193 216 249
-96 155 246 161 250
-97 187 199 183 153
-98 256 141 164 197
-99 132 243 134 186
-100 242 166 168 185
-101 233 255 203 241
-102 135 237 250 240
-103 199 223 170 240
-104 133 210 229 186
-105 201 184 229 219
-106 181 247 195 164
-107 167 180 149 252
-108 181 130 163 230
-109 254 179 224 162
-110 202 246 148 247
-111 154 166 234 138
-112 148 160 248 130
-113 232 190 129 217
-114 209 231 144 227
-115 246 148 236 171
-116 132 154 226 251
-117 154 133 166 145
-118 156 146 136 142
-119 254 211 224 214
-120 156 151 142 175
-121 226 130 251 230
-122 211 147 214 173
-123 133 145 129 230
-124 210 146 136 131
-125 242 129 217 185
-126 134 148 130 186
-127 231 144 233 255
-128 210 151 131 175
-129 123 113 92 125
-130 121 112 126 108
-131 124 83 73 128
-132 99 70 116 87
-133 77 123 104 117
-134 99 126 20 54
-135 55 35 102 74
-136 23 124 41 118
-137 23 28 8 64
-138 111 92 60 73
-139 28 62 64 43
-140 11 4 27 63
-141 44 24 69 98
-142 60 40 118 120
-143 51 84 31 76
-144 114 93 127 64
-145 123 83 40 117
-146 124 15 7 118
-147 88 122 60 40
-148 110 112 115 126
-149 93 74 107 64
-150 94 85 75 65
-151 16 128 8 120
-152 58 15 38 7
-153 68 90 63 97
-154 111 116 117 87
-155 67 62 96 43
-156 77 118 42 120
-157 68 85 75 32
-158 2 46 16 41
-159 45 6 18 19
-160 112 70 61 42
-161 51 96 20 54
-162 88 23 41 109
-163 22 14 108 87
-164 82 106 53 98
-165 57 79 84 43
-166 100 111 71 117
-167 67 74 107 31
-168 100 47 27 71
-169 12 34 67 31
-170 91 103 49 29
-171 78 82 115 39
-172 1 23 26 8
-173 88 122 4 6
-174 2 46 15 5
-175 3 5 128 120
-176 44 66 24 30
-177 77 81 38 42
-178 33 69 59 39
-179 88 84 43 109
-180 13 107 86 21
-181 59 106 108 87
-182 66 25 30 10
-183 55 52 97 21
-184 81 94 105 65
-185 55 100 125 21
-186 77 99 104 126
-187 45 68 25 97
-188 78 89 51 31
-189 90 47 83 40
-190 13 35 113 71
-191 33 17 9 53
-192 58 38 49 29
-193 66 59 39 95
-194 13 35 68 32
-195 82 50 106 30
-196 24 3 7 9
-197 1 2 69 98
-198 90 47 6 19
-199 91 103 52 97
-200 12 91 85 20
-201 34 58 105 54
-202 110 89 57 79
-203 101 48 28 72
-204 11 79 80 19
-205 1 3 26 7
-206 57 4 37 6
-207 79 80 50 30
-208 44 49 17 94
-209 13 114 72 21
-210 124 104 61 128
-211 122 16 8 119
-212 12 81 38 20
-213 80 37 62 76
-214 122 62 119 76
-215 27 60 73 63
-216 17 50 95 9
-217 90 113 125 63
-218 18 52 10 32
-219 3 81 5 105
-220 45 25 29 65
-221 44 15 5 17
-222 48 16 93 41
-223 34 103 75 54
-224 11 19 119 109
-225 11 25 4 10
-226 121 56 36 116
-227 14 36 114 72
-228 47 27 52 32
-229 58 104 61 105
-230 121 123 92 108
-231 1 2 114 127
-232 56 36 113 71
-233 55 35 101 127
-234 111 92 61 42
-235 24 29 9 65
-236 78 80 37 115
-237 102 48 28 86
-238 48 93 84 76
-239 33 46 26 53
-240 102 103 74 75
-241 46 101 26 72
-242 22 100 14 125
-243 99 78 89 70
-244 49 94 18 10
-245 45 50 18 95
-246 110 67 115 96
-247 110 89 59 106
-248 12 34 112 70
-249 66 57 37 95
-250 102 51 96 86
-251 121 82 39 116
-252 91 85 107 86
-253 33 14 36 69
-254 83 73 119 109
-255 22 56 101 127
-256 22 56 53 98
0

**************