[Home] [Table] [Glossary]
[Families]
On this page are computer-accessible forms for the graph C4[ 256, 108 ] =
PL(ATD[8,2]#ATD[32,2]).
(I) Following is a form readable by MAGMA:
g:=Graph<256|{ {128, 166}, {128, 188}, {128, 215}, {128, 236}, {41, 169}, {116,
244}, {69, 197}, {75, 202}, {109, 236}, {99, 226}, {93, 220}, {34, 160}, {105,
235}, {39, 165}, {7, 132}, {112, 243}, {58, 185}, {51, 183}, {94, 218}, {54,
178}, {46, 171}, {104, 237}, {42, 172}, {126, 248}, {123, 253}, {40, 175}, {84,
211}, {16, 152}, {127, 247}, {115, 251}, {72, 192}, {86, 222}, {17, 152}, {121,
240}, {110, 231}, {60, 181}, {22, 159}, {51, 185}, {66, 200}, {55, 188}, {57,
178}, {76, 199}, {1, 141}, {54, 186}, {49, 189}, {80, 221}, {111, 226}, {81,
220}, {35, 173}, {121, 247}, {116, 250}, {114, 252}, {103, 233}, {97, 239}, {62,
176}, {64, 206}, {87, 217}, {2, 141}, {126, 241}, {124, 243}, {47, 160}, {44,
163}, {33, 174}, {15, 158}, {107, 250}, {104, 249}, {91, 202}, {29, 140}, {68,
213}, {71, 214}, {5, 151}, {125, 239}, {124, 238}, {90, 200}, {54, 164}, {35,
177}, {13, 159}, {83, 193}, {86, 196}, {50, 161}, {58, 169}, {70, 213}, {18,
134}, {97, 245}, {93, 201}, {91, 207}, {52, 160}, {63, 171}, {8, 157}, {120,
237}, {105, 252}, {37, 176}, {34, 183}, {31, 138}, {22, 131}, {70, 211}, {82,
199}, {89, 204}, {6, 144}, {25, 143}, {63, 168}, {79, 216}, {41, 177}, {110,
246}, {51, 171}, {5, 156}, {111, 246}, {93, 196}, {46, 183}, {32, 185}, {38,
188}, {47, 181}, {40, 178}, {73, 211}, {10, 145}, {60, 167}, {88, 195}, {2,
158}, {7, 155}, {82, 206}, {27, 134}, {56, 165}, {35, 190}, {101, 251}, {4,
155}, {12, 147}, {8, 151}, {64, 223}, {10, 170}, {119, 215}, {29, 189}, {13,
173}, {65, 225}, {74, 234}, {72, 233}, {115, 210}, {92, 253}, {4, 166}, {120,
218}, {56, 154}, {73, 235}, {86, 244}, {36, 135}, {8, 172}, {10, 174}, {19,
182}, {123, 222}, {99, 198}, {59, 158}, {45, 136}, {77, 232}, {85, 240}, {18,
180}, {125, 219}, {44, 138}, {70, 224}, {5, 162}, {103, 192}, {44, 139}, {67,
228}, {38, 142}, {45, 133}, {43, 131}, {61, 149}, {6, 175}, {111, 198}, {107,
194}, {48, 153}, {32, 137}, {76, 229}, {38, 140}, {43, 129}, {88, 242}, {17,
186}, {82, 254}, {125, 209}, {83, 255}, {11, 166}, {113, 220}, {108, 193}, {57,
148}, {56, 149}, {47, 130}, {41, 132}, {27, 182}, {69, 232}, {78, 227}, {68,
234}, {72, 230}, {79, 225}, {28, 179}, {100, 203}, {15, 191}, {102, 214}, {97,
209}, {90, 234}, {33, 145}, {65, 241}, {34, 147}, {124, 205}, {122, 203}, {117,
196}, {67, 242}, {9, 187}, {98, 208}, {87, 229}, {13, 190}, {52, 135}, {84,
231}, {21, 161}, {32, 148}, {14, 187}, {97, 212}, {96, 213}, {44, 153}, {61,
136}, {7, 177}, {122, 204}, {36, 146}, {30, 168}, {78, 248}, {88, 238}, {42,
157}, {101, 210}, {31, 167}, {45, 149}, {40, 144}, {74, 242}, {77, 245}, {55,
142}, {98, 219}, {77, 244}, {89, 224}, {51, 137}, {117, 207}, {103, 221}, {3,
184}, {24, 164}, {114, 206}, {100, 216}, {99, 223}, {95, 227}, {31, 163}, {88,
228}, {2, 191}, {112, 205}, {58, 135}, {43, 150}, {39, 154}, {6, 184}, {119,
201}, {118, 200}, {21, 170}, {124, 195}, {94, 225}, {78, 241}, {26, 218}, {110,
174}, {53, 245}, {13, 204}, {101, 164}, {56, 249}, {28, 221}, {62, 255}, {79,
142}, {80, 145}, {19, 209}, {118, 180}, {23, 213}, {62, 252}, {75, 137}, {65,
130}, {123, 184}, {112, 179}, {94, 157}, {85, 150}, {23, 211}, {108, 168}, {103,
163}, {49, 245}, {43, 239}, {60, 248}, {64, 132}, {75, 143}, {7, 194}, {96,
165}, {59, 254}, {58, 255}, {37, 224}, {35, 230}, {23, 210}, {4, 194}, {118,
176}, {25, 223}, {16, 214}, {69, 131}, {77, 139}, {10, 205}, {92, 155}, {17,
214}, {14, 201}, {66, 133}, {81, 150}, {11, 195}, {100, 172}, {90, 146}, {81,
153}, {9, 192}, {98, 171}, {39, 238}, {33, 232}, {20, 221}, {16, 218}, {32,
234}, {27, 209}, {20, 222}, {108, 167}, {113, 186}, {40, 228}, {114, 190}, {95,
147}, {53, 249}, {50, 254}, {12, 193}, {93, 144}, {66, 143}, {70, 136}, {84,
154}, {9, 198}, {116, 187}, {46, 225}, {36, 235}, {19, 220}, {15, 223}, {107,
187}, {106, 186}, {102, 182}, {95, 143}, {68, 148}, {71, 151}, {24, 201}, {119,
166}, {109, 188}, {100, 181}, {26, 203}, {89, 136}, {55, 229}, {91, 137}, {57,
235}, {8, 219}, {106, 185}, {73, 154}, {23, 195}, {126, 170}, {42, 254}, {85,
129}, {2, 215}, {53, 224}, {38, 243}, {1, 215}, {122, 172}, {121, 175}, {49,
231}, {41, 255}, {19, 196}, {117, 162}, {112, 167}, {101, 178}, {76, 155}, {86,
129}, {21, 205}, {109, 181}, {30, 198}, {74, 146}, {11, 210}, {115, 170}, {37,
252}, {22, 204}, {81, 139}, {16, 203}, {118, 173}, {73, 146}, {18, 206}, {94,
130}, {39, 251}, {37, 249}, {63, 227}, {26, 199}, {96, 189}, {57, 228}, {53,
232}, {78, 147}, {5, 219}, {127, 161}, {50, 236}, {30, 192}, {17, 207}, {67,
156}, {108, 179}, {89, 134}, {20, 244}, {3, 226}, {67, 162}, {68, 165}, {20,
246}, {123, 153}, {59, 217}, {34, 193}, {92, 191}, {87, 180}, {33, 197}, {110,
138}, {92, 184}, {52, 208}, {48, 212}, {60, 216}, {12, 233}, {125, 152}, {120,
157}, {111, 138}, {102, 131}, {49, 212}, {45, 200}, {31, 248}, {120, 159}, {119,
144}, {113, 150}, {99, 132}, {71, 160}, {24, 240}, {15, 230}, {61, 212}, {3,
233}, {90, 176}, {28, 246}, {24, 242}, {66, 169}, {82, 190}, {105, 133}, {28,
241}, {113, 156}, {106, 135}, {80, 189}, {12, 226}, {55, 217}, {48, 222}, {36,
202}, {29, 243}, {74, 164}, {79, 161}, {1, 238}, {109, 130}, {63, 208}, {71,
183}, {96, 145}, {127, 142}, {102, 151}, {65, 179}, {127, 141}, {126, 140}, {4,
247}, {42, 217}, {14, 253}, {69, 182}, {76, 191}, {80, 163}, {9, 253}, {121,
141}, {117, 129}, {64, 180}, {48, 197}, {107, 158}, {50, 199}, {27, 237}, {106,
156}, {95, 169}, {46, 216}, {104, 159}, {114, 133}, {61, 197}, {3, 250}, {91,
162}, {59, 194}, {54, 207}, {22, 239}, {21, 236}, {72, 177}, {1, 251}, {98,
152}, {29, 231}, {84, 174}, {85, 175}, {87, 173}, {83, 168}, {6, 250}, {122,
134}, {11, 247}, {30, 227}, {105, 148}, {104, 149}, {14, 240}, {52, 202}, {18,
237}, {116, 139}, {115, 140}, {47, 208}, {26, 229}, {25, 230}, {25, 256}, {62,
256}, {75, 256}, {83, 256} }>;
(II) A more general form is to represent the graph as the orbit of {128, 166}
under the group generated by the following permutations:
a: (3, 9)(5, 17)(6, 14)(8, 16)(10, 29)(12, 30)(21, 38)(24, 40)(26, 42)(33,
49)(34, 63)(37, 45)(48, 77)(50, 55)(53, 61)(54, 67)(57, 74)(59, 76)(62, 66)(69,
97)(71, 98)(78, 108)(82, 87)(83, 95)(88, 101)(90, 105)(92, 107)(102, 125)(112,
126)(114, 118)(115, 124)(116, 123)(131, 239)(133, 176)(136, 224)(139, 153)(140,
205)(142, 161)(143, 256)(144, 201)(145, 189)(146, 235)(147, 168)(148, 234)(149,
249)(151, 152)(155, 194)(156, 186)(157, 218)(158, 191)(160, 208)(162, 207)(164,
228)(167, 248)(169, 255)(170, 243)(171, 183)(172, 203)(173, 190)(174, 231)(175,
240)(178, 242)(179, 241)(180, 206)(182, 209)(184, 187)(188, 236)(192, 233)(193,
227)(195, 210)(197, 245)(198, 226)(199, 217)(200, 252)(212, 232)(214, 219)(222,
244)(229, 254)(238, 251)(250, 253) (III) Last is Groups&Graphs. Copy everything between (not including)
the lines of asterisks into a plain text file and save it as "graph.txt". Then
launch G&G (Groups&Graphs) and select Read Text from the File menu.
**************
&Graph **************
b: (1, 2)(3, 10)(4, 11)(5, 8)(6, 21)(7, 23)(9, 29)(12, 33)(13, 32)(14, 38)(15,
39)(16, 17)(18, 36)(19, 47)(20, 28)(22, 51)(24, 55)(25, 56)(26, 54)(27, 52)(30,
49)(31, 44)(34, 69)(35, 68)(37, 62)(40, 50)(41, 70)(42, 67)(43, 46)(45, 66)(48,
78)(53, 83)(57, 82)(58, 89)(59, 88)(60, 81)(61, 95)(63, 97)(64, 73)(65, 86)(71,
102)(72, 96)(74, 87)(75, 104)(76, 101)(77, 108)(79, 85)(80, 103)(84, 99)(90,
118)(91, 120)(92, 115)(93, 109)(94, 117)(98, 125)(100, 113)(105, 114)(106,
122)(107, 124)(110, 111)(112, 116)(119, 128)(121, 127)(123, 126)(129, 225)(130,
196)(131, 183)(132, 211)(134, 135)(136, 169)(137, 159)(139, 167)(140, 253)(142,
240)(143, 149)(144, 236)(145, 233)(146, 180)(147, 197)(148, 190)(150, 216)(153,
248)(154, 223)(155, 210)(156, 172)(157, 162)(158, 238)(160, 182)(161, 175)(164,
229)(165, 230)(168, 245)(170, 184)(171, 239)(173, 234)(174, 226)(177, 213)(178,
199)(179, 244)(181, 220)(185, 204)(186, 203)(187, 243)(188, 201)(189, 192)(191,
251)(193, 232)(194, 195)(198, 231)(202, 237)(205, 250)(206, 235)(207, 218)(208,
209)(212, 227)(217, 242)(222, 241)(224, 255)(228, 254)(249, 256)
c: (1, 5, 20, 37)(2, 8, 28, 62)(3, 18, 38, 51)(4, 16, 31, 66)(6, 27, 29, 32)(7,
26, 60, 95)(9, 13, 21, 52)(10, 36, 14, 22)(11, 17, 44, 45)(12, 64, 55, 46)(15,
42, 65, 83)(19, 49, 68, 40)(23, 54, 81, 61)(24, 43, 33, 73)(25, 59, 94, 108)(30,
35, 50, 47)(34, 99, 87, 79)(39, 67, 86, 53)(41, 76, 100, 78)(48, 70, 101,
113)(56, 88, 117, 77)(57, 93, 97, 96)(58, 92, 122, 126)(63, 72, 82, 109)(69, 84,
74, 85)(71, 111, 118, 127)(75, 107, 120, 112)(80, 105, 119, 125)(89, 115, 106,
123)(90, 121, 102, 110)(91, 116, 104, 124)(98, 103, 114, 128)(129, 232, 154,
242)(130, 168, 230, 254)(131, 174, 146, 240)(132, 229, 216, 147)(133, 166, 152,
163)(134, 140, 185, 184)(135, 253, 204, 170)(136, 210, 186, 153)(137, 250, 237,
243)(138, 200, 247, 214)(139, 149, 195, 207)(141, 151, 246, 176)(142, 183, 226,
180)(143, 194, 218, 167)(144, 209, 189, 148)(145, 235, 201, 239)(150, 197, 211,
164)(155, 203, 248, 169)(156, 222, 224, 251)(157, 179, 256, 158)(159, 205, 202,
187)(160, 198, 173, 161)(162, 244, 249, 238)(165, 228, 196, 245)(171, 233, 206,
188)(172, 241, 255, 191)(175, 182, 231, 234)(177, 199, 181, 227)(178, 220, 212,
213)(190, 236, 208, 192)(193, 223, 217, 225)(215, 219, 221, 252)
d: (5, 17)(8, 16)(26, 42)(37, 45)(48, 77)(53, 61)(54, 67)(59, 76)(62, 66)(78,
108)(83, 95)(88, 101)(92, 107)(112, 126)(115, 124)(116, 123)(133, 252)(136,
224)(139, 153)(140, 243)(143, 256)(147, 193)(149, 249)(151, 214)(152, 219)(155,
194)(156, 186)(157, 218)(158, 191)(162, 207)(164, 242)(167, 248)(168, 227)(169,
255)(170, 205)(172, 203)(176, 200)(178, 228)(179, 241)(184, 250)(187, 253)(195,
210)(197, 232)(199, 254)(212, 245)(217, 229)(222, 244)(238, 251)
e: (2, 39)(3, 33)(4, 23)(5, 47, 17, 46)(6, 10)(7, 70)(8, 52, 16, 51)(9, 49)(12,
69)(13, 62, 18, 66)(14, 29)(15, 56)(19, 78, 43, 108)(21, 40)(22, 83, 27, 95)(24,
38)(25, 104)(26, 32, 42, 36)(28, 86)(30, 97)(31, 81)(34, 102)(35, 37, 64,
45)(41, 89)(48, 103, 77, 111)(50, 57)(53, 99, 61, 72)(54, 79, 67, 109)(55,
74)(58, 122)(59, 73, 76, 68)(60, 113)(63, 125)(65, 117)(75, 120)(80, 116, 110,
123)(82, 105)(84, 92, 96, 107)(85, 112, 93, 126)(87, 90)(88, 128, 101, 127)(91,
94)(100, 106)(115, 121, 124, 119)(129, 179, 196, 241)(130, 207, 225, 162)(131,
193, 182, 147)(132, 136, 177, 224)(133, 190, 252, 206)(134, 169, 204, 255)(135,
203, 185, 172)(137, 157, 202, 218)(138, 153, 163, 139)(140, 240, 243, 201)(141,
238, 215, 251)(142, 242, 188, 164)(143, 159, 256, 237)(144, 170, 175, 205)(145,
250, 174, 184)(146, 229, 234, 217)(148, 254, 235, 199)(149, 230, 249, 223)(150,
167, 220, 248)(151, 160, 214, 183)(152, 171, 219, 208)(154, 191, 165, 158)(155,
213, 194, 211)(156, 181, 186, 216)(161, 228, 236, 178)(166, 210, 247, 195)(168,
209, 227, 239)(173, 176, 180, 200)(187, 231, 253, 189)(192, 245, 198, 212)(197,
233, 232, 226)(221, 244, 246, 222)
f: (1, 3, 65, 82, 75, 102, 56, 40, 20, 21, 15, 34, 120, 105, 117, 33)(2, 12, 94,
114, 91, 69, 39, 6, 28, 50, 25, 71, 104, 57, 86, 10)(4, 30, 100, 118, 106, 97,
23, 14, 31, 55, 41, 98, 89, 74, 81, 29)(5, 61, 88, 123, 112, 76, 83, 16, 37, 54,
77, 115, 107, 78, 42, 66)(7, 63, 122, 90, 113, 49, 11, 9, 60, 87, 58, 125, 70,
24, 44, 38)(8, 45, 67, 48, 124, 92, 108, 26, 62, 17, 53, 101, 116, 126, 59,
95)(13, 32, 43, 96, 121, 103, 79, 35, 51, 22, 68, 85, 80, 127, 72, 46)(18, 36,
19, 84, 119, 111, 109, 64, 52, 27, 73, 93, 110, 128, 99, 47)(129, 145, 141, 233,
225, 190, 137, 131, 165, 175, 221, 161, 230, 183, 159, 148)(130, 206, 202, 182,
154, 144, 246, 236, 223, 160, 237, 235, 196, 174, 215, 226)(132, 208, 134, 146,
220, 231, 166, 198, 181, 180, 135, 209, 211, 201, 138, 188)(133, 162, 197, 238,
184, 179, 199, 256, 214, 249, 178, 244, 170, 158, 147, 157)(136, 242, 153, 243,
155, 168, 203, 176, 186, 245, 210, 187, 248, 217, 169, 219)(139, 140, 194, 227,
172, 200, 156, 212, 195, 253, 167, 229, 255, 152, 224, 164)(142, 177, 171, 204,
234, 150, 189, 247, 192, 216, 173, 185, 239, 213, 240, 163)(143, 151, 149, 228,
222, 205, 191, 193, 218, 252, 207, 232, 251, 250, 241, 254)
C4[ 256, 108 ]
256
-1 215 238 141 251
-2 158 191 215 141
-3 233 226 184 250
-4 155 166 247 194
-5 156 151 162 219
-6 144 184 250 175
-7 132 155 177 194
-8 157 172 151 219
-9 187 198 253 192
-10 145 170 205 174
-11 166 210 247 195
-12 233 147 193 226
-13 190 159 204 173
-14 187 253 201 240
-15 223 158 191 230
-16 203 214 152 218
-17 214 152 207 186
-18 134 180 237 206
-19 209 220 182 196
-20 221 222 244 246
-21 170 236 161 205
-22 159 204 239 131
-23 210 211 213 195
-24 242 201 240 164
-25 143 223 256 230
-26 199 203 218 229
-27 209 134 182 237
-28 221 179 246 241
-29 231 243 189 140
-30 198 168 192 227
-31 167 138 248 163
-32 234 137 148 185
-33 232 145 174 197
-34 147 160 193 183
-35 177 190 173 230
-36 135 146 202 235
-37 176 224 249 252
-38 188 243 140 142
-39 154 165 238 251
-40 144 178 228 175
-41 132 177 255 169
-42 254 157 172 217
-43 150 129 239 131
-44 138 139 163 153
-45 133 200 136 149
-46 225 171 183 216
-47 181 160 130 208
-48 222 212 153 197
-49 231 189 212 245
-50 199 254 236 161
-51 137 171 183 185
-52 135 202 160 208
-53 232 245 224 249
-54 178 207 164 186
-55 188 217 229 142
-56 154 165 149 249
-57 178 235 148 228
-58 255 135 169 185
-59 254 158 194 217
-60 167 181 248 216
-61 212 136 149 197
-62 176 255 256 252
-63 168 171 227 208
-64 132 223 180 206
-65 179 225 130 241
-66 143 133 200 169
-67 242 156 162 228
-68 165 234 213 148
-69 232 182 131 197
-70 211 136 213 224
-71 214 160 183 151
-72 177 233 192 230
-73 154 211 146 235
-74 242 146 234 164
-75 143 256 202 137
-76 155 199 191 229
-77 232 244 245 139
-78 147 248 227 241
-79 225 161 216 142
-80 221 145 189 163
-81 220 139 150 153
-82 199 254 190 206
-83 255 168 256 193
-84 154 231 211 174
-85 150 129 240 175
-86 222 244 129 196
-87 180 173 217 229
-88 242 238 195 228
-89 134 136 224 204
-90 176 200 146 234
-91 202 137 162 207
-92 253 155 191 184
-93 220 144 201 196
-94 157 225 130 218
-95 143 147 169 227
-96 165 145 189 213
-97 209 212 245 239
-98 171 152 208 219
-99 132 198 223 226
-100 181 203 172 216
-101 210 178 251 164
-102 214 182 151 131
-103 221 233 192 163
-104 159 149 237 249
-105 133 235 148 252
-106 156 135 185 186
-107 187 158 194 250
-108 167 168 179 193
-109 188 181 236 130
-110 231 246 138 174
-111 198 246 138 226
-112 243 167 179 205
-113 220 156 150 186
-114 133 190 206 252
-115 210 170 140 251
-116 187 244 139 250
-117 129 162 196 207
-118 176 200 180 173
-119 144 166 201 215
-120 157 159 237 218
-121 247 141 240 175
-122 134 203 204 172
-123 253 222 184 153
-124 243 205 238 195
-125 209 239 152 219
-126 170 248 140 241
-127 247 161 141 142
-128 166 188 236 215
-129 117 85 86 43
-130 47 94 65 109
-131 22 69 102 43
-132 99 7 41 64
-133 66 45 114 105
-134 89 122 27 18
-135 36 58 106 52
-136 45 89 70 61
-137 91 51 75 32
-138 44 110 111 31
-139 44 77 81 116
-140 38 115 126 29
-141 121 1 2 127
-142 55 79 38 127
-143 66 25 95 75
-144 93 6 40 119
-145 33 80 96 10
-146 90 36 73 74
-147 12 34 78 95
-148 57 68 105 32
-149 45 56 104 61
-150 113 81 85 43
-151 102 5 71 8
-152 125 16 17 98
-153 44 123 48 81
-154 56 39 73 84
-155 4 92 7 76
-156 67 113 5 106
-157 94 8 42 120
-158 2 15 59 107
-159 22 13 104 120
-160 34 47 71 52
-161 79 50 127 21
-162 67 91 5 117
-163 44 80 103 31
-164 24 101 74 54
-165 56 68 39 96
-166 11 4 128 119
-167 112 60 31 108
-168 83 30 63 108
-169 66 58 95 41
-170 115 126 10 21
-171 46 51 63 98
-172 100 122 8 42
-173 13 35 118 87
-174 33 110 84 10
-175 121 6 40 85
-176 90 37 62 118
-177 35 72 7 41
-178 57 101 40 54
-179 112 28 108 65
-180 18 118 64 87
-181 100 47 60 109
-182 69 102 27 19
-183 34 46 71 51
-184 123 3 92 6
-185 58 51 106 32
-186 113 17 106 54
-187 14 116 107 9
-188 55 38 128 109
-189 80 49 29 96
-190 13 35 114 82
-191 2 15 92 76
-192 103 72 30 9
-193 12 34 83 108
-194 4 59 7 107
-195 11 88 23 124
-196 93 117 19 86
-197 33 69 48 61
-198 99 111 30 9
-199 26 82 50 76
-200 66 45 90 118
-201 24 14 93 119
-202 36 91 52 75
-203 100 122 26 16
-204 22 89 122 13
-205 112 124 10 21
-206 114 82 18 64
-207 91 17 117 54
-208 47 52 63 98
-209 125 27 19 97
-210 11 23 101 115
-211 23 70 73 84
-212 48 49 61 97
-213 23 68 70 96
-214 102 16 71 17
-215 1 2 128 119
-216 100 46 79 60
-217 55 59 42 87
-218 26 16 94 120
-219 125 5 8 98
-220 113 81 93 19
-221 80 103 28 20
-222 123 48 20 86
-223 99 25 15 64
-224 89 37 70 53
-225 46 79 94 65
-226 99 12 111 3
-227 78 95 30 63
-228 88 67 57 40
-229 55 26 76 87
-230 35 25 15 72
-231 110 49 29 84
-232 33 77 69 53
-233 12 3 103 72
-234 68 90 74 32
-235 57 36 105 73
-236 50 128 21 109
-237 27 104 18 120
-238 88 1 124 39
-239 22 125 97 43
-240 121 24 14 85
-241 78 126 28 65
-242 88 67 24 74
-243 112 124 38 29
-244 77 116 20 86
-245 77 49 53 97
-246 110 111 28 20
-247 11 121 4 127
-248 78 60 126 31
-249 56 37 104 53
-250 3 6 116 107
-251 1 101 115 39
-252 37 114 105 62
-253 123 14 92 9
-254 59 82 50 42
-255 58 83 62 41
-256 25 83 62 75
0