C4graphGraph forms for C4 [ 256, 111 ] = PL(ATD[8,2]#ATD[32,7])

[Home] [Table] [Glossary] [Families]

On this page are computer-accessible forms for the graph C4[ 256, 111 ] = PL(ATD[8,2]#ATD[32,7]).

(I) Following is a form readable by MAGMA:

g:=Graph<256|{ {128, 200}, {128, 209}, {128, 226}, {128, 252}, {17, 145}, {124, 252}, {104, 232}, {60, 188}, {18, 146}, {4, 133}, {121, 248}, {31, 158}, {20, 150}, {108, 238}, {59, 185}, {57, 187}, {32, 162}, {6, 133}, {116, 247}, {55, 180}, {54, 181}, {26, 158}, {127, 251}, {94, 218}, {40, 172}, {8, 142}, {49, 183}, {24, 158}, {21, 147}, {9, 143}, {8, 143}, {27, 156}, {47, 167}, {102, 238}, {61, 181}, {58, 179}, {63, 182}, {25, 147}, {113, 251}, {104, 226}, {84, 222}, {36, 175}, {48, 187}, {23, 155}, {99, 239}, {59, 183}, {81, 221}, {26, 151}, {117, 248}, {45, 160}, {11, 133}, {97, 239}, {43, 165}, {21, 155}, {66, 204}, {42, 165}, {100, 235}, {67, 204}, {83, 220}, {38, 182}, {114, 226}, {65, 209}, {83, 195}, {7, 150}, {61, 172}, {47, 190}, {14, 156}, {53, 167}, {24, 138}, {64, 211}, {120, 235}, {112, 227}, {100, 247}, {69, 214}, {6, 146}, {114, 230}, {16, 132}, {74, 222}, {76, 216}, {3, 150}, {31, 138}, {16, 133}, {13, 152}, {9, 156}, {73, 220}, {64, 214}, {106, 252}, {67, 213}, {69, 211}, {78, 216}, {4, 147}, {110, 249}, {101, 242}, {89, 206}, {55, 160}, {29, 138}, {70, 209}, {34, 187}, {114, 235}, {45, 180}, {30, 132}, {34, 185}, {90, 193}, {39, 188}, {68, 223}, {70, 221}, {14, 146}, {18, 142}, {72, 213}, {126, 227}, {101, 248}, {80, 205}, {2, 156}, {120, 230}, {98, 252}, {95, 193}, {7, 152}, {116, 235}, {108, 243}, {82, 205}, {15, 175}, {122, 218}, {25, 185}, {37, 132}, {97, 192}, {10, 168}, {25, 187}, {20, 182}, {65, 227}, {5, 166}, {114, 209}, {109, 206}, {107, 200}, {102, 197}, {96, 195}, {90, 249}, {74, 233}, {2, 166}, {92, 248}, {26, 190}, {77, 233}, {10, 175}, {21, 176}, {25, 191}, {106, 204}, {41, 143}, {40, 142}, {5, 162}, {122, 221}, {23, 176}, {72, 239}, {80, 247}, {3, 171}, {15, 167}, {21, 188}, {108, 197}, {105, 192}, {98, 203}, {56, 145}, {36, 141}, {3, 168}, {118, 221}, {93, 246}, {44, 135}, {13, 166}, {88, 243}, {20, 184}, {118, 218}, {67, 239}, {73, 229}, {5, 168}, {101, 200}, {10, 167}, {77, 224}, {5, 171}, {111, 193}, {92, 242}, {30, 176}, {22, 184}, {14, 160}, {88, 246}, {13, 162}, {100, 203}, {40, 135}, {24, 168}, {126, 206}, {110, 222}, {61, 141}, {38, 150}, {34, 146}, {78, 254}, {81, 225}, {62, 143}, {109, 220}, {87, 230}, {18, 160}, {69, 247}, {28, 175}, {61, 142}, {38, 149}, {22, 162}, {124, 200}, {117, 193}, {39, 147}, {37, 145}, {68, 240}, {75, 255}, {32, 149}, {91, 238}, {86, 227}, {9, 191}, {104, 222}, {83, 229}, {8, 191}, {97, 214}, {95, 232}, {63, 136}, {86, 225}, {33, 153}, {116, 204}, {96, 216}, {47, 151}, {51, 138}, {76, 245}, {60, 134}, {92, 230}, {90, 224}, {84, 238}, {4, 191}, {126, 197}, {123, 192}, {112, 203}, {103, 220}, {91, 224}, {54, 141}, {77, 246}, {2, 190}, {12, 176}, {73, 245}, {74, 246}, {27, 166}, {118, 203}, {103, 218}, {95, 226}, {57, 132}, {35, 158}, {39, 153}, {112, 206}, {51, 141}, {1, 190}, {127, 192}, {122, 197}, {105, 214}, {95, 224}, {46, 145}, {68, 251}, {79, 240}, {36, 228}, {90, 154}, {17, 208}, {101, 164}, {37, 228}, {22, 215}, {104, 170}, {9, 202}, {20, 215}, {16, 211}, {2, 198}, {110, 170}, {105, 173}, {103, 163}, {96, 164}, {58, 254}, {54, 242}, {14, 202}, {63, 251}, {81, 149}, {1, 196}, {116, 177}, {108, 169}, {10, 207}, {33, 231}, {1, 198}, {107, 172}, {51, 244}, {46, 233}, {30, 217}, {28, 219}, {1, 201}, {102, 174}, {80, 152}, {35, 234}, {79, 134}, {89, 144}, {3, 201}, {53, 255}, {87, 157}, {52, 255}, {122, 177}, {113, 186}, {8, 196}, {64, 140}, {31, 210}, {119, 186}, {62, 243}, {75, 134}, {7, 201}, {115, 189}, {109, 163}, {94, 144}, {35, 236}, {126, 177}, {107, 164}, {4, 212}, {47, 255}, {41, 249}, {32, 240}, {71, 151}, {79, 159}, {81, 129}, {56, 233}, {127, 174}, {72, 153}, {6, 212}, {123, 169}, {103, 181}, {102, 180}, {17, 194}, {121, 170}, {52, 231}, {50, 225}, {70, 149}, {71, 148}, {85, 134}, {45, 249}, {49, 229}, {12, 217}, {50, 231}, {66, 151}, {18, 196}, {119, 161}, {62, 232}, {60, 234}, {16, 199}, {125, 170}, {51, 228}, {24, 207}, {19, 196}, {86, 129}, {11, 211}, {123, 163}, {50, 234}, {67, 155}, {40, 241}, {53, 236}, {45, 244}, {66, 155}, {19, 201}, {123, 161}, {41, 243}, {88, 130}, {11, 208}, {106, 177}, {46, 245}, {68, 159}, {11, 215}, {127, 163}, {33, 253}, {12, 208}, {72, 148}, {76, 144}, {15, 210}, {60, 225}, {44, 241}, {41, 244}, {69, 152}, {85, 136}, {43, 245}, {119, 169}, {115, 173}, {99, 189}, {44, 242}, {71, 153}, {82, 140}, {89, 135}, {34, 253}, {113, 174}, {93, 130}, {58, 229}, {55, 232}, {48, 208}, {125, 157}, {105, 137}, {99, 131}, {53, 213}, {63, 223}, {12, 237}, {38, 199}, {97, 131}, {120, 154}, {33, 194}, {89, 186}, {59, 216}, {84, 183}, {85, 182}, {94, 186}, {27, 254}, {62, 219}, {49, 212}, {42, 207}, {39, 194}, {31, 250}, {87, 178}, {22, 240}, {124, 154}, {121, 159}, {106, 140}, {44, 202}, {32, 199}, {111, 136}, {48, 215}, {37, 194}, {91, 179}, {99, 139}, {29, 244}, {93, 180}, {42, 195}, {23, 253}, {117, 159}, {109, 135}, {71, 173}, {52, 223}, {94, 181}, {64, 171}, {29, 241}, {111, 131}, {55, 219}, {19, 254}, {50, 223}, {28, 241}, {80, 189}, {58, 212}, {98, 140}, {92, 178}, {79, 161}, {86, 184}, {66, 173}, {82, 189}, {23, 231}, {121, 137}, {100, 148}, {96, 144}, {29, 237}, {26, 234}, {28, 237}, {84, 165}, {88, 169}, {43, 217}, {112, 130}, {111, 157}, {42, 217}, {93, 174}, {57, 205}, {125, 137}, {118, 130}, {110, 154}, {85, 161}, {15, 250}, {125, 136}, {35, 213}, {117, 131}, {107, 157}, {98, 148}, {13, 250}, {56, 207}, {49, 198}, {27, 236}, {75, 188}, {78, 185}, {83, 164}, {115, 139}, {43, 210}, {120, 129}, {65, 184}, {82, 171}, {30, 228}, {115, 137}, {113, 139}, {6, 253}, {56, 195}, {73, 178}, {87, 172}, {17, 237}, {119, 139}, {54, 202}, {46, 210}, {7, 250}, {124, 129}, {59, 198}, {48, 205}, {74, 183}, {78, 179}, {57, 199}, {91, 165}, {76, 178}, {77, 179}, {19, 236}, {36, 219}, {52, 256}, {65, 256}, {70, 256}, {75, 256} }>;

(II) A more general form is to represent the graph as the orbit of {128, 200} under the group generated by the following permutations:

a: (11, 16)(12, 30)(17, 37)(20, 38)(22, 32)(28, 36)(29, 51)(40, 61)(44, 54)(48, 57)(65, 70)(81, 86)(89, 94)(103, 109)(112, 118)(122, 126)(132, 208)(135, 181)(141, 241)(149, 184)(199, 215)(206, 218)(221, 227)(228, 237)
b: (10, 24)(15, 31)(26, 47)(28, 29)(35, 53)(36, 51)(41, 62)(45, 55)(50, 52)(60, 75)(65, 86)(70, 81)(90, 95)(104, 110)(114, 120)(124, 128)(129, 209)(138, 175)(154, 226)(158, 167)(219, 244)(225, 256)(232, 249)(234, 255)
c: (4, 6)(8, 18)(9, 14)(21, 23)(25, 34)(33, 39)(41, 45)(50, 60)(52, 75)(55, 62)(63, 85)(68, 79)(88, 93)(102, 108)(113, 119)(123, 127)(134, 223)(143, 160)(146, 191)(147, 253)(161, 251)(169, 174)(180, 243)(188, 231)
d: (4, 34)(6, 25)(8, 18)(9, 14)(11, 48)(16, 57)(21, 23)(33, 39)(41, 45)(49, 59)(50, 60)(52, 75)(55, 62)(58, 78)(63, 85)(64, 82)(68, 79)(69, 80)(73, 76)(83, 96)(88, 93)(89, 109)(94, 103)(97, 99)(102, 108)(105, 115)(113, 123)(119, 127)(133, 187)(134, 223)(139, 192)(143, 160)(144, 220)(146, 191)(147, 253)(161, 251)(163, 186)(169, 174)(180, 243)(185, 212)(188, 231)(189, 214)(205, 211)(216, 229)
e: (2, 19)(3, 26)(5, 35)(6, 25)(7, 47)(8, 49)(9, 58)(10, 31)(11, 21, 16, 39)(12, 30, 37, 17)(13, 53)(14, 78)(18, 59)(20, 66, 38, 71)(22, 67, 32, 72)(23, 57, 33, 48)(28, 43, 36, 46)(29, 42, 51, 56)(40, 84, 61, 74)(41, 83)(44, 91, 54, 77)(45, 96)(50, 82)(52, 80)(55, 76)(60, 64)(62, 73)(63, 115)(65, 116, 70, 100)(68, 99)(69, 75)(79, 97)(81, 98, 86, 106)(85, 105)(87, 104)(88, 109, 108, 103)(89, 102, 94, 93)(90, 101)(92, 95)(107, 110)(111, 121)(112, 126, 122, 118)(119, 127)(120, 128)(129, 252)(130, 206, 197, 218)(131, 159)(132, 194, 208, 176)(133, 147)(134, 214)(135, 238, 181, 246)(136, 137)(138, 207)(139, 251)(140, 225)(141, 233, 241, 165)(142, 183)(143, 229)(144, 180)(145, 237, 217, 228)(146, 185)(148, 184, 204, 149)(150, 151)(152, 255)(153, 215, 155, 199)(154, 200)(156, 254)(157, 170)(158, 168)(160, 216)(161, 192)(162, 213)(163, 169)(164, 249)(166, 236)(167, 250)(171, 234)(172, 222)(173, 182)(174, 186)(175, 210)(177, 221, 203, 227)(178, 232)(179, 202)(187, 253)(188, 211)(189, 223)(190, 201)(191, 212)(193, 248)(195, 244)(196, 198)(205, 231)(209, 235)(219, 245)(220, 243)(224, 242)(226, 230)(239, 240)(247, 256)
f: (1, 2)(3, 5)(7, 13)(8, 9)(14, 18)(19, 27)(20, 22)(32, 38)(40, 44)(54, 61)(63, 68)(79, 85)(87, 92)(101, 107)(111, 117)(121, 125)(136, 159)(142, 202)(150, 162)(156, 196)(157, 248)(166, 201)(172, 242)(182, 240)
g: (3, 8)(4, 24)(5, 9)(6, 31)(7, 18)(10, 25)(11, 29)(12, 17)(13, 14)(15, 34)(16, 51)(20, 40)(21, 56)(22, 44)(23, 46)(26, 49)(28, 48)(30, 37)(32, 54)(33, 43)(35, 58)(36, 57)(38, 61)(39, 42)(41, 64)(45, 69)(47, 59)(50, 73)(52, 76)(53, 78)(55, 80)(60, 83)(62, 82)(63, 87)(65, 89)(66, 74)(67, 77)(68, 92)(70, 94)(71, 84)(72, 91)(75, 96)(79, 101)(81, 103)(85, 107)(86, 109)(88, 106)(90, 97)(93, 116)(95, 99)(98, 108)(100, 102)(104, 115)(105, 110)(112, 126)(113, 114)(118, 122)(119, 128)(120, 127)(123, 124)(129, 163)(130, 177)(131, 193)(132, 228)(133, 138)(134, 164)(135, 184)(136, 157)(137, 170)(139, 226)(140, 243)(141, 199)(142, 150)(143, 171)(144, 256)(145, 176)(146, 250)(147, 207)(148, 238)(149, 181)(151, 183)(152, 160)(153, 165)(154, 192)(155, 233)(156, 166)(158, 212)(159, 248)(161, 200)(162, 202)(167, 185)(168, 191)(169, 252)(172, 182)(173, 222)(174, 235)(175, 187)(178, 223)(179, 213)(180, 247)(186, 209)(188, 195)(189, 232)(190, 198)(194, 217)(196, 201)(197, 203)(204, 246)(205, 219)(206, 227)(208, 237)(210, 253)(211, 244)(214, 249)(215, 241)(216, 255)(218, 221)(220, 225)(224, 239)(229, 234)(230, 251)(231, 245)(236, 254)(240, 242)
h: (12, 17)(21, 39)(23, 33)(30, 37)(42, 56)(43, 46)(66, 71)(67, 72)(74, 84)(77, 91)(88, 108)(93, 102)(98, 106)(100, 116)(112, 126)(118, 122)(130, 197)(145, 217)(148, 204)(153, 155)(165, 233)(176, 194)(177, 203)(238, 246)
m: (3, 7)(5, 13)(10, 31)(15, 24)(26, 47)(28, 29)(35, 53)(36, 51)(41, 62)(42, 43)(45, 55)(46, 56)(50, 52)(60, 75)(64, 69)(65, 86)(70, 81)(73, 83)(76, 96)(80, 82)(87, 107)(90, 95)(92, 101)(98, 100)(104, 110)(106, 116)(114, 124)(120, 128)(129, 209)(138, 175)(140, 247)(152, 171)(154, 226)(158, 167)(164, 178)(168, 250)(195, 245)(200, 230)(207, 210)(219, 244)(225, 256)(232, 249)(234, 255)(235, 252)
n1: (1, 3)(2, 5)(4, 16, 6, 11)(7, 19)(8, 38, 18, 20)(9, 32, 14, 22)(10, 26)(12, 21, 30, 23)(13, 27)(15, 35)(17, 39, 37, 33)(24, 47)(25, 57, 34, 48)(28, 60, 36, 50)(29, 75, 51, 52)(31, 53)(40, 85, 61, 63)(41, 70, 45, 65)(42, 66)(43, 67)(44, 79, 54, 68)(46, 72)(49, 64)(55, 86, 62, 81)(56, 71)(58, 69)(59, 82)(73, 97)(74, 98)(76, 99)(77, 100)(78, 80)(83, 105)(84, 106)(87, 111)(88, 118, 93, 112)(89, 119, 94, 113)(90, 114)(91, 116)(92, 117)(95, 120)(96, 115)(101, 121)(102, 126, 108, 122)(103, 127, 109, 123)(104, 124)(107, 125)(110, 128)(129, 232)(131, 178)(132, 253, 208, 147)(134, 141, 223, 241)(135, 161, 181, 251)(136, 172)(137, 164)(138, 255)(139, 144)(140, 183)(142, 182)(143, 149, 160, 184)(145, 153)(146, 215, 191, 199)(148, 233)(150, 196)(151, 207)(152, 254)(154, 226)(155, 217)(156, 162)(158, 167)(159, 242)(165, 204)(168, 190)(169, 218, 174, 206)(170, 200)(171, 198)(173, 195)(175, 234)(177, 238)(179, 247)(180, 227, 243, 221)(185, 205)(188, 228, 231, 237)(189, 216)(192, 220)(193, 230)(202, 240)(203, 246)(209, 249)(210, 213)(211, 212)(214, 229)(219, 225)(222, 252)(224, 235)(236, 250)(239, 245)(244, 256)

(III) Last is Groups&Graphs. Copy everything between (not including) the lines of asterisks into a plain text file and save it as "graph.txt". Then launch G&G (Groups&Graphs) and select Read Text from the File menu.

**************

&Graph
C4[ 256, 111 ]
256
-1 198 190 201 196
-2 198 166 156 190
-3 168 201 171 150
-4 133 212 147 191
-5 166 168 171 162
-6 253 133 146 212
-7 201 150 250 152
-8 143 191 196 142
-9 143 156 191 202
-10 167 168 207 175
-11 133 211 215 208
-12 176 237 217 208
-13 166 162 250 152
-14 156 146 202 160
-15 210 167 250 175
-16 132 133 199 211
-17 145 237 194 208
-18 146 160 196 142
-19 254 201 236 196
-20 182 215 150 184
-21 176 155 188 147
-22 215 162 184 240
-23 176 231 253 155
-24 168 158 138 207
-25 187 147 191 185
-26 190 234 158 151
-27 166 254 156 236
-28 237 175 219 241
-29 244 138 237 241
-30 132 176 217 228
-31 210 158 138 250
-32 199 149 162 240
-33 231 253 194 153
-34 187 253 146 185
-35 234 158 213 236
-36 228 141 175 219
-37 132 145 194 228
-38 199 149 182 150
-39 188 147 194 153
-40 135 172 142 241
-41 143 243 244 249
-42 165 195 217 207
-43 165 210 245 217
-44 242 135 202 241
-45 244 180 160 249
-46 210 145 233 245
-47 167 255 190 151
-48 187 215 205 208
-49 198 212 183 229
-50 231 223 234 225
-51 244 138 228 141
-52 231 255 223 256
-53 167 255 213 236
-54 242 202 181 141
-55 232 180 160 219
-56 145 233 195 207
-57 132 187 199 205
-58 254 179 212 229
-59 198 183 216 185
-60 188 134 234 225
-61 181 172 141 142
-62 143 232 243 219
-63 223 136 182 251
-64 211 214 171 140
-65 209 256 227 184
-66 155 204 151 173
-67 155 213 204 239
-68 223 159 240 251
-69 211 214 247 152
-70 209 221 256 149
-71 148 151 173 153
-72 213 148 239 153
-73 220 178 245 229
-74 222 233 246 183
-75 188 134 255 256
-76 144 178 245 216
-77 233 179 224 246
-78 254 179 216 185
-79 134 159 161 240
-80 189 247 205 152
-81 221 225 149 129
-82 189 171 205 140
-83 220 195 229 164
-84 165 222 183 238
-85 134 136 182 161
-86 225 227 129 184
-87 178 157 172 230
-88 243 169 246 130
-89 144 135 206 186
-90 154 224 193 249
-91 165 179 224 238
-92 242 178 248 230
-93 180 246 130 174
-94 144 181 218 186
-95 232 224 193 226
-96 144 216 195 164
-97 192 214 239 131
-98 148 203 140 252
-99 189 139 239 131
-100 235 148 203 247
-101 242 200 248 164
-102 180 238 174 197
-103 220 181 163 218
-104 232 222 170 226
-105 137 192 214 173
-106 177 204 140 252
-107 200 157 172 164
-108 243 169 238 197
-109 220 135 206 163
-110 154 222 170 249
-111 157 136 193 131
-112 203 227 206 130
-113 139 174 251 186
-114 209 235 226 230
-115 189 137 139 173
-116 177 235 247 204
-117 159 193 248 131
-118 221 203 130 218
-119 169 139 161 186
-120 154 235 129 230
-121 137 159 170 248
-122 177 221 218 197
-123 169 192 161 163
-124 154 200 129 252
-125 157 136 137 170
-126 177 227 206 197
-127 192 163 174 251
-128 209 200 226 252
-129 124 81 86 120
-130 88 112 93 118
-131 99 111 117 97
-132 57 37 16 30
-133 11 4 16 6
-134 79 60 85 75
-135 44 89 40 109
-136 111 125 63 85
-137 121 125 115 105
-138 24 29 51 31
-139 99 113 115 119
-140 82 106 64 98
-141 36 61 51 54
-142 61 18 40 8
-143 62 8 41 9
-144 89 94 96 76
-145 56 46 37 17
-146 34 14 6 18
-147 25 4 39 21
-148 100 71 72 98
-149 70 81 38 32
-150 3 38 7 20
-151 66 47 26 71
-152 13 69 80 7
-153 33 71 39 72
-154 110 90 124 120
-155 66 23 67 21
-156 2 14 27 9
-157 111 125 107 87
-158 24 35 26 31
-159 121 68 79 117
-160 55 45 14 18
-161 79 123 85 119
-162 22 13 5 32
-163 123 103 127 109
-164 101 83 96 107
-165 91 84 42 43
-166 2 13 5 27
-167 47 15 53 10
-168 24 3 5 10
-169 88 123 108 119
-170 110 121 125 104
-171 3 5 82 64
-172 61 40 107 87
-173 66 71 115 105
-174 102 113 93 127
-175 36 15 28 10
-176 12 23 30 21
-177 122 126 116 106
-178 92 73 76 87
-179 77 78 58 91
-180 55 45 102 93
-181 103 61 94 54
-182 38 63 85 20
-183 59 49 84 74
-184 22 20 86 65
-185 34 78 25 59
-186 89 113 94 119
-187 34 57 25 48
-188 60 39 75 21
-189 99 80 82 115
-190 1 2 47 26
-191 25 4 8 9
-192 123 105 127 97
-193 111 90 95 117
-194 33 37 17 39
-195 56 83 96 42
-196 1 18 8 19
-197 122 102 126 108
-198 1 2 59 49
-199 57 16 38 32
-200 101 124 128 107
-201 1 3 7 19
-202 44 14 9 54
-203 100 112 118 98
-204 66 67 116 106
-205 57 80 48 82
-206 89 112 126 109
-207 56 24 42 10
-208 11 12 48 17
-209 70 114 128 65
-210 46 15 31 43
-211 11 69 16 64
-212 58 4 49 6
-213 67 35 72 53
-214 69 105 64 97
-215 11 22 48 20
-216 78 59 96 76
-217 12 30 42 43
-218 122 103 94 118
-219 55 36 28 62
-220 103 83 73 109
-221 122 70 81 118
-222 110 104 84 74
-223 68 50 52 63
-224 77 90 91 95
-225 81 60 50 86
-226 114 104 95 128
-227 112 126 86 65
-228 36 37 51 30
-229 58 49 83 73
-230 92 114 87 120
-231 33 23 50 52
-232 55 104 62 95
-233 77 56 46 74
-234 35 26 60 50
-235 100 114 116 120
-236 35 27 19 53
-237 12 17 28 29
-238 91 102 84 108
-239 99 67 72 97
-240 22 68 79 32
-241 44 28 29 40
-242 44 101 92 54
-243 88 62 41 108
-244 45 29 51 41
-245 46 73 43 76
-246 77 88 93 74
-247 100 69 80 116
-248 121 101 92 117
-249 110 45 90 41
-250 13 15 7 31
-251 68 113 127 63
-252 124 106 128 98
-253 33 23 34 6
-254 78 58 27 19
-255 47 52 53 75
-256 70 52 75 65
0

**************