[Home] [Table] [Glossary]
[Families]
On this page are computer-accessible forms for the graph C4[ 256, 112 ] =
PL(ATD[8,2]#ATD[32,8]).
(I) Following is a form readable by MAGMA:
g:=Graph<256|{ {128, 160}, {128, 203}, {128, 219}, {128, 247}, {3, 131}, {107,
235}, {103, 231}, {56, 184}, {73, 201}, {74, 202}, {14, 143}, {110, 239}, {102,
231}, {99, 226}, {70, 199}, {69, 199}, {122, 248}, {91, 217}, {87, 213}, {38,
165}, {47, 172}, {7, 131}, {109, 233}, {63, 187}, {82, 214}, {28, 153}, {120,
253}, {33, 164}, {72, 206}, {123, 253}, {84, 210}, {86, 208}, {37, 162}, {127,
248}, {115, 244}, {98, 229}, {95, 216}, {49, 182}, {67, 196}, {14, 134}, {17,
153}, {78, 198}, {3, 138}, {113, 248}, {100, 237}, {48, 185}, {43, 162}, {42,
163}, {39, 174}, {73, 192}, {20, 158}, {124, 246}, {42, 160}, {58, 177}, {70,
205}, {77, 198}, {20, 152}, {105, 229}, {81, 221}, {19, 158}, {55, 186}, {37,
168}, {22, 155}, {27, 149}, {31, 145}, {83, 221}, {5, 138}, {23, 152}, {74,
197}, {66, 210}, {96, 240}, {9, 152}, {119, 230}, {114, 227}, {75, 218}, {44,
190}, {60, 174}, {59, 169}, {68, 214}, {83, 193}, {3, 144}, {45, 190}, {26,
137}, {5, 150}, {64, 211}, {12, 152}, {51, 167}, {50, 166}, {3, 150}, {116,
225}, {17, 132}, {75, 222}, {38, 176}, {101, 243}, {76, 218}, {7, 144}, {115,
228}, {105, 254}, {103, 240}, {89, 206}, {47, 183}, {65, 217}, {68, 220}, {69,
221}, {80, 200}, {60, 166}, {110, 244}, {108, 246}, {61, 167}, {78, 212}, {32,
187}, {121, 226}, {112, 235}, {85, 206}, {16, 140}, {123, 231}, {115, 239},
{102, 250}, {98, 254}, {48, 172}, {63, 163}, {50, 175}, {122, 231}, {64, 222},
{102, 248}, {92, 194}, {86, 200}, {25, 134}, {67, 220}, {44, 140}, {123, 219},
{120, 216}, {46, 142}, {70, 230}, {72, 232}, {25, 184}, {32, 129}, {86, 247},
{40, 138}, {71, 229}, {12, 175}, {55, 148}, {51, 144}, {44, 143}, {34, 129},
{24, 188}, {111, 203}, {107, 207}, {97, 197}, {57, 157}, {34, 134}, {68, 224},
{71, 227}, {12, 169}, {106, 207}, {95, 250}, {90, 255}, {42, 143}, {34, 135},
{22, 179}, {79, 234}, {32, 134}, {113, 215}, {61, 155}, {63, 153}, {84, 242},
{89, 255}, {21, 178}, {58, 157}, {9, 161}, {120, 208}, {83, 251}, {29, 180},
{120, 209}, {114, 219}, {109, 196}, {45, 132}, {23, 189}, {123, 209}, {57, 147},
{45, 135}, {64, 234}, {78, 228}, {4, 175}, {125, 214}, {54, 157}, {79, 228},
{64, 236}, {121, 213}, {116, 216}, {76, 224}, {1, 172}, {104, 197}, {15, 162},
{88, 245}, {14, 160}, {18, 188}, {16, 190}, {67, 237}, {14, 161}, {34, 141},
{17, 190}, {33, 145}, {122, 202}, {96, 208}, {52, 132}, {50, 130}, {13, 188},
{127, 206}, {125, 204}, {118, 199}, {117, 196}, {66, 243}, {45, 159}, {112,
194}, {97, 211}, {94, 236}, {12, 191}, {117, 198}, {41, 154}, {38, 149}, {85,
225}, {20, 161}, {71, 242}, {66, 244}, {126, 200}, {28, 171}, {53, 130}, {8,
176}, {96, 216}, {25, 161}, {11, 179}, {10, 178}, {9, 176}, {114, 203}, {46,
151}, {32, 153}, {30, 167}, {17, 171}, {4, 191}, {104, 211}, {48, 139}, {31,
164}, {29, 166}, {21, 174}, {7, 188}, {6, 189}, {49, 141}, {112, 204}, {105,
213}, {103, 219}, {77, 241}, {43, 150}, {52, 137}, {10, 180}, {116, 202}, {95,
225}, {23, 169}, {36, 155}, {49, 142}, {91, 155}, {119, 183}, {106, 170}, {2,
195}, {41, 232}, {27, 218}, {8, 201}, {85, 148}, {1, 195}, {110, 172}, {60,
254}, {19, 209}, {13, 207}, {67, 129}, {80, 146}, {82, 144}, {74, 137}, {112,
179}, {2, 198}, {59, 255}, {54, 242}, {75, 143}, {79, 139}, {87, 147}, {88,
156}, {20, 209}, {126, 187}, {57, 252}, {37, 224}, {28, 218}, {127, 185}, {124,
186}, {107, 173}, {58, 252}, {47, 233}, {65, 135}, {6, 193}, {122, 189}, {117,
178}, {108, 171}, {106, 173}, {62, 249}, {46, 233}, {11, 195}, {125, 181}, {113,
185}, {108, 164}, {101, 173}, {5, 204}, {116, 189}, {53, 252}, {30, 212}, {114,
184}, {97, 171}, {89, 147}, {33, 234}, {113, 186}, {39, 236}, {76, 135}, {87,
156}, {1, 205}, {100, 168}, {91, 151}, {19, 223}, {65, 141}, {40, 229}, {121,
180}, {60, 241}, {68, 137}, {71, 138}, {81, 156}, {50, 252}, {125, 179}, {61,
243}, {59, 245}, {53, 251}, {2, 205}, {58, 245}, {83, 156}, {16, 192}, {26,
202}, {69, 149}, {43, 250}, {93, 140}, {62, 239}, {90, 139}, {62, 236}, {119,
165}, {104, 186}, {99, 177}, {72, 154}, {76, 159}, {98, 177}, {98, 182}, {111,
187}, {22, 195}, {99, 182}, {23, 193}, {55, 225}, {8, 223}, {110, 185}, {99,
180}, {35, 244}, {70, 145}, {51, 235}, {124, 164}, {92, 132}, {66, 154}, {6,
223}, {102, 191}, {25, 192}, {19, 201}, {48, 234}, {77, 151}, {4, 223}, {56,
227}, {27, 192}, {69, 158}, {72, 147}, {79, 148}, {35, 255}, {41, 245}, {74,
150}, {54, 235}, {80, 141}, {85, 136}, {18, 204}, {75, 149}, {40, 247}, {109,
178}, {106, 181}, {93, 130}, {46, 241}, {77, 146}, {36, 196}, {95, 191}, {55,
215}, {39, 199}, {15, 238}, {111, 142}, {84, 181}, {27, 249}, {65, 163}, {42,
201}, {124, 159}, {109, 142}, {96, 131}, {54, 210}, {108, 136}, {103, 131}, {22,
243}, {100, 129}, {2, 228}, {119, 145}, {31, 249}, {11, 237}, {63, 217}, {80,
182}, {40, 207}, {117, 146}, {115, 148}, {82, 181}, {1, 233}, {118, 158}, {56,
208}, {52, 220}, {7, 238}, {97, 136}, {94, 183}, {61, 212}, {16, 249}, {88,
177}, {24, 242}, {111, 133}, {39, 205}, {73, 163}, {21, 254}, {4, 232}, {126,
146}, {105, 133}, {59, 215}, {57, 213}, {29, 241}, {26, 246}, {10, 230}, {62,
211}, {93, 176}, {6, 232}, {101, 139}, {43, 197}, {21, 251}, {13, 226}, {18,
253}, {31, 239}, {94, 174}, {56, 200}, {89, 169}, {10, 251}, {51, 194}, {35,
210}, {73, 184}, {44, 222}, {88, 170}, {30, 237}, {100, 151}, {91, 168}, {37,
214}, {26, 238}, {118, 130}, {92, 168}, {53, 193}, {15, 250}, {82, 167}, {52,
194}, {107, 157}, {86, 160}, {81, 166}, {127, 136}, {104, 159}, {90, 173}, {5,
253}, {93, 165}, {36, 220}, {8, 240}, {9, 240}, {15, 246}, {78, 183}, {13, 247},
{118, 140}, {49, 203}, {24, 226}, {24, 227}, {126, 133}, {94, 165}, {47, 212},
{38, 221}, {29, 230}, {18, 238}, {121, 133}, {28, 224}, {36, 217}, {87, 170},
{41, 215}, {92, 162}, {81, 175}, {84, 170}, {33, 222}, {101, 154}, {11, 256},
{30, 256}, {35, 256}, {90, 256} }>;
(II) A more general form is to represent the graph as the orbit of {128, 160}
under the group generated by the following permutations:
a: (17, 45)(28, 76)(32, 34)(41, 72)(49, 111)(55, 85)(57, 58)(59, 89)(63, 65)(80,
126)(87, 88)(97, 104)(98, 105)(99, 121)(108, 124)(113, 127)(133, 182)(135,
153)(136, 186)(141, 187)(147, 245)(159, 171)(177, 213)(206, 215) (III) Last is Groups&Graphs. Copy everything between (not including)
the lines of asterisks into a plain text file and save it as "graph.txt". Then
launch G&G (Groups&Graphs) and select Read Text from the File menu.
**************
&Graph **************
b: (2, 47)(3, 56, 8, 95, 7, 86, 9, 116)(4, 15, 13, 14, 23, 74, 71, 73)(5, 114,
19, 102, 18, 128, 20, 122)(6, 43, 24, 42, 12, 26, 40, 25)(10, 64, 35, 36, 60,
31, 101, 100)(11, 109, 39, 110, 22, 46, 70, 48)(16, 41, 92, 99, 44, 59, 52,
98)(17, 88)(21, 62, 66, 91, 29, 33, 90, 67)(27, 72, 37, 121, 75, 89, 68,
105)(28, 87)(30, 117, 94, 115, 61, 77, 119, 79)(32, 83, 97, 84, 63, 81, 108,
106)(34, 53, 104, 54, 65, 50, 124, 107)(38, 85, 82, 126)(45, 58)(49, 118, 113,
112)(51, 80, 93, 55)(57, 76)(69, 127, 125, 111)(103, 120)(129, 251, 211, 210,
217, 166, 164, 173)(130, 186, 235, 141)(131, 208, 240, 216)(132, 177, 190,
245)(133, 149, 206, 214)(134, 193, 197, 242, 163, 175, 246, 207)(135, 252, 159,
157)(136, 181, 187, 221)(137, 229, 192, 232, 162, 226, 143, 169)(138, 184, 223,
250, 188, 160, 152, 202)(139, 237, 178, 236, 244, 155, 241, 145)(140, 215, 194,
182)(142, 199, 185, 179)(144, 200, 176, 225)(146, 165, 148, 167)(147, 224, 213,
218)(150, 227, 201, 191, 238, 247, 161, 189)(151, 230, 234, 256, 196, 174, 239,
243)(153, 156, 171, 170)(154, 168, 180, 222, 255, 220, 254, 249)(158, 248, 204,
203)(172, 195, 233, 205)(183, 228, 212, 198)(209, 231, 253, 219)
c: (16, 27)(17, 28)(37, 92)(38, 93)(44, 75)(45, 76)(50, 81)(51, 82)(52, 68)(53,
83)(54, 84)(57, 87)(58, 88)(69, 118)(106, 107)(112, 125)(130, 221)(132,
224)(140, 149)(156, 252)(157, 170)(181, 235)(190, 218)(194, 214)
d: (1, 3, 2, 7)(4, 75, 23, 16)(5, 78, 18, 47)(6, 27, 12, 44)(8, 69, 9, 118)(10,
114, 60, 86)(11, 51, 22, 82)(13, 109, 71, 77)(14, 53, 73, 81)(15, 48, 74,
115)(17, 72, 28, 89)(19, 38, 20, 93)(21, 56, 29, 128)(24, 46, 40, 117)(25, 50,
42, 83)(26, 110, 43, 79)(30, 112, 61, 125)(31, 102, 64, 116)(32, 57, 63, 87)(33,
122, 62, 95)(34, 58, 65, 88)(35, 92, 101, 68)(36, 84, 100, 107)(37, 90, 52,
66)(39, 96, 70, 103)(41, 76, 59, 45)(49, 98, 80, 99)(54, 91, 106, 67)(55, 124,
113, 104)(85, 108, 127, 97)(94, 120, 119, 123)(105, 126, 121, 111)(129, 157,
217, 170)(130, 201, 221, 161)(131, 205)(132, 154, 224, 255)(134, 252, 163,
156)(135, 245)(137, 244, 162, 139)(138, 198, 188, 233)(140, 223, 149, 152)(141,
177)(142, 229, 146, 226)(143, 193, 192, 175)(144, 195)(145, 231, 236, 216)(147,
153)(148, 246, 185, 197)(150, 228, 238, 172)(151, 207, 196, 242)(155, 181, 237,
235)(158, 176)(159, 215)(160, 251, 184, 166)(164, 248, 211, 225)(165, 209)(167,
179)(168, 173, 220, 210)(169, 190, 232, 218)(171, 206)(174, 208, 230, 219)(178,
227, 241, 247)(180, 203, 254, 200)(183, 253)(187, 213)(189, 249, 191, 222)(194,
243, 214, 256)(199, 240)(202, 239, 250, 234)(204, 212)
e: (3, 8)(4, 40, 6, 71)(5, 19)(7, 9)(10, 35, 29, 90)(11, 70)(12, 13, 23, 24)(14,
26, 25, 15)(16, 37, 44, 68)(17, 76)(18, 20)(21, 66, 60, 101)(22, 39)(27, 92, 75,
52)(28, 45)(30, 119)(31, 100, 33, 67)(32, 124)(34, 108)(36, 62, 91, 64)(38,
51)(41, 105)(42, 74, 73, 43)(46, 48, 109, 110)(49, 127)(50, 106, 53, 84)(54, 81,
107, 83)(55, 126)(56, 95, 86, 116)(57, 88)(58, 87)(59, 121)(61, 94)(63, 104)(65,
97)(69, 112)(72, 98)(77, 79, 117, 115)(80, 85)(82, 93)(89, 99)(102, 128, 122,
114)(111, 113)(118, 125)(129, 164)(130, 181)(131, 240)(132, 218)(133, 215)(134,
246)(135, 171)(136, 141)(137, 192, 162, 143)(138, 223)(139, 178, 244, 241)(140,
214)(142, 185)(144, 176)(145, 237)(146, 148)(147, 177)(149, 194)(150, 201)(151,
234, 196, 239)(152, 188)(153, 159)(154, 254)(155, 236)(156, 157)(158, 204)(160,
202, 184, 250)(161, 238)(163, 197)(165, 167)(166, 173, 251, 210)(168, 222, 220,
249)(169, 226)(170, 252)(172, 233)(174, 243)(175, 207, 193, 242)(179, 199)(180,
255)(182, 206)(183, 212)(186, 187)(189, 227, 191, 247)(190, 224)(195, 205)(198,
228)(200, 225)(203, 248)(208, 216)(209, 253)(211, 217)(213, 245)(219, 231)(221,
235)(229, 232)(230, 256)
f: (4, 12)(6, 23)(8, 9)(11, 22)(14, 42)(19, 20)(25, 73)(30, 61)(32, 63)(34,
65)(35, 66)(36, 67)(41, 59)(72, 89)(90, 101)(91, 100)(129, 217)(134, 163)(152,
223)(154, 255)(155, 237)(161, 201)(169, 232)(243, 256)
g: (4, 6)(10, 29)(12, 23)(15, 26)(21, 60)(36, 91)(37, 68)(43, 74)(46, 109)(50,
53)(52, 92)(67, 100)(77, 117)(81, 83)(95, 116)(102, 122)(137, 162)(151,
196)(166, 251)(168, 220)(175, 193)(178, 241)(189, 191)(202, 250)
h: (3, 7)(5, 18)(10, 21)(13, 40)(15, 43)(24, 71)(26, 74)(29, 60)(31, 62)(33,
64)(39, 70)(94, 119)(97, 108)(98, 99)(104, 124)(105, 121)(138, 188)(145,
236)(150, 238)(164, 211)(174, 230)(180, 254)(197, 246)(226, 229)
m: (2, 47)(3, 116)(4, 24, 12, 13)(5, 122)(6, 71, 23, 40)(7, 95)(8, 56, 9,
86)(10, 60)(11, 48, 22, 110)(14, 42, 73, 25)(16, 32, 44, 63)(18, 102)(19, 114,
20, 128)(26, 43)(27, 34, 75, 65)(28, 45)(30, 79, 61, 115)(31, 100, 33, 91)(35,
90, 101, 66)(36, 62, 67, 64)(37, 124)(38, 80)(39, 109)(41, 84, 59, 106)(46,
70)(49, 69)(50, 121)(51, 85)(52, 97)(53, 105)(54, 89, 107, 72)(55, 82)(58,
87)(68, 104)(77, 119)(81, 99)(83, 98)(92, 108)(93, 126)(94, 117)(103, 120)(111,
118)(112, 127)(113, 125)(129, 222, 217, 249)(130, 133)(131, 216)(132, 171)(134,
143, 163, 192)(135, 218)(136, 194)(137, 197)(138, 189)(139, 243, 244, 256)(140,
187)(141, 149)(142, 199)(144, 225)(145, 151)(146, 165)(147, 157)(148, 167)(150,
202)(152, 247, 223, 227)(153, 190)(154, 210, 255, 173)(155, 239, 237, 234)(156,
177)(158, 203)(159, 224)(160, 201, 184, 161)(162, 246)(164, 168)(166, 180)(169,
207, 232, 242)(170, 245)(172, 195)(174, 178)(175, 226)(176, 200)(179, 185)(181,
215)(182, 221)(183, 198)(186, 214)(188, 191)(193, 229)(196, 236)(204, 248)(205,
233)(206, 235)(208, 240)(209, 219)(211, 220)(212, 228)(213, 252)(230, 241)(231,
253)(238, 250)(251, 254)
n1: (1, 2)(46, 77)(47, 78)(48, 79)(49, 80)(55, 113)(56, 114)(85, 127)(86,
128)(95, 102)(96, 103)(109, 117)(110, 115)(111, 126)(116, 122)(120, 123)(142,
146)(148, 185)(172, 228)(198, 233)(200, 203)(208, 219)(216, 231)(225, 248)
C4[ 256, 112 ]
256
-1 233 172 205 195
-2 198 205 195 228
-3 144 138 150 131
-4 232 223 191 175
-5 253 138 204 150
-6 232 189 223 193
-7 144 188 238 131
-8 176 201 223 240
-9 176 161 152 240
-10 178 180 251 230
-11 179 256 237 195
-12 169 191 152 175
-13 188 247 226 207
-14 143 134 160 161
-15 246 238 162 250
-16 190 192 249 140
-17 132 190 171 153
-18 253 188 204 238
-19 209 201 223 158
-20 209 158 161 152
-21 254 178 174 251
-22 155 243 179 195
-23 189 169 193 152
-24 242 188 226 227
-25 134 192 161 184
-26 202 246 137 238
-27 192 149 249 218
-28 224 171 218 153
-29 166 180 230 241
-30 167 212 256 237
-31 145 249 239 164
-32 187 134 129 153
-33 145 222 234 164
-34 134 135 129 141
-35 210 244 255 256
-36 220 155 217 196
-37 168 224 214 162
-38 165 176 221 149
-39 199 236 205 174
-40 247 138 207 229
-41 154 232 245 215
-42 143 201 160 163
-43 150 162 250 197
-44 143 222 190 140
-45 132 135 190 159
-46 233 151 142 241
-47 233 212 172 183
-48 234 139 172 185
-49 203 182 141 142
-50 166 130 175 252
-51 144 167 235 194
-52 132 220 137 194
-53 193 130 251 252
-54 242 210 157 235
-55 148 225 215 186
-56 200 227 184 208
-57 157 147 213 252
-58 177 157 245 252
-59 255 245 169 215
-60 166 254 174 241
-61 155 243 167 212
-62 211 236 249 239
-63 187 217 163 153
-64 211 222 234 236
-65 135 217 141 163
-66 154 210 243 244
-67 220 237 129 196
-68 220 224 137 214
-69 199 221 158 149
-70 199 145 205 230
-71 242 138 227 229
-72 154 232 147 206
-73 201 192 184 163
-74 202 137 150 197
-75 143 222 149 218
-76 135 224 159 218
-77 198 146 151 241
-78 198 212 183 228
-79 234 148 139 228
-80 200 146 182 141
-81 166 221 156 175
-82 144 167 181 214
-83 221 156 193 251
-84 242 210 170 181
-85 136 148 225 206
-86 200 247 160 208
-87 156 147 213 170
-88 177 156 245 170
-89 255 147 169 206
-90 255 256 139 173
-91 155 168 151 217
-92 132 168 194 162
-93 165 176 140 130
-94 165 236 183 174
-95 191 225 216 250
-96 216 240 131 208
-97 211 136 171 197
-98 177 254 182 229
-99 177 180 182 226
-100 168 237 129 151
-101 154 243 139 173
-102 231 191 248 250
-103 231 240 131 219
-104 211 159 186 197
-105 133 254 213 229
-106 170 181 173 207
-107 157 235 173 207
-108 136 246 171 164
-109 178 233 196 142
-110 244 172 239 185
-111 187 133 203 142
-112 179 235 204 194
-113 215 248 185 186
-114 203 227 184 219
-115 244 148 228 239
-116 189 202 225 216
-117 198 178 146 196
-118 199 158 140 130
-119 165 145 183 230
-120 209 253 216 208
-121 133 180 213 226
-122 231 189 202 248
-123 209 231 253 219
-124 246 159 164 186
-125 179 181 214 204
-126 187 133 200 146
-127 136 248 206 185
-128 203 247 160 219
-129 34 67 100 32
-130 93 50 118 53
-131 3 103 7 96
-132 45 92 17 52
-133 121 111 126 105
-134 34 14 25 32
-135 34 45 65 76
-136 127 85 97 108
-137 68 26 52 74
-138 3 5 71 40
-139 79 90 101 48
-140 44 16 93 118
-141 34 80 49 65
-142 111 46 49 109
-143 44 14 42 75
-144 3 82 7 51
-145 33 70 31 119
-146 77 80 126 117
-147 89 57 72 87
-148 55 79 115 85
-149 69 27 38 75
-150 3 5 74 43
-151 77 100 46 91
-152 12 23 9 20
-153 17 28 63 32
-154 66 101 72 41
-155 22 36 91 61
-156 88 81 83 87
-157 57 58 107 54
-158 69 19 118 20
-159 45 124 104 76
-160 14 128 42 86
-161 14 25 9 20
-162 15 37 92 43
-163 73 63 42 65
-164 33 124 31 108
-165 38 93 94 119
-166 81 60 50 29
-167 82 61 51 30
-168 100 91 37 92
-169 12 23 89 59
-170 88 84 106 87
-171 17 28 97 108
-172 110 1 47 48
-173 90 101 106 107
-174 60 39 94 21
-175 12 4 81 50
-176 38 93 8 9
-177 88 99 58 98
-178 117 10 21 109
-179 11 22 112 125
-180 99 121 29 10
-181 125 82 84 106
-182 99 80 49 98
-183 78 47 94 119
-184 56 25 114 73
-185 110 113 48 127
-186 55 113 124 104
-187 111 126 63 32
-188 13 24 7 18
-189 23 122 6 116
-190 44 45 16 17
-191 12 102 4 95
-192 25 16 27 73
-193 23 6 83 53
-194 112 92 51 52
-195 11 22 1 2
-196 67 36 117 109
-197 104 74 97 43
-198 77 78 2 117
-199 69 70 39 118
-200 56 80 126 86
-201 73 8 19 42
-202 122 26 116 74
-203 111 114 49 128
-204 112 125 5 18
-205 1 2 70 39
-206 89 72 127 85
-207 13 40 106 107
-208 56 96 86 120
-209 123 19 20 120
-210 66 35 84 54
-211 104 62 64 97
-212 78 47 61 30
-213 121 57 105 87
-214 68 37 125 82
-215 55 113 59 41
-216 116 95 96 120
-217 36 91 63 65
-218 27 28 75 76
-219 123 103 114 128
-220 67 68 36 52
-221 69 81 38 83
-222 33 44 64 75
-223 4 6 8 19
-224 68 37 28 76
-225 55 116 95 85
-226 99 121 13 24
-227 56 24 114 71
-228 78 2 79 115
-229 71 105 40 98
-230 70 29 119 10
-231 122 123 102 103
-232 4 6 72 41
-233 1 46 47 109
-234 33 79 48 64
-235 112 51 107 54
-236 39 94 62 64
-237 11 67 100 30
-238 15 26 7 18
-239 110 115 62 31
-240 103 8 96 9
-241 77 46 60 29
-242 24 71 84 54
-243 22 66 101 61
-244 66 110 35 115
-245 88 58 59 41
-246 124 15 26 108
-247 13 40 128 86
-248 122 102 113 127
-249 16 27 62 31
-250 102 15 95 43
-251 83 53 10 21
-252 57 58 50 53
-253 123 5 18 120
-254 60 105 21 98
-255 89 35 90 59
-256 11 35 90 30
0