C4graphGraph forms for C4 [ 256, 113 ] = PL(ATD[8,2]#ATD[32,9])

[Home] [Table] [Glossary] [Families]

On this page are computer-accessible forms for the graph C4[ 256, 113 ] = PL(ATD[8,2]#ATD[32,9]).

(I) Following is a form readable by MAGMA:

g:=Graph<256|{ {128, 147}, {128, 205}, {128, 224}, {128, 255}, {123, 251}, {36, 165}, {106, 235}, {58, 187}, {79, 206}, {37, 167}, {103, 229}, {101, 231}, {72, 202}, {14, 141}, {61, 190}, {40, 171}, {78, 205}, {11, 143}, {127, 251}, {124, 248}, {122, 254}, {52, 176}, {50, 182}, {27, 159}, {29, 152}, {118, 243}, {59, 190}, {73, 204}, {41, 174}, {126, 249}, {115, 244}, {28, 148}, {119, 255}, {29, 148}, {113, 248}, {92, 213}, {32, 169}, {80, 217}, {6, 140}, {121, 243}, {90, 208}, {53, 191}, {4, 143}, {51, 184}, {8, 131}, {88, 211}, {21, 153}, {120, 244}, {112, 252}, {106, 230}, {91, 215}, {30, 146}, {85, 217}, {39, 170}, {67, 206}, {71, 202}, {25, 151}, {93, 211}, {42, 164}, {71, 201}, {72, 198}, {81, 223}, {13, 130}, {98, 237}, {92, 211}, {89, 214}, {45, 162}, {17, 158}, {66, 205}, {85, 218}, {6, 150}, {109, 253}, {103, 247}, {100, 244}, {57, 169}, {87, 199}, {4, 150}, {118, 228}, {107, 249}, {40, 186}, {35, 177}, {31, 141}, {47, 188}, {119, 228}, {114, 225}, {65, 210}, {83, 192}, {13, 153}, {108, 248}, {30, 138}, {23, 131}, {35, 182}, {78, 219}, {89, 207}, {123, 237}, {116, 226}, {13, 154}, {120, 239}, {94, 201}, {21, 130}, {15, 152}, {63, 168}, {77, 218}, {40, 176}, {42, 178}, {58, 163}, {124, 229}, {121, 224}, {66, 219}, {36, 190}, {39, 189}, {62, 164}, {64, 218}, {71, 221}, {29, 134}, {60, 167}, {60, 160}, {125, 225}, {118, 234}, {115, 239}, {68, 216}, {69, 217}, {33, 188}, {119, 234}, {49, 172}, {120, 230}, {7, 152}, {103, 248}, {101, 250}, {97, 254}, {19, 140}, {87, 200}, {18, 178}, {126, 222}, {117, 213}, {56, 152}, {19, 179}, {76, 236}, {3, 162}, {99, 194}, {56, 153}, {86, 247}, {3, 161}, {77, 238}, {116, 215}, {115, 208}, {5, 161}, {5, 160}, {122, 223}, {116, 209}, {108, 201}, {9, 175}, {105, 207}, {5, 162}, {59, 156}, {23, 176}, {31, 183}, {57, 145}, {53, 157}, {52, 156}, {10, 163}, {74, 227}, {16, 186}, {116, 222}, {105, 195}, {32, 138}, {86, 252}, {35, 136}, {60, 151}, {45, 134}, {1, 173}, {56, 148}, {54, 154}, {75, 231}, {38, 139}, {111, 194}, {97, 204}, {80, 253}, {8, 166}, {122, 212}, {107, 197}, {43, 133}, {70, 232}, {2, 173}, {126, 209}, {99, 204}, {15, 160}, {83, 227}, {111, 223}, {94, 238}, {33, 144}, {90, 235}, {75, 250}, {11, 185}, {68, 246}, {50, 129}, {125, 206}, {43, 159}, {60, 136}, {59, 143}, {58, 142}, {71, 242}, {102, 211}, {16, 166}, {113, 199}, {112, 198}, {61, 139}, {24, 174}, {41, 158}, {65, 246}, {66, 245}, {11, 179}, {44, 148}, {34, 154}, {14, 183}, {113, 200}, {91, 226}, {62, 135}, {87, 238}, {22, 172}, {124, 198}, {119, 205}, {62, 132}, {61, 135}, {39, 157}, {25, 163}, {53, 142}, {126, 197}, {111, 212}, {100, 223}, {63, 132}, {70, 253}, {23, 171}, {114, 206}, {102, 218}, {59, 135}, {46, 146}, {4, 185}, {42, 151}, {25, 164}, {73, 244}, {17, 175}, {125, 195}, {1, 190}, {105, 214}, {102, 217}, {47, 144}, {46, 145}, {26, 165}, {2, 194}, {127, 191}, {113, 177}, {109, 173}, {41, 233}, {80, 144}, {29, 220}, {111, 174}, {40, 233}, {79, 142}, {52, 246}, {1, 194}, {43, 232}, {70, 133}, {75, 136}, {47, 235}, {123, 191}, {110, 170}, {90, 158}, {55, 242}, {121, 188}, {96, 165}, {94, 155}, {74, 143}, {82, 151}, {6, 192}, {55, 241}, {22, 208}, {52, 243}, {67, 132}, {73, 142}, {84, 147}, {3, 203}, {114, 186}, {110, 166}, {98, 170}, {42, 226}, {12, 196}, {64, 136}, {17, 216}, {98, 171}, {50, 251}, {66, 139}, {84, 157}, {24, 210}, {118, 188}, {54, 253}, {79, 132}, {7, 203}, {94, 146}, {93, 145}, {77, 129}, {87, 155}, {49, 252}, {99, 174}, {86, 155}, {27, 213}, {97, 175}, {91, 149}, {33, 239}, {10, 197}, {110, 161}, {4, 212}, {123, 171}, {99, 179}, {38, 246}, {27, 203}, {86, 134}, {9, 216}, {106, 187}, {48, 225}, {68, 149}, {72, 153}, {76, 157}, {6, 212}, {97, 179}, {78, 156}, {19, 192}, {38, 245}, {63, 236}, {82, 129}, {84, 135}, {21, 193}, {96, 180}, {28, 200}, {62, 234}, {65, 149}, {38, 243}, {122, 175}, {95, 138}, {49, 228}, {63, 234}, {69, 144}, {74, 156}, {100, 178}, {95, 137}, {98, 181}, {28, 196}, {35, 251}, {83, 139}, {32, 249}, {127, 166}, {117, 172}, {109, 180}, {100, 189}, {91, 130}, {27, 193}, {36, 254}, {69, 159}, {13, 214}, {114, 169}, {110, 181}, {1, 221}, {50, 238}, {25, 197}, {70, 154}, {85, 137}, {30, 195}, {108, 177}, {101, 184}, {47, 242}, {88, 133}, {127, 161}, {76, 147}, {104, 183}, {85, 138}, {7, 231}, {69, 165}, {2, 227}, {104, 137}, {103, 134}, {90, 187}, {49, 208}, {48, 209}, {88, 185}, {15, 237}, {74, 168}, {12, 239}, {89, 186}, {54, 213}, {31, 252}, {3, 231}, {104, 140}, {101, 129}, {26, 254}, {19, 247}, {76, 168}, {16, 245}, {92, 185}, {44, 201}, {33, 196}, {10, 236}, {112, 150}, {20, 242}, {65, 167}, {15, 232}, {106, 141}, {45, 202}, {32, 199}, {30, 249}, {23, 240}, {18, 250}, {51, 219}, {44, 196}, {39, 207}, {24, 240}, {67, 170}, {107, 130}, {95, 182}, {93, 180}, {7, 237}, {124, 150}, {121, 147}, {105, 131}, {43, 193}, {72, 162}, {81, 187}, {82, 184}, {14, 229}, {112, 155}, {95, 180}, {93, 182}, {51, 216}, {26, 241}, {20, 255}, {48, 220}, {75, 167}, {81, 189}, {5, 232}, {115, 158}, {104, 133}, {51, 222}, {46, 195}, {28, 241}, {14, 224}, {57, 215}, {9, 230}, {88, 183}, {10, 250}, {92, 172}, {18, 226}, {79, 191}, {84, 164}, {89, 169}, {44, 221}, {48, 193}, {45, 220}, {64, 177}, {81, 163}, {82, 160}, {2, 241}, {34, 209}, {22, 229}, {12, 255}, {21, 225}, {34, 214}, {64, 181}, {120, 141}, {22, 224}, {58, 204}, {37, 210}, {102, 145}, {8, 240}, {17, 233}, {77, 181}, {9, 240}, {117, 140}, {46, 215}, {36, 221}, {26, 227}, {16, 233}, {53, 207}, {31, 228}, {41, 210}, {37, 222}, {73, 178}, {83, 168}, {11, 247}, {117, 137}, {68, 184}, {8, 245}, {61, 192}, {55, 202}, {54, 203}, {80, 173}, {18, 236}, {125, 131}, {108, 146}, {107, 149}, {57, 199}, {56, 198}, {37, 219}, {34, 220}, {24, 230}, {67, 189}, {78, 176}, {20, 235}, {96, 159}, {55, 200}, {12, 256}, {20, 256}, {96, 256}, {109, 256} }>;

(II) A more general form is to represent the graph as the orbit of {128, 147} under the group generated by the following permutations:

a: (3, 7)(4, 6)(5, 15)(8, 23)(10, 18)(11, 19)(12, 20)(16, 40)(25, 42)(28, 55)(29, 45)(30, 46)(32, 57)(33, 47)(38, 52)(44, 71)(56, 72)(58, 73)(59, 61)(66, 78)(74, 83)(81, 100)(85, 102)(88, 104)(90, 115)(91, 107)(92, 117)(93, 95)(98, 110)(106, 120)(116, 126)(123, 127)(137, 211)(138, 145)(139, 156)(140, 185)(143, 192)(148, 202)(152, 162)(161, 237)(163, 178)(166, 171)(176, 245)(187, 244)(196, 242)(197, 226)(215, 249)(235, 239)
b: (4, 11)(6, 19)(12, 33)(13, 34)(20, 47)(21, 48)(29, 56)(35, 64)(37, 65)(38, 66)(39, 53)(45, 72)(50, 77)(51, 68)(52, 78)(58, 81)(67, 79)(69, 96)(73, 100)(80, 109)(85, 95)(86, 112)(91, 116)(93, 102)(97, 122)(98, 123)(99, 111)(103, 124)(107, 126)(110, 127)(118, 119)(121, 128)(130, 209)(134, 198)(142, 189)(144, 256)(149, 222)(150, 247)(153, 220)(170, 191)(179, 212)(180, 217)(181, 251)(182, 218)(188, 255)(204, 223)(205, 243)(219, 246)
c: (2, 36)(3, 50)(5, 35)(6, 11)(7, 77)(8, 53)(9, 76)(10, 51)(12, 47)(13, 46)(15, 64)(16, 79)(17, 63)(18, 68)(21, 57)(22, 31)(23, 39)(24, 84)(25, 37)(27, 87)(28, 69)(29, 85)(30, 34)(32, 48)(38, 73)(40, 67)(41, 62)(42, 65)(43, 113)(44, 80)(45, 95)(52, 100)(54, 94)(55, 96)(56, 102)(58, 66)(59, 111)(61, 99)(70, 108)(71, 109)(72, 93)(74, 122)(75, 82)(78, 81)(83, 97)(86, 117)(88, 124)(89, 125)(90, 119)(92, 112)(103, 104)(106, 128)(107, 116)(110, 123)(115, 118)(120, 121)(129, 231)(130, 215)(131, 207)(132, 233)(133, 248)(134, 137)(135, 174)(136, 160)(138, 220)(139, 204)(140, 247)(141, 224)(142, 245)(143, 212)(144, 196)(145, 153)(146, 154)(147, 230)(148, 217)(149, 226)(150, 185)(151, 167)(152, 218)(155, 213)(156, 223)(157, 240)(158, 234)(159, 200)(161, 251)(162, 182)(163, 219)(164, 210)(165, 241)(166, 191)(168, 175)(169, 225)(170, 171)(172, 252)(173, 221)(176, 189)(177, 232)(178, 246)(179, 192)(180, 202)(181, 237)(183, 229)(184, 250)(186, 206)(187, 205)(188, 239)(190, 194)(193, 199)(195, 214)(197, 222)(198, 211)(201, 253)(203, 238)(208, 228)(209, 249)(216, 236)(227, 254)(235, 255)(242, 256)(243, 244)
d: (1, 2)(3, 5)(7, 15)(8, 16)(9, 17)(10, 25)(14, 22)(18, 42)(23, 40)(24, 41)(26, 36)(27, 43)(28, 44)(30, 32)(31, 49)(46, 57)(54, 70)(55, 71)(59, 74)(60, 75)(61, 83)(62, 63)(76, 84)(82, 101)(87, 94)(88, 92)(89, 105)(90, 106)(104, 117)(108, 113)(114, 125)(115, 120)(131, 186)(133, 213)(135, 168)(141, 208)(146, 199)(151, 250)(158, 230)(160, 231)(164, 236)(169, 195)(172, 183)(190, 227)(200, 201)(203, 232)(221, 241)(233, 240)
e: (3, 16)(4, 33)(5, 8)(6, 47)(7, 40)(9, 43)(10, 32)(11, 12)(13, 65)(15, 23)(17, 27)(18, 57)(19, 20)(21, 68)(24, 70)(25, 30)(28, 74)(29, 78)(34, 37)(35, 53)(38, 72)(39, 64)(41, 54)(42, 46)(44, 59)(45, 66)(48, 51)(50, 79)(52, 56)(55, 83)(58, 95)(60, 105)(61, 71)(62, 94)(63, 87)(67, 77)(69, 122)(73, 93)(75, 89)(76, 113)(80, 111)(81, 85)(82, 125)(84, 108)(86, 119)(88, 120)(90, 117)(92, 115)(96, 97)(99, 109)(100, 102)(101, 114)(103, 128)(104, 106)(112, 118)(121, 124)(129, 206)(130, 149)(131, 160)(132, 238)(133, 230)(134, 205)(135, 201)(136, 207)(137, 187)(138, 163)(139, 202)(140, 235)(141, 183)(142, 182)(143, 196)(144, 212)(145, 178)(146, 164)(147, 248)(148, 156)(150, 188)(151, 195)(152, 176)(153, 246)(154, 210)(155, 234)(157, 177)(158, 213)(159, 175)(161, 166)(162, 245)(165, 254)(167, 214)(168, 200)(169, 250)(170, 181)(171, 237)(172, 208)(173, 194)(174, 253)(179, 256)(180, 204)(184, 225)(185, 239)(186, 231)(189, 218)(190, 221)(191, 251)(192, 242)(193, 216)(197, 249)(198, 243)(199, 236)(203, 233)(209, 222)(211, 244)(215, 226)(217, 223)(219, 220)(224, 229)(227, 241)(228, 252)(232, 240)(247, 255)
f: (1, 3)(2, 5)(4, 50)(6, 35)(7, 36)(8, 41)(9, 40)(10, 84)(11, 77)(12, 21)(13, 20)(14, 32)(15, 26)(16, 24)(17, 23)(18, 62)(19, 64)(22, 30)(25, 76)(27, 44)(28, 43)(29, 69)(31, 57)(33, 48)(34, 47)(37, 38)(39, 58)(42, 63)(45, 80)(46, 49)(51, 52)(53, 81)(54, 71)(55, 70)(56, 96)(59, 101)(60, 83)(61, 75)(65, 66)(67, 73)(68, 78)(72, 109)(74, 82)(79, 100)(85, 103)(86, 102)(87, 88)(89, 106)(90, 105)(91, 119)(92, 94)(93, 112)(95, 124)(97, 98)(99, 110)(104, 113)(107, 128)(108, 117)(111, 127)(114, 120)(115, 125)(116, 118)(121, 126)(122, 123)(129, 143)(130, 255)(131, 158)(132, 178)(133, 200)(134, 217)(135, 250)(136, 192)(137, 248)(138, 229)(139, 167)(140, 177)(141, 169)(142, 189)(144, 220)(145, 252)(146, 172)(147, 197)(148, 159)(149, 205)(150, 182)(151, 168)(152, 165)(153, 256)(154, 242)(155, 211)(156, 184)(157, 163)(160, 227)(161, 194)(162, 173)(164, 236)(166, 174)(170, 204)(171, 175)(176, 216)(179, 181)(180, 198)(183, 199)(185, 238)(186, 230)(187, 207)(188, 209)(190, 231)(191, 223)(193, 196)(195, 208)(201, 213)(202, 253)(203, 221)(206, 244)(210, 245)(212, 251)(214, 235)(215, 228)(218, 247)(219, 246)(222, 243)(224, 249)(225, 239)(226, 234)(232, 241)(233, 240)(237, 254)

(III) Last is Groups&Graphs. Copy everything between (not including) the lines of asterisks into a plain text file and save it as "graph.txt". Then launch G&G (Groups&Graphs) and select Read Text from the File menu.

**************

&Graph
C4[ 256, 113 ]
256
-1 221 190 194 173
-2 194 227 173 241
-3 231 203 161 162
-4 143 212 150 185
-5 232 160 161 162
-6 212 192 150 140
-7 231 203 237 152
-8 166 245 240 131
-9 216 240 175 230
-10 236 250 163 197
-11 143 179 247 185
-12 255 256 239 196
-13 154 214 130 153
-14 224 183 141 229
-15 232 160 237 152
-16 166 233 245 186
-17 233 158 216 175
-18 178 236 226 250
-19 179 192 247 140
-20 242 255 256 235
-21 225 193 130 153
-22 224 172 229 208
-23 176 171 240 131
-24 210 174 240 230
-25 151 163 164 197
-26 165 254 227 241
-27 213 159 203 193
-28 200 148 196 241
-29 220 134 148 152
-30 146 138 249 195
-31 183 228 141 252
-32 199 169 138 249
-33 144 188 239 196
-34 154 209 220 214
-35 177 136 182 251
-36 165 221 254 190
-37 210 167 222 219
-38 243 245 246 139
-39 189 157 170 207
-40 176 233 171 186
-41 210 233 158 174
-42 178 226 151 164
-43 133 232 159 193
-44 221 201 148 196
-45 220 134 202 162
-46 145 146 215 195
-47 242 144 188 235
-48 209 220 225 193
-49 172 228 208 252
-50 182 238 129 251
-51 222 216 184 219
-52 176 243 156 246
-53 157 191 207 142
-54 154 253 213 203
-55 242 200 202 241
-56 198 148 152 153
-57 199 145 169 215
-58 187 204 163 142
-59 143 156 135 190
-60 167 136 160 151
-61 135 190 192 139
-62 132 135 234 164
-63 132 168 234 236
-64 177 136 181 218
-65 210 167 246 149
-66 245 139 205 219
-67 132 189 170 206
-68 246 149 216 184
-69 165 144 159 217
-70 154 253 133 232
-71 242 221 201 202
-72 198 202 162 153
-73 178 244 204 142
-74 143 156 168 227
-75 231 167 136 250
-76 157 168 147 236
-77 181 238 129 218
-78 176 156 205 219
-79 132 191 206 142
-80 253 144 173 217
-81 187 189 223 163
-82 160 129 151 184
-83 168 192 139 227
-84 135 157 147 164
-85 137 138 217 218
-86 155 134 247 252
-87 155 199 200 238
-88 133 211 183 185
-89 169 214 207 186
-90 187 158 235 208
-91 149 215 226 130
-92 211 213 172 185
-93 145 211 180 182
-94 155 146 201 238
-95 180 137 138 182
-96 165 256 180 159
-97 254 179 204 175
-98 170 181 171 237
-99 179 204 194 174
-100 178 189 244 223
-101 231 129 184 250
-102 145 211 217 218
-103 134 247 248 229
-104 133 137 183 140
-105 214 195 207 131
-106 187 235 141 230
-107 149 249 130 197
-108 177 146 201 248
-109 253 256 180 173
-110 166 170 181 161
-111 212 223 194 174
-112 198 155 150 252
-113 177 199 200 248
-114 169 225 206 186
-115 244 158 239 208
-116 209 222 215 226
-117 213 137 172 140
-118 188 243 234 228
-119 255 234 205 228
-120 244 239 141 230
-121 188 243 147 224
-122 254 212 223 175
-123 191 171 237 251
-124 198 248 150 229
-125 225 195 206 131
-126 209 222 249 197
-127 166 191 161 251
-128 255 147 224 205
-129 77 101 82 50
-130 13 91 107 21
-131 23 125 105 8
-132 67 79 62 63
-133 88 70 104 43
-134 45 103 29 86
-135 59 61 62 84
-136 35 60 64 75
-137 104 95 117 85
-138 95 30 85 32
-139 66 38 61 83
-140 104 6 117 19
-141 14 106 31 120
-142 79 58 73 53
-143 11 4 59 74
-144 33 47 69 80
-145 46 57 102 93
-146 46 94 30 108
-147 121 84 128 76
-148 44 56 28 29
-149 68 91 107 65
-150 112 124 4 6
-151 25 60 82 42
-152 56 15 7 29
-153 56 13 72 21
-154 34 13 70 54
-155 112 94 86 87
-156 78 59 52 74
-157 39 84 53 76
-158 90 115 17 41
-159 69 27 96 43
-160 15 5 60 82
-161 110 3 5 127
-162 45 3 5 72
-163 25 58 81 10
-164 25 62 84 42
-165 36 69 26 96
-166 110 16 127 8
-167 37 60 75 65
-168 83 63 74 76
-169 89 57 114 32
-170 110 67 39 98
-171 23 123 40 98
-172 22 92 49 117
-173 1 2 80 109
-174 99 111 24 41
-175 122 17 9 97
-176 23 78 40 52
-177 35 113 64 108
-178 100 18 73 42
-179 11 99 19 97
-180 93 95 96 109
-181 77 110 64 98
-182 35 93 50 95
-183 88 14 104 31
-184 68 101 82 51
-185 11 88 4 92
-186 89 114 16 40
-187 90 58 81 106
-188 33 121 47 118
-189 67 100 81 39
-190 1 36 59 61
-191 79 123 127 53
-192 6 61 83 19
-193 48 27 21 43
-194 99 1 111 2
-195 46 125 105 30
-196 33 44 12 28
-197 25 126 107 10
-198 56 112 124 72
-199 57 113 32 87
-200 55 113 28 87
-201 44 71 94 108
-202 55 45 71 72
-203 3 27 7 54
-204 99 58 73 97
-205 66 78 128 119
-206 67 79 114 125
-207 89 39 105 53
-208 22 90 49 115
-209 34 48 126 116
-210 24 37 41 65
-211 88 102 92 93
-212 111 122 4 6
-213 92 27 117 54
-214 34 89 13 105
-215 46 57 91 116
-216 68 17 51 9
-217 69 80 102 85
-218 77 102 85 64
-219 66 78 37 51
-220 34 45 48 29
-221 44 1 36 71
-222 37 126 116 51
-223 100 111 122 81
-224 22 121 14 128
-225 48 114 125 21
-226 91 116 18 42
-227 2 26 83 74
-228 49 118 31 119
-229 22 14 124 103
-230 24 106 9 120
-231 101 3 7 75
-232 15 70 5 43
-233 16 17 40 41
-234 62 63 118 119
-235 90 47 106 20
-236 18 63 10 76
-237 123 15 7 98
-238 77 50 94 87
-239 33 12 115 120
-240 23 24 8 9
-241 55 2 26 28
-242 55 47 71 20
-243 121 38 52 118
-244 100 115 73 120
-245 66 16 38 8
-246 68 38 52 65
-247 11 103 19 86
-248 113 124 103 108
-249 126 30 107 32
-250 101 18 75 10
-251 35 123 50 127
-252 112 49 31 86
-253 80 70 54 109
-254 122 36 26 97
-255 12 128 20 119
-256 12 96 20 109
0

**************