C4graphGraph forms for C4 [ 256, 115 ] = PL(ATD[16,2]#ATD[16,4])

[Home] [Table] [Glossary] [Families]

On this page are computer-accessible forms for the graph C4[ 256, 115 ] = PL(ATD[16,2]#ATD[16,4]).

(I) Following is a form readable by MAGMA:

g:=Graph<256|{ {128, 132}, {128, 156}, {128, 199}, {128, 210}, {30, 158}, {69, 197}, {73, 201}, {30, 159}, {59, 186}, {55, 182}, {53, 180}, {34, 163}, {75, 202}, {14, 140}, {102, 228}, {43, 169}, {40, 170}, {24, 154}, {21, 151}, {63, 189}, {66, 192}, {40, 171}, {60, 191}, {46, 173}, {42, 174}, {111, 235}, {55, 179}, {48, 180}, {47, 171}, {71, 195}, {83, 215}, {84, 208}, {28, 153}, {47, 170}, {65, 196}, {66, 199}, {74, 207}, {4, 130}, {117, 243}, {114, 244}, {103, 225}, {49, 183}, {46, 168}, {38, 160}, {78, 200}, {27, 156}, {44, 171}, {42, 173}, {3, 139}, {122, 242}, {119, 255}, {118, 254}, {60, 180}, {46, 166}, {13, 133}, {77, 197}, {78, 198}, {16, 153}, {126, 247}, {46, 167}, {26, 147}, {81, 216}, {104, 226}, {124, 246}, {112, 250}, {109, 231}, {7, 140}, {70, 205}, {74, 193}, {15, 131}, {26, 150}, {18, 158}, {36, 169}, {123, 246}, {44, 162}, {122, 244}, {14, 129}, {125, 242}, {79, 192}, {35, 179}, {108, 252}, {52, 164}, {32, 177}, {83, 193}, {84, 198}, {29, 142}, {106, 249}, {70, 213}, {74, 217}, {80, 195}, {45, 185}, {116, 224}, {106, 254}, {81, 197}, {77, 216}, {16, 134}, {97, 247}, {50, 164}, {86, 192}, {4, 147}, {127, 232}, {102, 241}, {99, 244}, {29, 138}, {64, 215}, {14, 150}, {49, 169}, {27, 131}, {26, 130}, {17, 137}, {12, 149}, {93, 196}, {28, 134}, {118, 236}, {54, 172}, {29, 135}, {6, 157}, {51, 168}, {38, 189}, {26, 129}, {20, 136}, {91, 199}, {63, 163}, {65, 220}, {75, 214}, {78, 211}, {3, 157}, {127, 225}, {117, 235}, {116, 234}, {100, 250}, {43, 181}, {15, 145}, {9, 151}, {76, 210}, {86, 200}, {17, 142}, {115, 236}, {112, 239}, {94, 193}, {63, 160}, {33, 129}, {2, 163}, {122, 219}, {36, 133}, {34, 131}, {24, 185}, {10, 171}, {72, 233}, {57, 155}, {67, 225}, {19, 176}, {93, 254}, {85, 241}, {87, 243}, {20, 177}, {52, 145}, {35, 134}, {33, 132}, {29, 184}, {67, 230}, {82, 247}, {1, 167}, {125, 219}, {55, 145}, {86, 240}, {51, 148}, {24, 176}, {119, 223}, {107, 195}, {5, 172}, {103, 206}, {59, 146}, {23, 190}, {17, 184}, {84, 253}, {99, 201}, {106, 192}, {110, 197}, {115, 216}, {55, 155}, {95, 243}, {23, 186}, {119, 218}, {102, 203}, {92, 241}, {53, 152}, {31, 178}, {81, 252}, {25, 183}, {104, 198}, {50, 156}, {33, 143}, {69, 235}, {75, 229}, {10, 165}, {40, 135}, {34, 141}, {31, 176}, {16, 191}, {11, 187}, {90, 234}, {37, 149}, {16, 160}, {67, 243}, {11, 186}, {127, 206}, {19, 162}, {62, 143}, {74, 251}, {88, 233}, {63, 141}, {125, 207}, {111, 221}, {103, 213}, {95, 237}, {93, 239}, {66, 240}, {22, 165}, {113, 194}, {108, 223}, {78, 253}, {80, 227}, {28, 168}, {112, 196}, {90, 238}, {65, 245}, {80, 228}, {79, 250}, {92, 233}, {56, 142}, {121, 207}, {103, 209}, {59, 141}, {79, 249}, {86, 224}, {22, 161}, {96, 215}, {94, 233}, {45, 154}, {37, 146}, {35, 155}, {91, 227}, {57, 129}, {41, 144}, {107, 210}, {68, 253}, {62, 132}, {120, 194}, {118, 204}, {109, 214}, {12, 176}, {104, 212}, {42, 150}, {1, 188}, {109, 208}, {108, 209}, {31, 162}, {18, 175}, {2, 188}, {100, 218}, {98, 220}, {69, 251}, {45, 146}, {115, 204}, {91, 228}, {64, 255}, {73, 246}, {82, 237}, {43, 235}, {123, 187}, {57, 248}, {76, 141}, {9, 203}, {123, 185}, {64, 131}, {83, 144}, {49, 245}, {122, 190}, {79, 139}, {66, 135}, {8, 206}, {108, 170}, {59, 253}, {27, 221}, {24, 222}, {83, 149}, {5, 194}, {124, 187}, {91, 156}, {13, 202}, {11, 204}, {8, 207}, {41, 225}, {113, 185}, {80, 152}, {8, 193}, {49, 248}, {39, 238}, {31, 214}, {3, 201}, {116, 190}, {32, 234}, {5, 206}, {124, 183}, {110, 165}, {50, 249}, {21, 222}, {7, 203}, {126, 178}, {114, 190}, {101, 169}, {99, 175}, {98, 174}, {17, 220}, {90, 151}, {54, 251}, {52, 249}, {82, 159}, {84, 153}, {87, 154}, {94, 144}, {4, 203}, {120, 183}, {119, 184}, {96, 175}, {47, 224}, {41, 230}, {6, 201}, {43, 251}, {115, 163}, {113, 161}, {101, 181}, {10, 219}, {118, 167}, {8, 218}, {99, 177}, {39, 245}, {12, 222}, {68, 150}, {6, 213}, {89, 138}, {25, 202}, {71, 148}, {35, 247}, {92, 136}, {36, 240}, {73, 159}, {101, 179}, {96, 182}, {6, 209}, {37, 242}, {67, 148}, {1, 217}, {33, 248}, {58, 227}, {38, 255}, {65, 152}, {2, 216}, {123, 161}, {61, 231}, {88, 130}, {2, 217}, {105, 178}, {23, 204}, {22, 205}, {15, 211}, {100, 184}, {97, 189}, {94, 130}, {58, 230}, {56, 228}, {51, 239}, {36, 248}, {62, 226}, {85, 136}, {110, 179}, {48, 238}, {98, 188}, {76, 146}, {89, 135}, {5, 218}, {106, 181}, {105, 182}, {58, 229}, {32, 255}, {48, 208}, {111, 143}, {69, 165}, {4, 229}, {117, 148}, {114, 147}, {90, 187}, {7, 229}, {76, 174}, {14, 237}, {126, 157}, {116, 151}, {39, 196}, {60, 223}, {70, 162}, {11, 238}, {89, 188}, {13, 232}, {72, 173}, {18, 244}, {56, 222}, {27, 252}, {52, 211}, {47, 200}, {70, 161}, {71, 160}, {10, 226}, {102, 142}, {93, 181}, {30, 246}, {53, 220}, {68, 173}, {7, 237}, {121, 147}, {62, 212}, {87, 189}, {3, 232}, {98, 137}, {61, 214}, {25, 245}, {100, 136}, {72, 164}, {60, 209}, {9, 231}, {20, 250}, {61, 211}, {88, 182}, {40, 199}, {107, 132}, {54, 217}, {50, 221}, {72, 167}, {19, 227}, {124, 140}, {110, 158}, {58, 202}, {51, 195}, {25, 232}, {120, 137}, {37, 212}, {21, 231}, {30, 236}, {77, 191}, {15, 252}, {121, 138}, {107, 152}, {104, 155}, {95, 172}, {28, 239}, {85, 166}, {22, 226}, {127, 139}, {120, 140}, {109, 153}, {105, 157}, {54, 194}, {41, 221}, {82, 166}, {19, 230}, {96, 149}, {34, 215}, {61, 200}, {23, 224}, {125, 138}, {114, 133}, {89, 174}, {44, 219}, {39, 208}, {88, 175}, {9, 241}, {126, 134}, {113, 137}, {105, 145}, {92, 164}, {53, 205}, {42, 210}, {71, 191}, {73, 177}, {44, 213}, {95, 166}, {45, 212}, {75, 178}, {77, 180}, {117, 143}, {81, 170}, {112, 139}, {101, 158}, {97, 154}, {87, 172}, {121, 133}, {13, 240}, {48, 205}, {85, 168}, {12, 242}, {97, 159}, {20, 234}, {18, 236}, {68, 186}, {1, 254}, {111, 144}, {57, 198}, {32, 223}, {21, 256}, {38, 256}, {56, 256}, {64, 256} }>;

(II) A more general form is to represent the graph as the orbit of {128, 132} under the group generated by the following permutations:

a: (2, 118)(3, 103)(4, 91)(5, 112)(7, 80)(8, 79)(9, 56)(10, 55)(11, 63)(12, 61)(13, 41)(14, 107)(15, 122)(16, 123)(17, 85)(18, 81)(19, 75)(20, 119)(22, 35)(23, 34)(24, 109)(25, 67)(26, 128)(27, 114)(28, 113)(29, 92)(30, 77)(36, 111)(37, 78)(38, 90)(39, 87)(40, 88)(44, 105)(45, 84)(46, 98)(47, 96)(48, 97)(49, 117)(50, 121)(51, 120)(52, 125)(53, 82)(54, 93)(57, 62)(60, 73)(64, 116)(65, 95)(66, 94)(68, 76)(69, 101)(70, 126)(71, 124)(72, 89)(74, 106)(83, 86)(99, 108)(129, 132)(130, 199)(131, 190)(133, 221)(134, 161)(135, 233)(136, 184)(137, 168)(138, 164)(139, 206)(140, 195)(141, 186)(142, 241)(143, 248)(144, 240)(145, 219)(146, 253)(147, 156)(148, 183)(149, 200)(150, 210)(151, 256)(152, 237)(153, 185)(154, 208)(155, 226)(157, 213)(158, 197)(159, 180)(160, 187)(162, 178)(163, 204)(165, 179)(166, 220)(167, 188)(169, 235)(170, 175)(171, 182)(172, 196)(173, 174)(176, 214)(177, 223)(181, 251)(189, 238)(191, 246)(192, 193)(194, 239)(198, 212)(201, 209)(202, 230)(203, 228)(205, 247)(207, 249)(211, 242)(215, 224)(216, 236)(217, 254)(218, 250)(222, 231)(225, 232)(227, 229)(234, 255)(243, 245)(244, 252)
b: (1, 4, 6, 63, 33, 79, 21, 22)(2, 26, 3, 38, 62, 106, 9, 70)(5, 83, 55, 28, 80, 40, 23, 124)(7, 103, 34, 57, 112, 56, 10, 118)(8, 96, 35, 51, 91, 47, 11, 120)(12, 110, 46, 58, 108, 59, 49, 100)(13, 32, 45, 43, 92, 31, 77, 42)(14, 127, 64, 104, 93, 102, 44, 115)(15, 84, 65, 29, 122, 30, 95, 41)(16, 107, 66, 116, 123, 54, 94, 105)(17, 125, 18, 82, 67, 27, 78, 39)(19, 81, 68, 25, 119, 37, 101, 85)(20, 24, 69, 72, 75, 60, 76, 36)(48, 98, 121, 99, 97, 117, 50, 61)(52, 109, 53, 89, 114, 73, 87, 111)(71, 128, 86, 90, 113, 74, 88, 126)(129, 139, 256, 226, 254, 203, 213, 163)(130, 157, 160, 132, 192, 151, 161, 217)(131, 198, 196, 142, 219, 236, 237, 225)(133, 177, 154, 235, 164, 214, 180, 174)(134, 195, 199, 224, 187, 194, 193, 182)(135, 190, 246, 172, 144, 145, 153, 152)(136, 176, 197, 173, 202, 223, 146, 169)(137, 207, 175, 247, 148, 156, 200, 238)(138, 244, 159, 243, 221, 211, 208, 220)(140, 206, 215, 155, 239, 228, 171, 204)(141, 248, 250, 222, 165, 167, 229, 209)(143, 249, 231, 205, 188, 147, 201, 189)(149, 179, 168, 227, 170, 186, 183, 218)(150, 232, 255, 212, 181, 241, 162, 216)(158, 166, 230, 252, 253, 245, 184, 242)(178, 191, 210, 240, 234, 185, 251, 233)
c: (4, 7)(5, 8)(10, 22)(11, 23)(12, 24)(13, 25)(14, 26)(15, 16)(17, 29)(18, 30)(27, 71)(28, 52)(34, 63)(35, 55)(36, 49)(37, 45)(38, 64)(39, 86)(40, 53)(41, 67)(44, 70)(46, 72)(47, 48)(50, 51)(54, 74)(60, 108)(61, 109)(65, 66)(73, 99)(77, 81)(78, 84)(79, 112)(80, 91)(82, 88)(83, 87)(85, 92)(89, 98)(90, 116)(93, 106)(94, 95)(96, 97)(105, 126)(107, 128)(111, 117)(113, 125)(114, 124)(120, 121)(122, 123)(130, 237)(131, 160)(133, 183)(134, 145)(135, 220)(137, 138)(140, 147)(144, 243)(148, 221)(149, 154)(152, 199)(153, 211)(156, 195)(159, 175)(161, 219)(164, 168)(166, 233)(170, 180)(171, 205)(172, 193)(182, 247)(185, 242)(187, 190)(189, 215)(191, 252)(192, 196)(194, 207)(200, 208)(224, 238)(239, 249)(240, 245)(244, 246)
d: (2, 118)(3, 56)(4, 41)(5, 85)(6, 21)(7, 67)(8, 92)(9, 103)(10, 78)(11, 77)(12, 105)(13, 91)(14, 117)(15, 122)(16, 123)(17, 112)(18, 34)(19, 75)(20, 119)(22, 84)(23, 81)(24, 126)(25, 80)(26, 111)(27, 114)(28, 113)(29, 79)(30, 63)(35, 45)(36, 128)(37, 55)(38, 73)(39, 53)(40, 86)(42, 43)(44, 61)(46, 54)(49, 107)(50, 121)(51, 120)(52, 125)(57, 62)(59, 110)(60, 90)(64, 99)(68, 69)(70, 109)(71, 124)(72, 74)(76, 101)(82, 87)(83, 88)(89, 106)(93, 98)(102, 127)(108, 116)(129, 143)(130, 144)(131, 244)(132, 248)(133, 156)(134, 185)(135, 192)(136, 218)(137, 239)(138, 249)(139, 142)(140, 148)(141, 158)(145, 242)(146, 179)(147, 221)(149, 182)(150, 235)(151, 209)(152, 245)(153, 161)(154, 247)(155, 212)(157, 222)(159, 189)(160, 246)(162, 214)(163, 236)(164, 207)(165, 253)(166, 172)(167, 217)(168, 194)(169, 210)(170, 224)(171, 200)(173, 251)(174, 181)(175, 215)(176, 178)(177, 255)(180, 238)(183, 195)(184, 250)(186, 197)(187, 191)(188, 254)(190, 252)(193, 233)(196, 220)(198, 226)(199, 240)(201, 256)(202, 227)(203, 225)(204, 216)(205, 208)(206, 241)(211, 219)(213, 231)(223, 234)(228, 232)(229, 230)(237, 243)
e: (1, 2, 115, 118)(3, 127, 103, 6)(4, 91, 12, 61)(5, 60, 73, 112)(7, 80, 24, 109)(8, 108, 99, 79)(9, 102, 56, 21)(10, 55, 36, 111)(11, 46, 98, 63)(13, 41, 44, 105)(14, 107, 45, 84)(15, 114, 50, 125)(16, 124, 51, 113)(17, 38, 90, 85)(18, 106, 74, 81)(19, 31, 75, 58)(20, 100, 119, 32)(22, 35, 49, 117)(23, 72, 89, 34)(25, 67, 70, 126)(26, 128, 37, 78)(27, 122, 52, 121)(28, 120, 71, 123)(29, 64, 116, 92)(30, 93, 54, 77)(33, 62, 104, 57)(39, 95, 53, 97)(40, 96, 86, 94)(42, 76, 59, 68)(43, 69, 110, 101)(47, 88, 66, 83)(48, 82, 65, 87)(129, 132, 212, 198)(130, 199, 149, 200)(131, 190, 164, 138)(133, 221, 219, 145)(134, 183, 148, 161)(135, 215, 224, 233)(136, 184, 255, 234)(137, 160, 187, 168)(139, 206, 209, 201)(140, 195, 185, 153)(141, 186, 173, 174)(142, 256, 151, 241)(143, 226, 155, 248)(144, 171, 182, 240)(146, 253, 150, 210)(147, 156, 242, 211)(152, 154, 208, 237)(157, 232, 225, 213)(158, 181, 251, 197)(159, 196, 172, 180)(162, 178, 202, 230)(163, 204, 167, 188)(165, 179, 169, 235)(166, 220, 189, 238)(170, 175, 192, 193)(176, 214, 229, 227)(177, 250, 218, 223)(191, 246, 239, 194)(203, 228, 222, 231)(205, 247, 245, 243)(207, 252, 244, 249)(216, 236, 254, 217)
f: (1, 3, 115, 103)(2, 127, 118, 6)(4, 78, 12, 128)(5, 93, 73, 77)(7, 84, 24, 107)(8, 106, 99, 81)(9, 104, 56, 33)(10, 29, 36, 116)(11, 70, 98, 25)(13, 23, 44, 89)(14, 109, 45, 80)(15, 83, 50, 88)(16, 87, 51, 82)(17, 49, 90, 22)(18, 108, 74, 79)(19, 42, 75, 59)(20, 110, 119, 43)(21, 62, 102, 57)(26, 61, 37, 91)(27, 94, 52, 96)(28, 97, 71, 95)(30, 60, 54, 112)(31, 76, 58, 68)(32, 69, 100, 101)(34, 41, 72, 105)(35, 38, 117, 85)(39, 123, 53, 120)(40, 121, 86, 122)(46, 126, 63, 67)(47, 125, 66, 114)(48, 113, 65, 124)(55, 64, 111, 92)(129, 231, 212, 228)(130, 211, 149, 156)(131, 144, 164, 182)(132, 203, 198, 222)(133, 224, 219, 135)(134, 189, 148, 166)(136, 179, 255, 235)(137, 245, 187, 205)(138, 240, 190, 171)(139, 236, 209, 217)(140, 208, 185, 152)(141, 230, 173, 178)(142, 248, 151, 226)(143, 241, 155, 256)(145, 215, 221, 233)(146, 227, 150, 214)(147, 200, 242, 199)(153, 154, 195, 237)(157, 163, 225, 167)(158, 223, 251, 250)(159, 191, 172, 239)(160, 243, 168, 247)(161, 220, 183, 238)(162, 174, 202, 186)(165, 184, 169, 234)(170, 207, 192, 244)(175, 252, 193, 249)(176, 210, 229, 253)(177, 197, 218, 181)(180, 194, 196, 246)(188, 232, 204, 213)(201, 216, 206, 254)

(III) Last is Groups&Graphs. Copy everything between (not including) the lines of asterisks into a plain text file and save it as "graph.txt". Then launch G&G (Groups&Graphs) and select Read Text from the File menu.

**************

&Graph
C4[ 256, 115 ]
256
-1 188 254 167 217
-2 188 216 217 163
-3 232 157 201 139
-4 147 203 130 229
-5 172 194 206 218
-6 209 157 201 213
-7 203 237 140 229
-8 193 206 207 218
-9 231 203 151 241
-10 165 171 226 219
-11 187 204 238 186
-12 176 242 222 149
-13 133 232 202 240
-14 237 150 129 140
-15 145 211 131 252
-16 134 191 160 153
-17 220 137 184 142
-18 244 158 236 175
-19 176 227 162 230
-20 177 234 136 250
-21 231 222 256 151
-22 165 226 161 205
-23 190 224 204 186
-24 154 176 222 185
-25 232 245 202 183
-26 147 150 129 130
-27 221 156 131 252
-28 134 168 239 153
-29 135 138 184 142
-30 158 246 159 236
-31 176 178 214 162
-32 177 255 223 234
-33 132 143 248 129
-34 215 141 163 131
-35 155 134 179 247
-36 133 169 248 240
-37 242 146 212 149
-38 189 255 256 160
-39 245 238 196 208
-40 199 135 170 171
-41 144 221 225 230
-42 210 150 173 174
-43 169 235 181 251
-44 213 171 162 219
-45 154 146 212 185
-46 166 167 168 173
-47 200 224 170 171
-48 180 205 238 208
-49 245 169 248 183
-50 221 156 249 164
-51 168 148 195 239
-52 145 211 249 164
-53 220 180 205 152
-54 172 194 217 251
-55 155 145 179 182
-56 222 256 228 142
-57 198 155 248 129
-58 202 227 229 230
-59 253 146 141 186
-60 209 223 180 191
-61 231 200 211 214
-62 132 143 212 226
-63 189 160 141 163
-64 255 256 215 131
-65 220 245 152 196
-66 199 135 192 240
-67 243 148 225 230
-68 253 150 173 186
-69 165 235 251 197
-70 213 161 205 162
-71 191 148 160 195
-72 167 233 173 164
-73 177 201 246 159
-74 193 217 207 251
-75 178 202 214 229
-76 210 146 141 174
-77 180 191 216 197
-78 198 253 200 211
-79 192 139 249 250
-80 227 195 228 152
-81 170 216 197 252
-82 166 159 247 237
-83 144 149 193 215
-84 198 253 153 208
-85 166 168 136 241
-86 200 224 192 240
-87 154 243 189 172
-88 233 182 130 175
-89 188 135 138 174
-90 187 234 238 151
-91 199 156 227 228
-92 233 136 164 241
-93 254 181 239 196
-94 144 233 193 130
-95 166 243 237 172
-96 149 182 215 175
-97 154 189 159 247
-98 220 188 137 174
-99 177 244 201 175
-100 136 184 250 218
-101 179 158 169 181
-102 203 228 142 241
-103 209 213 225 206
-104 198 155 212 226
-105 145 178 157 182
-106 254 181 192 249
-107 132 210 195 152
-108 209 223 170 252
-109 231 214 153 208
-110 165 179 158 197
-111 143 144 221 235
-112 139 239 250 196
-113 137 161 194 185
-114 133 244 190 147
-115 236 204 216 163
-116 190 234 224 151
-117 143 243 235 148
-118 254 167 236 204
-119 255 223 184 218
-120 137 183 194 140
-121 133 147 138 207
-122 242 244 190 219
-123 187 246 161 185
-124 187 246 183 140
-125 242 138 207 219
-126 134 178 157 247
-127 232 225 139 206
-128 132 199 210 156
-129 33 57 14 26
-130 88 4 26 94
-131 34 15 27 64
-132 33 62 128 107
-133 121 13 36 114
-134 35 16 126 28
-135 66 89 29 40
-136 100 92 85 20
-137 113 17 98 120
-138 121 89 125 29
-139 79 112 3 127
-140 14 124 7 120
-141 34 59 63 76
-142 56 102 17 29
-143 33 111 62 117
-144 111 83 94 41
-145 55 15 105 52
-146 45 37 59 76
-147 121 4 26 114
-148 67 71 51 117
-149 12 37 83 96
-150 68 14 26 42
-151 90 116 9 21
-152 80 107 53 65
-153 16 28 84 109
-154 45 24 97 87
-155 55 35 57 104
-156 91 27 50 128
-157 3 126 6 105
-158 110 101 18 30
-159 82 73 30 97
-160 16 38 71 63
-161 22 123 113 70
-162 44 70 19 31
-163 34 2 115 63
-164 92 50 72 52
-165 22 110 69 10
-166 46 82 95 85
-167 1 46 72 118
-168 46 28 51 85
-169 101 36 49 43
-170 47 81 40 108
-171 44 47 40 10
-172 5 95 54 87
-173 46 68 72 42
-174 89 42 76 98
-175 88 99 18 96
-176 12 24 19 31
-177 99 73 20 32
-178 126 105 31 75
-179 55 110 35 101
-180 77 48 60 53
-181 101 93 106 43
-182 55 88 105 96
-183 25 124 49 120
-184 100 17 29 119
-185 45 24 123 113
-186 11 23 68 59
-187 11 90 123 124
-188 1 89 2 98
-189 38 63 97 87
-190 23 122 114 116
-191 77 16 60 71
-192 66 79 106 86
-193 83 94 8 74
-194 113 5 54 120
-195 80 71 51 107
-196 112 93 39 65
-197 77 110 69 81
-198 78 57 104 84
-199 66 91 40 128
-200 78 47 61 86
-201 99 3 6 73
-202 13 25 58 75
-203 102 4 7 9
-204 11 23 115 118
-205 22 48 70 53
-206 103 5 127 8
-207 121 125 8 74
-208 48 39 84 109
-209 103 60 6 108
-210 128 107 42 76
-211 78 15 61 52
-212 45 37 104 62
-213 44 70 103 6
-214 61 31 75 109
-215 34 83 96 64
-216 77 2 81 115
-217 1 2 74 54
-218 100 5 8 119
-219 44 122 125 10
-220 17 53 65 98
-221 111 27 50 41
-222 12 56 24 21
-223 60 108 119 32
-224 23 47 116 86
-225 67 103 127 41
-226 22 104 62 10
-227 58 80 91 19
-228 56 80 91 102
-229 58 4 7 75
-230 67 58 19 41
-231 61 9 21 109
-232 13 3 25 127
-233 88 92 72 94
-234 90 116 20 32
-235 111 69 117 43
-236 115 18 30 118
-237 14 82 7 95
-238 11 90 48 39
-239 112 93 28 51
-240 66 13 36 86
-241 102 92 85 9
-242 12 122 37 125
-243 67 95 117 87
-244 99 122 114 18
-245 25 49 39 65
-246 123 124 73 30
-247 35 82 126 97
-248 33 57 36 49
-249 79 50 106 52
-250 100 79 112 20
-251 69 74 43 54
-252 15 81 27 108
-253 78 68 59 84
-254 1 93 106 118
-255 38 64 119 32
-256 56 38 64 21
0

**************