[Home] [Table] [Glossary]
[Families]
On this page are computer-accessible forms for the graph C4[ 256, 117 ] =
SDD(PX(8,3)).
(I) Following is a form readable by MAGMA:
g:=Graph<256|{ {128, 129}, {128, 130}, {128, 131}, {128, 133}, {1, 129}, {94,
222}, {87, 215}, {11, 139}, {10, 138}, {9, 137}, {8, 136}, {3, 130}, {96, 225},
{16, 145}, {14, 143}, {12, 141}, {7, 134}, {5, 132}, {1, 131}, {121, 251}, {25,
155}, {24, 154}, {21, 151}, {20, 150}, {5, 135}, {1, 130}, {113, 242}, {17,
146}, {13, 142}, {6, 133}, {2, 129}, {64, 195}, {1, 133}, {100, 224}, {40, 172},
{35, 167}, {34, 166}, {33, 165}, {32, 164}, {27, 159}, {8, 140}, {3, 135}, {2,
134}, {79, 203}, {2, 132}, {121, 255}, {98, 228}, {26, 156}, {19, 149}, {18,
148}, {71, 193}, {83, 213}, {4, 131}, {121, 254}, {111, 232}, {92, 219}, {40,
175}, {75, 204}, {48, 184}, {111, 231}, {108, 228}, {49, 185}, {59, 179}, {76,
196}, {3, 138}, {114, 251}, {52, 189}, {50, 187}, {6, 140}, {120, 242}, {100,
238}, {53, 191}, {7, 141}, {2, 137}, {113, 250}, {106, 225}, {49, 186}, {4,
143}, {80, 219}, {4, 136}, {39, 171}, {38, 170}, {37, 169}, {36, 168}, {67,
207}, {78, 194}, {3, 142}, {113, 252}, {19, 158}, {22, 152}, {97, 239}, {23,
153}, {55, 185}, {84, 218}, {4, 139}, {99, 236}, {86, 217}, {51, 188}, {18,
157}, {57, 182}, {64, 207}, {13, 157}, {109, 253}, {107, 251}, {15, 159}, {14,
158}, {66, 210}, {6, 151}, {96, 241}, {90, 203}, {10, 155}, {8, 153}, {65, 208},
{68, 213}, {86, 199}, {69, 215}, {97, 243}, {87, 197}, {5, 150}, {100, 247},
{95, 204}, {93, 206}, {9, 154}, {69, 214}, {107, 255}, {115, 231}, {109, 249},
{5, 144}, {107, 254}, {7, 146}, {71, 210}, {74, 223}, {80, 198}, {99, 245}, {98,
244}, {6, 145}, {98, 245}, {49, 166}, {37, 178}, {11, 156}, {70, 209}, {34,
186}, {114, 234}, {111, 247}, {96, 248}, {47, 183}, {46, 182}, {45, 181}, {44,
180}, {43, 179}, {41, 176}, {9, 147}, {66, 216}, {73, 211}, {76, 214}, {78,
212}, {34, 185}, {42, 177}, {82, 206}, {54, 171}, {109, 240}, {84, 201}, {10,
148}, {11, 149}, {7, 152}, {98, 253}, {97, 254}, {96, 255}, {15, 144}, {12,
147}, {70, 217}, {109, 205}, {91, 250}, {68, 230}, {124, 222}, {29, 190}, {124,
223}, {55, 148}, {75, 239}, {81, 245}, {74, 239}, {101, 192}, {81, 244}, {83,
246}, {14, 168}, {15, 169}, {65, 231}, {16, 183}, {91, 252}, {24, 191}, {24,
176}, {94, 246}, {92, 244}, {26, 178}, {25, 177}, {69, 237}, {70, 238}, {17,
184}, {91, 242}, {23, 190}, {21, 188}, {19, 186}, {65, 232}, {76, 229}, {8,
162}, {13, 167}, {12, 166}, {9, 163}, {55, 157}, {80, 250}, {18, 185}, {115,
216}, {22, 189}, {66, 233}, {73, 226}, {75, 224}, {82, 249}, {77, 225}, {120,
212}, {81, 253}, {78, 227}, {79, 226}, {10, 164}, {11, 165}, {20, 187}, {114,
221}, {108, 195}, {68, 235}, {16, 160}, {17, 161}, {28, 173}, {116, 197}, {87,
230}, {64, 241}, {68, 246}, {77, 255}, {29, 174}, {94, 237}, {79, 252}, {80,
227}, {27, 175}, {101, 209}, {74, 254}, {77, 248}, {124, 201}, {115, 198}, {81,
228}, {83, 230}, {65, 247}, {27, 172}, {122, 205}, {103, 208}, {92, 235}, {40,
159}, {79, 248}, {82, 229}, {20, 172}, {23, 175}, {22, 174}, {21, 173}, {83,
235}, {13, 180}, {108, 213}, {15, 182}, {74, 243}, {16, 170}, {114, 200}, {17,
171}, {14, 181}, {75, 240}, {28, 160}, {120, 196}, {116, 200}, {31, 163}, {30,
162}, {29, 161}, {77, 241}, {84, 233}, {82, 236}, {97, 223}, {86, 232}, {12,
179}, {111, 208}, {99, 220}, {60, 252}, {89, 153}, {43, 234}, {118, 183}, {45,
236}, {58, 251}, {47, 237}, {102, 164}, {56, 250}, {62, 253}, {35, 231}, {112,
180}, {106, 174}, {90, 158}, {51, 247}, {60, 248}, {32, 229}, {93, 152}, {72,
141}, {85, 144}, {63, 249}, {122, 188}, {116, 178}, {110, 168}, {33, 230}, {124,
187}, {44, 235}, {62, 249}, {24, 208}, {26, 210}, {25, 209}, {59, 243}, {95,
150}, {120, 177}, {30, 212}, {88, 146}, {31, 213}, {85, 159}, {106, 161}, {36,
232}, {61, 240}, {104, 165}, {62, 240}, {28, 211}, {108, 163}, {90, 149}, {38,
233}, {58, 234}, {59, 234}, {89, 136}, {61, 239}, {51, 224}, {63, 236}, {101,
177}, {115, 167}, {106, 190}, {89, 140}, {99, 181}, {118, 160}, {103, 176},
{122, 173}, {112, 167}, {18, 202}, {123, 163}, {103, 191}, {100, 188}, {45,
245}, {44, 244}, {43, 243}, {42, 242}, {41, 241}, {23, 207}, {22, 206}, {21,
205}, {20, 204}, {19, 203}, {25, 192}, {52, 237}, {47, 246}, {27, 194}, {63,
229}, {67, 153}, {26, 193}, {110, 181}, {56, 227}, {71, 156}, {72, 147}, {30,
194}, {118, 170}, {53, 233}, {31, 195}, {51, 238}, {116, 169}, {61, 224}, {48,
238}, {60, 226}, {37, 197}, {93, 189}, {90, 186}, {88, 184}, {43, 202}, {123,
154}, {110, 143}, {48, 209}, {49, 211}, {52, 214}, {36, 199}, {104, 139}, {52,
215}, {56, 219}, {85, 182}, {32, 196}, {95, 187}, {33, 197}, {57, 221}, {73,
173}, {35, 198}, {57, 220}, {39, 193}, {41, 207}, {39, 192}, {118, 145}, {117,
146}, {53, 210}, {58, 221}, {76, 164}, {127, 151}, {123, 147}, {92, 180}, {46,
199}, {94, 183}, {48, 217}, {73, 160}, {40, 194}, {41, 195}, {50, 222}, {102,
138}, {54, 218}, {67, 175}, {78, 162}, {37, 200}, {122, 151}, {117, 152}, {112,
157}, {105, 132}, {53, 216}, {50, 223}, {42, 196}, {127, 145}, {105, 135}, {72,
166}, {38, 201}, {64, 176}, {119, 135}, {110, 158}, {34, 211}, {47, 222}, {45,
220}, {59, 202}, {61, 204}, {63, 206}, {46, 220}, {125, 143}, {123, 137}, {102,
148}, {87, 165}, {58, 200}, {46, 221}, {127, 140}, {117, 134}, {95, 172}, {93,
174}, {88, 171}, {62, 205}, {104, 156}, {71, 178}, {125, 136}, {119, 130}, {32,
214}, {125, 139}, {54, 192}, {33, 215}, {44, 219}, {126, 137}, {54, 193}, {60,
203}, {69, 189}, {126, 134}, {117, 141}, {88, 161}, {119, 142}, {105, 144},
{126, 132}, {127, 133}, {31, 228}, {89, 162}, {50, 201}, {35, 216}, {72, 179},
{29, 225}, {38, 218}, {85, 169}, {30, 227}, {119, 138}, {104, 149}, {103, 154},
{102, 155}, {39, 218}, {36, 217}, {55, 202}, {66, 191}, {67, 190}, {28, 226},
{125, 131}, {112, 142}, {101, 155}, {42, 212}, {56, 198}, {57, 199}, {70, 184},
{84, 170}, {86, 168}, {105, 150}, {126, 129}, {91, 256}, {107, 256}, {113, 256},
{121, 256} }>;
(II) A more general form is to represent the graph as the orbit of {128, 129}
under the group generated by the following permutations:
a: (4, 125) (III) Last is Groups&Graphs. Copy everything between (not including)
the lines of asterisks into a plain text file and save it as "graph.txt". Then
launch G&G (Groups&Graphs) and select Read Text from the File menu.
**************
&Graph **************
b: (13, 112)
c: (65, 111)
d: (23, 67)
e: (46, 57)
f: (28, 73)
g: (42, 120)
h: (41, 64)
m: (21, 122)
n1: (43, 59)
a1: (5, 105)
b1: (10, 102)
c1: (35, 115)
d1: (14, 110)
e1: (30, 78)
f1: (18, 55)
g1: (53, 66)
h1: (7, 9)(10, 13)(17, 24)(22, 31)(25, 35)(29, 41)(32, 44)(39, 53)(42, 56)(48,
65)(52, 68)(54, 66)(63, 81)(64, 106)(69, 83)(70, 111)(76, 92)(80, 120)(82,
98)(88, 103)(93, 108)(101, 115)(102, 112)(117, 123)(134, 137)(138, 142)(141,
147)(146, 154)(148, 157)(152, 163)(155, 167)(161, 176)(164, 180)(171, 191)(174,
195)(177, 198)(184, 208)(189, 213)(190, 207)(192, 216)(193, 210)(196, 219)(206,
228)(209, 231)(212, 227)(214, 235)(215, 230)(217, 232)(218, 233)(225, 241)(229,
244)(236, 245)(237, 246)(238, 247)(242, 250)(249, 253)
m1: (16, 118)
n2: (34, 49)
a2: (7, 117)
b2: (11, 14)(16, 21)(26, 36)(33, 45)(37, 46)(38, 51)(39, 48)(47, 62)(50, 61)(52,
63)(53, 65)(54, 70)(57, 116)(66, 111)(68, 81)(69, 82)(71, 86)(75, 124)(83,
98)(84, 100)(87, 99)(94, 109)(104, 110)(118, 122)(139, 143)(145, 151)(149,
158)(156, 168)(160, 173)(165, 181)(169, 182)(170, 188)(171, 184)(178, 199)(183,
205)(187, 204)(189, 206)(191, 208)(192, 209)(193, 217)(197, 220)(200, 221)(201,
224)(210, 232)(213, 228)(214, 229)(215, 236)(216, 231)(218, 238)(222, 240)(223,
239)(230, 245)(233, 247)(235, 244)(237, 249)(246, 253)
c2: (2, 4)(3, 6)(5, 8)(7, 11)(9, 14)(10, 16)(12, 19)(13, 21)(15, 23)(17, 26)(18,
28)(20, 30)(22, 33)(24, 36)(25, 38)(29, 37)(31, 45)(32, 47)(35, 51)(41, 46)(42,
50)(43, 60)(44, 62)(48, 53)(55, 73)(56, 61)(57, 64)(58, 77)(59, 79)(63, 68)(66,
70)(67, 85)(71, 88)(72, 90)(74, 91)(75, 80)(76, 94)(78, 95)(82, 83)(84, 101)(86,
103)(87, 93)(89, 105)(92, 109)(96, 114)(97, 113)(99, 108)(100, 115)(102,
118)(104, 117)(106, 116)(110, 123)(112, 122)(119, 127)(120, 124)(125, 126)(129,
131)(130, 133)(132, 136)(134, 139)(135, 140)(137, 143)(138, 145)(141, 149)(142,
151)(144, 153)(146, 156)(147, 158)(148, 160)(150, 162)(152, 165)(154, 168)(155,
170)(157, 173)(159, 175)(161, 178)(163, 181)(164, 183)(166, 186)(167, 188)(169,
190)(171, 193)(172, 194)(174, 197)(176, 199)(177, 201)(179, 203)(180, 205)(182,
207)(184, 210)(185, 211)(187, 212)(189, 215)(191, 217)(192, 218)(195, 220)(196,
222)(198, 224)(200, 225)(202, 226)(204, 227)(206, 230)(208, 232)(209, 233)(213,
236)(214, 237)(216, 238)(219, 240)(221, 241)(223, 242)(228, 245)(229, 246)(231,
247)(234, 248)(235, 249)(239, 250)(243, 252)(244, 253)(251, 255)(254, 256)
d2: (29, 106)
e2: (31, 108)
f2: (27, 40)
g2: (74, 97)
h2: (44, 92)
m2: (3, 119)
n3: (61, 75)
a3: (37, 116)
b3: (81, 98)
c3: (38, 84)
d3: (36, 86)
e3: (47, 94)
f3: (52, 69)
g3: (48, 70)
h3: (51, 100)
m3: (32, 76)
n4: (22, 93)
a4: (33, 87)
b4: (2, 3)(7, 10)(9, 13)(12, 18)(17, 25)(22, 32)(23, 30)(24, 35)(29, 42)(31,
44)(41, 56)(55, 72)(64, 80)(67, 78)(76, 93)(77, 91)(88, 101)(92, 108)(96,
113)(102, 117)(103, 115)(106, 120)(112, 123)(119, 126)(129, 130)(132, 135)(134,
138)(137, 142)(141, 148)(146, 155)(147, 157)(152, 164)(153, 162)(154, 167)(161,
177)(163, 180)(166, 185)(171, 192)(174, 196)(175, 194)(176, 198)(179, 202)(184,
209)(189, 214)(190, 212)(191, 216)(195, 219)(206, 229)(207, 227)(208, 231)(213,
235)(225, 242)(228, 244)(241, 250)(248, 252)(255, 256)
c4: (25, 101)
d4: (68, 83)
e4: (1, 2)(3, 5)(4, 7)(6, 9)(8, 12)(10, 15)(11, 17)(13, 20)(14, 22)(16, 24)(18,
27)(19, 29)(21, 31)(23, 34)(25, 37)(26, 39)(28, 41)(30, 43)(32, 46)(33, 48)(35,
50)(36, 52)(38, 53)(40, 55)(42, 58)(44, 61)(45, 63)(47, 65)(49, 67)(51, 68)(54,
71)(56, 74)(57, 76)(59, 78)(60, 77)(62, 81)(64, 73)(66, 84)(69, 86)(70, 87)(72,
89)(75, 92)(79, 96)(80, 97)(82, 99)(83, 100)(85, 102)(88, 104)(90, 106)(91,
107)(93, 110)(94, 111)(95, 112)(98, 109)(101, 116)(103, 118)(105, 119)(108,
122)(113, 121)(114, 120)(115, 124)(117, 125)(123, 127)(126, 128)(130, 132)(131,
134)(133, 137)(136, 141)(138, 144)(139, 146)(140, 147)(142, 150)(143, 152)(145,
154)(148, 159)(149, 161)(151, 163)(153, 166)(155, 169)(156, 171)(157, 172)(158,
174)(160, 176)(162, 179)(164, 182)(165, 184)(167, 187)(168, 189)(170, 191)(173,
195)(175, 185)(177, 200)(178, 192)(180, 204)(181, 206)(183, 208)(186, 190)(188,
213)(194, 202)(196, 221)(197, 209)(198, 223)(199, 214)(201, 216)(203, 225)(205,
228)(207, 211)(210, 218)(212, 234)(215, 217)(219, 239)(220, 229)(222, 231)(224,
235)(226, 241)(227, 243)(230, 238)(232, 237)(240, 244)(242, 251)(245, 249)(246,
247)(250, 254)(252, 255)
f4: (9, 123)
g4: (4, 6)(11, 16)(14, 21)(15, 20)(19, 28)(26, 38)(33, 47)(36, 51)(37, 50)(45,
62)(46, 61)(57, 75)(58, 74)(71, 84)(73, 90)(85, 95)(86, 100)(87, 94)(97,
114)(99, 109)(104, 118)(110, 122)(116, 124)(125, 127)(131, 133)(136, 140)(139,
145)(143, 151)(144, 150)(149, 160)(156, 170)(158, 173)(159, 172)(165, 183)(168,
188)(169, 187)(178, 201)(181, 205)(182, 204)(186, 211)(193, 218)(197, 222)(199,
224)(200, 223)(203, 226)(210, 233)(215, 237)(217, 238)(220, 240)(221, 239)(230,
246)(232, 247)(234, 243)(236, 249)(245, 253)(251, 254)
h4: (107, 121)
m4: (56, 80)
n5: (60, 79)
a5: (24, 103)
b5: (12, 72)
c5: (19, 90)
d5: (2, 126)
e5: (63, 82)
f5: (15, 85)
g5: (11, 104)
h5: (17, 88)
m5: (17, 22)(24, 31)(25, 32)(26, 33)(35, 44)(36, 45)(38, 47)(39, 52)(48, 63)(51,
62)(53, 68)(54, 69)(65, 81)(66, 83)(70, 82)(71, 87)(76, 101)(84, 94)(86, 99)(88,
93)(92, 115)(98, 111)(100, 109)(103, 108)(146, 152)(154, 163)(155, 164)(156,
165)(161, 174)(167, 180)(168, 181)(170, 183)(171, 189)(176, 195)(177, 196)(178,
197)(184, 206)(188, 205)(191, 213)(192, 214)(193, 215)(198, 219)(199, 220)(201,
222)(208, 228)(209, 229)(210, 230)(216, 235)(217, 236)(218, 237)(224, 240)(231,
244)(232, 245)(233, 246)(238, 249)(247, 253)
n6: (50, 124)
a6: (26, 71)
b6: (20, 95)
c6: (8, 89)
d6: (6, 127)
e6: (45, 99)
f6: (62, 109)
g6: (91, 113)
C4[ 256, 117 ]
256
-1 133 129 130 131
-2 132 134 137 129
-3 135 138 130 142
-4 143 136 139 131
-5 132 144 135 150
-6 133 145 140 151
-7 134 146 141 152
-8 136 140 162 153
-9 154 147 137 163
-10 155 148 138 164
-11 165 156 149 139
-12 166 179 147 141
-13 167 157 180 142
-14 143 168 158 181
-15 144 169 159 182
-16 145 170 160 183
-17 146 171 161 184
-18 157 202 148 185
-19 158 203 149 186
-20 187 204 150 172
-21 188 205 151 173
-22 189 206 152 174
-23 190 207 153 175
-24 154 176 191 208
-25 209 155 177 192
-26 210 156 178 193
-27 159 172 194 175
-28 211 160 226 173
-29 190 225 161 174
-30 212 194 227 162
-31 213 195 228 163
-32 214 196 229 164
-33 165 215 197 230
-34 166 211 185 186
-35 198 231 167 216
-36 199 232 168 217
-37 178 200 169 197
-38 233 201 170 218
-39 192 171 193 218
-40 159 172 194 175
-41 176 195 207 241
-42 242 177 212 196
-43 243 179 234 202
-44 244 180 235 219
-45 220 245 181 236
-46 220 199 221 182
-47 222 246 237 183
-48 209 238 184 217
-49 166 211 185 186
-50 187 222 201 223
-51 188 224 247 238
-52 189 214 215 237
-53 210 233 191 216
-54 192 171 193 218
-55 157 202 148 185
-56 198 227 250 219
-57 220 199 221 182
-58 221 200 234 251
-59 243 179 234 202
-60 203 226 248 252
-61 224 204 239 240
-62 253 205 249 240
-63 236 249 206 229
-64 176 195 207 241
-65 231 232 247 208
-66 210 233 191 216
-67 190 207 153 175
-68 213 235 246 230
-69 189 214 215 237
-70 209 238 184 217
-71 210 156 178 193
-72 166 179 147 141
-73 211 160 226 173
-74 243 254 223 239
-75 224 204 239 240
-76 214 196 229 164
-77 255 225 248 241
-78 212 194 227 162
-79 203 226 248 252
-80 198 227 250 219
-81 253 244 245 228
-82 236 249 206 229
-83 213 235 246 230
-84 233 201 170 218
-85 144 169 159 182
-86 199 232 168 217
-87 165 215 197 230
-88 146 171 161 184
-89 136 140 162 153
-90 158 203 149 186
-91 242 256 250 252
-92 244 180 235 219
-93 189 206 152 174
-94 222 246 237 183
-95 187 204 150 172
-96 255 225 248 241
-97 243 254 223 239
-98 253 244 245 228
-99 220 245 181 236
-100 188 224 247 238
-101 209 155 177 192
-102 155 148 138 164
-103 154 176 191 208
-104 165 156 149 139
-105 132 144 135 150
-106 190 225 161 174
-107 254 255 256 251
-108 213 195 228 163
-109 253 205 249 240
-110 143 168 158 181
-111 231 232 247 208
-112 167 157 180 142
-113 242 256 250 252
-114 221 200 234 251
-115 198 231 167 216
-116 178 200 169 197
-117 134 146 141 152
-118 145 170 160 183
-119 135 138 130 142
-120 242 177 212 196
-121 254 255 256 251
-122 188 205 151 173
-123 154 147 137 163
-124 187 222 201 223
-125 143 136 139 131
-126 132 134 137 129
-127 133 145 140 151
-128 133 129 130 131
-129 1 2 126 128
-130 1 3 128 119
-131 1 4 125 128
-132 2 5 126 105
-133 1 6 127 128
-134 2 126 7 117
-135 3 5 105 119
-136 89 4 125 8
-137 2 123 126 9
-138 3 102 119 10
-139 11 4 125 104
-140 89 6 127 8
-141 12 72 7 117
-142 13 112 3 119
-143 110 14 4 125
-144 15 5 105 85
-145 16 6 127 118
-146 88 17 7 117
-147 12 123 72 9
-148 55 102 18 10
-149 11 90 104 19
-150 5 105 95 20
-151 122 6 127 21
-152 22 93 7 117
-153 23 67 89 8
-154 24 123 103 9
-155 101 25 102 10
-156 11 26 71 104
-157 55 13 112 18
-158 110 90 14 19
-159 15 27 40 85
-160 16 28 73 118
-161 88 17 29 106
-162 78 89 8 30
-163 123 9 31 108
-164 102 10 32 76
-165 11 33 104 87
-166 12 34 49 72
-167 13 35 112 115
-168 110 14 36 86
-169 15 37 116 85
-170 16 38 84 118
-171 88 17 39 54
-172 27 40 95 20
-173 122 28 73 21
-174 22 93 29 106
-175 23 67 27 40
-176 24 103 41 64
-177 101 25 42 120
-178 26 37 71 116
-179 12 59 72 43
-180 44 13 112 92
-181 99 110 45 14
-182 46 57 15 85
-183 47 16 94 118
-184 88 48 70 17
-185 55 34 49 18
-186 34 90 49 19
-187 124 50 95 20
-188 100 122 51 21
-189 22 69 93 52
-190 23 67 29 106
-191 66 24 103 53
-192 101 25 39 54
-193 26 71 39 54
-194 78 27 40 30
-195 41 31 64 108
-196 42 32 76 120
-197 33 37 116 87
-198 56 35 80 115
-199 46 57 36 86
-200 58 37 114 116
-201 124 38 50 84
-202 55 59 18 43
-203 79 90 60 19
-204 61 95 20 75
-205 122 62 21 109
-206 22 82 93 63
-207 23 67 41 64
-208 111 24 103 65
-209 101 25 48 70
-210 66 26 71 53
-211 34 49 28 73
-212 78 30 42 120
-213 68 83 31 108
-214 69 52 32 76
-215 33 69 52 87
-216 66 35 115 53
-217 36 48 70 86
-218 38 39 84 54
-219 44 56 80 92
-220 99 45 46 57
-221 46 57 58 114
-222 47 124 50 94
-223 124 50 74 97
-224 100 61 51 75
-225 77 29 106 96
-226 79 60 28 73
-227 56 78 80 30
-228 81 31 108 98
-229 82 63 32 76
-230 33 68 83 87
-231 111 35 115 65
-232 111 36 86 65
-233 66 38 84 53
-234 58 59 114 43
-235 44 68 92 83
-236 99 45 82 63
-237 47 69 94 52
-238 100 48 70 51
-239 61 74 75 97
-240 61 62 75 109
-241 77 41 96 64
-242 91 113 42 120
-243 59 74 97 43
-244 44 81 92 98
-245 99 45 81 98
-246 68 47 83 94
-247 100 111 51 65
-248 77 79 60 96
-249 82 62 63 109
-250 56 80 91 113
-251 121 58 114 107
-252 79 91 113 60
-253 81 62 98 109
-254 121 74 107 97
-255 77 121 96 107
-256 121 91 113 107
0