[Home] [Table] [Glossary]
[Families]
On this page are computer-accessible forms for the graph C4[ 256, 119 ] =
SDD(W(32,2)).
(I) Following is a form readable by MAGMA:
g:=Graph<256|{ {128, 223}, {128, 239}, {128, 240}, {128, 252}, {1, 129}, {118,
246}, {108, 236}, {90, 218}, {7, 135}, {79, 206}, {114, 243}, {1, 131}, {125,
255}, {117, 247}, {113, 243}, {96, 226}, {28, 158}, {22, 148}, {9, 139}, {8,
138}, {6, 132}, {53, 183}, {56, 186}, {1, 130}, {100, 231}, {92, 223}, {31,
156}, {28, 159}, {7, 132}, {2, 129}, {59, 184}, {60, 191}, {73, 202}, {3, 135},
{126, 250}, {121, 253}, {115, 247}, {114, 246}, {112, 244}, {51, 183}, {24,
156}, {11, 142}, {127, 250}, {107, 238}, {94, 219}, {27, 158}, {4, 130}, {127,
249}, {120, 254}, {111, 233}, {93, 219}, {32, 166}, {21, 147}, {20, 146}, {15,
137}, {14, 136}, {11, 141}, {10, 140}, {5, 131}, {59, 189}, {74, 204}, {75,
205}, {1, 134}, {126, 249}, {122, 253}, {119, 240}, {106, 237}, {47, 168}, {21,
146}, {3, 132}, {2, 133}, {54, 177}, {61, 186}, {68, 195}, {102, 238}, {108,
228}, {103, 239}, {4, 141}, {125, 244}, {124, 245}, {107, 226}, {45, 164}, {33,
168}, {24, 145}, {6, 143}, {52, 189}, {65, 200}, {78, 199}, {2, 136}, {90, 208},
{37, 175}, {17, 155}, {13, 135}, {12, 134}, {3, 137}, {68, 206}, {5, 142}, {119,
252}, {118, 253}, {117, 254}, {109, 230}, {102, 237}, {66, 201}, {20, 152},
{126, 242}, {116, 248}, {105, 229}, {46, 162}, {25, 149}, {23, 155}, {22, 154},
{21, 153}, {76, 192}, {80, 220}, {81, 221}, {82, 222}, {16, 157}, {127, 242},
{114, 255}, {101, 232}, {88, 213}, {46, 163}, {38, 171}, {53, 184}, {81, 220},
{7, 137}, {122, 244}, {109, 227}, {96, 238}, {91, 213}, {23, 153}, {11, 133},
{55, 185}, {86, 217}, {121, 246}, {120, 247}, {112, 255}, {8, 152}, {113, 225},
{110, 254}, {107, 251}, {44, 188}, {43, 187}, {41, 185}, {34, 178}, {31, 143},
{30, 142}, {13, 157}, {10, 154}, {9, 153}, {4, 149}, {121, 232}, {99, 242}, {97,
240}, {83, 194}, {39, 182}, {6, 151}, {2, 144}, {117, 231}, {116, 230}, {50,
160}, {3, 145}, {56, 170}, {83, 193}, {5, 150}, {98, 241}, {30, 141}, {80, 195},
{25, 141}, {127, 235}, {42, 190}, {36, 176}, {71, 211}, {77, 217}, {79, 219},
{53, 160}, {126, 235}, {124, 233}, {109, 248}, {94, 203}, {90, 207}, {54, 163},
{58, 175}, {7, 145}, {115, 229}, {93, 203}, {92, 202}, {89, 207}, {64, 214},
{73, 223}, {16, 135}, {125, 234}, {123, 236}, {116, 227}, {104, 255}, {48, 167},
{67, 212}, {77, 218}, {26, 130}, {119, 239}, {88, 192}, {61, 165}, {62, 166},
{63, 167}, {68, 220}, {69, 221}, {70, 222}, {18, 139}, {98, 251}, {93, 196},
{52, 173}, {43, 178}, {34, 187}, {26, 131}, {69, 220}, {8, 146}, {112, 234},
{111, 245}, {95, 197}, {94, 196}, {22, 140}, {9, 147}, {72, 210}, {9, 146},
{122, 225}, {110, 245}, {106, 241}, {104, 243}, {97, 250}, {96, 251}, {89, 194},
{30, 133}, {26, 129}, {25, 130}, {17, 138}, {14, 149}, {53, 174}, {58, 161},
{26, 134}, {85, 201}, {84, 200}, {41, 181}, {40, 181}, {76, 209}, {10, 148},
{118, 232}, {105, 247}, {104, 246}, {103, 249}, {21, 139}, {20, 138}, {55, 169},
{80, 206}, {19, 140}, {123, 228}, {120, 231}, {99, 252}, {51, 172}, {45, 178},
{35, 188}, {10, 170}, {116, 212}, {8, 169}, {101, 196}, {46, 143}, {28, 189},
{18, 179}, {4, 166}, {115, 209}, {114, 208}, {23, 181}, {5, 167}, {73, 235},
{12, 175}, {87, 244}, {17, 178}, {71, 227}, {74, 238}, {75, 239}, {29, 184},
{125, 216}, {120, 221}, {86, 243}, {84, 241}, {33, 132}, {72, 237}, {13, 171},
{97, 199}, {96, 198}, {88, 254}, {48, 150}, {64, 230}, {70, 224}, {19, 180},
{121, 222}, {100, 195}, {95, 248}, {85, 242}, {45, 138}, {67, 228}, {74, 237},
{112, 216}, {123, 211}, {119, 223}, {118, 222}, {117, 221}, {113, 217}, {57,
144}, {85, 252}, {11, 161}, {103, 205}, {102, 204}, {99, 201}, {98, 200}, {87,
253}, {52, 158}, {29, 183}, {52, 159}, {124, 215}, {15, 163}, {36, 136}, {27,
183}, {69, 233}, {70, 234}, {12, 161}, {123, 214}, {107, 198}, {88, 245}, {51,
158}, {6, 168}, {110, 192}, {49, 159}, {33, 143}, {24, 182}, {23, 185}, {62,
144}, {13, 162}, {84, 251}, {32, 144}, {42, 154}, {41, 153}, {40, 152}, {28,
173}, {38, 151}, {36, 149}, {34, 147}, {57, 136}, {16, 162}, {47, 157}, {46,
156}, {41, 155}, {75, 249}, {82, 224}, {29, 174}, {100, 215}, {95, 236}, {48,
131}, {37, 150}, {78, 250}, {17, 164}, {18, 164}, {87, 225}, {45, 155}, {39,
145}, {33, 151}, {19, 165}, {27, 172}, {92, 235}, {86, 225}, {35, 148}, {43,
147}, {111, 215}, {106, 210}, {105, 209}, {104, 208}, {44, 148}, {57, 129}, {81,
233}, {82, 234}, {72, 241}, {109, 212}, {108, 214}, {16, 171}, {110, 213}, {39,
156}, {22, 170}, {31, 163}, {57, 133}, {58, 134}, {20, 169}, {101, 216}, {93,
224}, {31, 162}, {29, 160}, {14, 176}, {94, 224}, {91, 229}, {48, 142}, {15,
177}, {78, 240}, {25, 166}, {108, 211}, {30, 161}, {54, 137}, {32, 226}, {38,
228}, {89, 154}, {91, 152}, {101, 160}, {122, 191}, {37, 227}, {63, 248}, {14,
198}, {15, 199}, {12, 197}, {47, 230}, {65, 139}, {40, 229}, {66, 140}, {113,
190}, {27, 203}, {71, 150}, {24, 202}, {63, 236}, {103, 180}, {67, 151}, {102,
179}, {49, 231}, {97, 182}, {98, 187}, {18, 200}, {106, 176}, {50, 232}, {19,
201}, {62, 226}, {64, 157}, {99, 188}, {59, 219}, {44, 205}, {56, 217}, {35,
193}, {36, 198}, {56, 218}, {42, 207}, {90, 191}, {65, 164}, {76, 169}, {49,
215}, {55, 209}, {60, 218}, {43, 204}, {89, 190}, {66, 165}, {77, 170}, {42,
194}, {87, 191}, {86, 190}, {64, 168}, {67, 171}, {68, 172}, {69, 173}, {70,
174}, {71, 175}, {83, 186}, {85, 188}, {50, 216}, {60, 208}, {62, 210}, {39,
202}, {92, 177}, {44, 193}, {34, 204}, {91, 181}, {35, 205}, {84, 187}, {54,
199}, {32, 210}, {49, 195}, {38, 212}, {65, 179}, {79, 189}, {60, 207}, {59,
206}, {76, 185}, {37, 211}, {50, 196}, {66, 180}, {83, 165}, {55, 192}, {77,
186}, {79, 184}, {51, 203}, {95, 167}, {72, 176}, {73, 177}, {78, 182}, {47,
214}, {74, 179}, {63, 197}, {100, 159}, {61, 193}, {80, 172}, {81, 173}, {82,
174}, {40, 213}, {58, 197}, {61, 194}, {75, 180}, {105, 256}, {111, 256}, {115,
256}, {124, 256} }>;
(II) A more general form is to represent the graph as the orbit of {128, 223}
under the group generated by the following permutations:
a: (38, 47)(64, 67)(151, 168)(157, 171)(212, 230)(214, 228) (III) Last is Groups&Graphs. Copy everything between (not including)
the lines of asterisks into a plain text file and save it as "graph.txt". Then
launch G&G (Groups&Graphs) and select Read Text from the File menu.
**************
&Graph **************
b: (108, 109)(116, 123)(211, 227)(212, 228)(214, 230)(236, 248)
c: (8, 23)(20, 41)(138, 155)(146, 153)(152, 181)(169, 185)
d: (117, 120)
e: (5, 12)(48, 58)(131, 134)(142, 161)(150, 175)(167, 197)
f: (19, 35)(44, 66)(140, 148)(165, 193)(180, 205)(188, 201)
g: (29, 53)
h: (88, 105)(110, 115)(192, 209)(213, 229)(245, 256)(247, 254)
m: (27, 59)(51, 79)(158, 189)(172, 206)(183, 184)(203, 219)
n1: (8, 20)
a1: (31, 46)
b1: (119, 126)(127, 128)(223, 235)(239, 249)(240, 250)(242, 252)
c1: (49, 69)(81, 100)(159, 173)(195, 220)(215, 233)(221, 231)
d1: (59, 79)
e1: (118, 121)
f1: (55, 76)
g1: (56, 77)
h1: (68, 80)
m1: (96, 107)
n2: (10, 61)(22, 83)(140, 165)(148, 193)(154, 194)(170, 186)
a2: (126, 127)
b2: (50, 70)(82, 101)(160, 174)(196, 224)(216, 234)(222, 232)
c2: (3, 7)
d2: (75, 85)(99, 103)(180, 201)(188, 205)(239, 252)(242, 249)
e2: (84, 98)
f2: (32, 62)
g2: (28, 52)
h2: (111, 117)(120, 124)(215, 231)(221, 233)(245, 254)(247, 256)
m2: (10, 22)
n3: (6, 13)(16, 33)(132, 135)(143, 162)(151, 171)(157, 168)
a3: (24, 39)
b3: (15, 24)(39, 54)(137, 145)(156, 163)(177, 202)(182, 199)
c3: (11, 30)
d3: (85, 99)
e3: (42, 56)(77, 89)(154, 170)(186, 194)(190, 217)(207, 218)
f3: (109, 116)
g3: (28, 68)(52, 80)(158, 172)(159, 195)(173, 220)(189, 206)
h3: (70, 82)
m3: (112, 118)(121, 125)(216, 232)(222, 234)(244, 253)(246, 255)
n4: (23, 41)
a4: (72, 96)(106, 107)(176, 198)(210, 226)(237, 238)(241, 251)
b4: (93, 94)
c4: (14, 32)(36, 62)(136, 144)(149, 166)(176, 210)(198, 226)
d4: (47, 64)
e4: (18, 34)(43, 65)(139, 147)(164, 178)(179, 204)(187, 200)
f4: (4, 25)
g4: (61, 83)
h4: (87, 104)(114, 122)(191, 208)(225, 243)(244, 255)(246, 253)
m4: (69, 81)
n5: (63, 95)
a5: (60, 86)(90, 113)(190, 207)(191, 225)(208, 243)(217, 218)
b5: (3, 31)(7, 46)(132, 143)(135, 162)(137, 163)(145, 156)
c5: (86, 113)
d5: (104, 114)
e5: (12, 58)
f5: (105, 115)
g5: (34, 43)
h5: (27, 51)
m5: (29, 93)(53, 94)(160, 196)(174, 224)(183, 203)(184, 219)
n6: (1, 2)(3, 8)(4, 11)(5, 14)(6, 9)(7, 20)(10, 27)(12, 32)(13, 17)(15, 40)(16,
45)(18, 38)(19, 28)(21, 33)(22, 51)(23, 31)(24, 55)(25, 30)(26, 57)(29, 42)(34,
47)(35, 68)(36, 48)(37, 72)(39, 76)(41, 46)(43, 64)(44, 80)(49, 75)(50, 60)(52,
66)(53, 89)(54, 91)(56, 93)(58, 62)(59, 61)(63, 96)(65, 67)(69, 85)(70, 86)(71,
106)(73, 88)(74, 108)(77, 94)(78, 105)(79, 83)(81, 99)(82, 113)(84, 109)(87,
112)(90, 101)(92, 110)(95, 107)(97, 115)(98, 116)(100, 103)(102, 123)(104,
118)(111, 119)(114, 121)(117, 126)(120, 127)(122, 125)(124, 128)(130, 133)(131,
136)(132, 146)(134, 144)(135, 138)(137, 152)(139, 151)(140, 158)(142, 149)(143,
153)(145, 169)(147, 168)(148, 172)(150, 176)(154, 183)(155, 162)(156, 185)(157,
178)(159, 180)(160, 207)(161, 166)(163, 181)(164, 171)(165, 189)(167, 198)(170,
203)(173, 201)(174, 190)(175, 210)(177, 213)(179, 228)(182, 209)(184, 194)(186,
219)(187, 230)(188, 220)(191, 216)(192, 202)(193, 206)(195, 205)(196, 218)(197,
226)(199, 229)(200, 212)(204, 214)(208, 232)(211, 237)(215, 239)(217, 224)(221,
242)(222, 243)(223, 245)(225, 234)(227, 241)(231, 249)(233, 252)(235, 254)(236,
238)(240, 256)(247, 250)(248, 251)(253, 255)
a6: (74, 84)(98, 102)(179, 200)(187, 204)(237, 241)(238, 251)
b6: (78, 97)
c6: (13, 16)
d6: (17, 45)
e6: (35, 44)
f6: (40, 55)(76, 91)(152, 169)(181, 185)(192, 213)(209, 229)
g6: (73, 78)(92, 97)(177, 199)(182, 202)(223, 240)(235, 250)
h6: (2, 5)(3, 9)(4, 12)(6, 18)(7, 21)(8, 15)(10, 28)(13, 34)(14, 37)(16, 43)(17,
31)(19, 49)(20, 54)(22, 52)(23, 24)(25, 58)(27, 42)(29, 60)(32, 63)(33, 65)(35,
69)(36, 71)(38, 74)(39, 41)(40, 73)(44, 81)(45, 46)(47, 84)(48, 57)(50, 87)(51,
89)(53, 90)(55, 78)(56, 59)(61, 68)(62, 95)(64, 98)(66, 100)(67, 102)(70,
104)(72, 108)(75, 111)(76, 97)(77, 79)(80, 83)(82, 114)(85, 117)(86, 93)(88,
119)(91, 92)(94, 113)(96, 109)(99, 120)(101, 122)(103, 124)(105, 126)(106,
123)(107, 116)(110, 128)(115, 127)(129, 131)(130, 134)(132, 139)(133, 142)(135,
147)(136, 150)(137, 146)(138, 163)(140, 159)(141, 161)(143, 164)(144, 167)(145,
153)(148, 173)(149, 175)(151, 179)(152, 177)(154, 158)(155, 156)(157, 187)(160,
191)(162, 178)(165, 195)(166, 197)(168, 200)(169, 199)(170, 189)(171, 204)(172,
194)(174, 208)(176, 211)(180, 215)(181, 202)(182, 185)(183, 207)(184, 218)(186,
206)(188, 221)(190, 203)(192, 240)(193, 220)(196, 225)(198, 227)(201, 231)(205,
233)(209, 250)(210, 236)(212, 238)(213, 223)(214, 241)(216, 244)(217, 219)(222,
246)(224, 243)(226, 248)(228, 237)(229, 235)(230, 251)(232, 253)(234, 255)(239,
245)(242, 247)(249, 256)(252, 254)
m6: (37, 63)(71, 95)(150, 167)(175, 197)(211, 236)(227, 248)
n7: (9, 17)(21, 45)(138, 146)(139, 164)(147, 178)(153, 155)
a7: (2, 4)(25, 57)(129, 130)(133, 141)(136, 149)(144, 166)
C4[ 256, 119 ]
256
-1 134 129 130 131
-2 133 144 136 129
-3 132 145 135 137
-4 166 149 130 141
-5 167 150 131 142
-6 132 143 168 151
-7 132 145 135 137
-8 146 169 138 152
-9 146 147 139 153
-10 154 148 170 140
-11 133 161 141 142
-12 134 161 175 197
-13 135 157 171 162
-14 176 198 136 149
-15 177 199 137 163
-16 135 157 171 162
-17 155 178 138 164
-18 200 179 139 164
-19 165 201 180 140
-20 146 169 138 152
-21 146 147 139 153
-22 154 148 170 140
-23 155 181 185 153
-24 145 156 202 182
-25 166 149 130 141
-26 134 129 130 131
-27 158 203 172 183
-28 189 158 159 173
-29 160 183 184 174
-30 133 161 141 142
-31 143 156 162 163
-32 144 166 210 226
-33 132 143 168 151
-34 187 178 147 204
-35 188 148 193 205
-36 176 198 136 149
-37 211 150 227 175
-38 212 171 151 228
-39 145 156 202 182
-40 213 181 152 229
-41 155 181 185 153
-42 154 190 194 207
-43 187 178 147 204
-44 188 148 193 205
-45 155 178 138 164
-46 143 156 162 163
-47 157 168 214 230
-48 167 150 131 142
-49 231 159 215 195
-50 232 160 216 196
-51 158 203 172 183
-52 189 158 159 173
-53 160 183 184 174
-54 177 199 137 163
-55 209 169 192 185
-56 170 217 218 186
-57 133 144 136 129
-58 134 161 175 197
-59 189 184 206 219
-60 191 207 218 208
-61 165 193 194 186
-62 144 166 210 226
-63 167 236 248 197
-64 157 168 214 230
-65 200 179 139 164
-66 165 201 180 140
-67 212 171 151 228
-68 220 172 195 206
-69 220 221 233 173
-70 222 234 224 174
-71 211 150 227 175
-72 176 210 237 241
-73 177 223 202 235
-74 179 204 237 238
-75 180 205 249 239
-76 209 169 192 185
-77 170 217 218 186
-78 199 182 250 240
-79 189 184 206 219
-80 220 172 195 206
-81 220 221 233 173
-82 222 234 224 174
-83 165 193 194 186
-84 187 200 251 241
-85 242 188 201 252
-86 243 190 225 217
-87 253 244 191 225
-88 254 245 213 192
-89 154 190 194 207
-90 191 207 218 208
-91 213 181 152 229
-92 177 223 202 235
-93 224 203 196 219
-94 224 203 196 219
-95 167 236 248 197
-96 198 226 238 251
-97 199 182 250 240
-98 187 200 251 241
-99 242 188 201 252
-100 231 159 215 195
-101 232 160 216 196
-102 179 204 237 238
-103 180 205 249 239
-104 243 255 246 208
-105 209 256 247 229
-106 176 210 237 241
-107 198 226 238 251
-108 211 214 236 228
-109 212 248 227 230
-110 254 245 213 192
-111 233 245 256 215
-112 244 255 234 216
-113 243 190 225 217
-114 243 255 246 208
-115 209 256 247 229
-116 212 248 227 230
-117 231 221 254 247
-118 253 232 222 246
-119 223 239 240 252
-120 231 221 254 247
-121 253 232 222 246
-122 253 244 191 225
-123 211 214 236 228
-124 233 245 256 215
-125 244 255 234 216
-126 242 235 249 250
-127 242 235 249 250
-128 223 239 240 252
-129 1 2 57 26
-130 1 25 4 26
-131 1 26 48 5
-132 33 3 6 7
-133 11 2 57 30
-134 1 12 58 26
-135 13 3 16 7
-136 2 57 14 36
-137 3 15 7 54
-138 45 17 8 20
-139 18 9 21 65
-140 22 66 19 10
-141 11 25 4 30
-142 11 48 5 30
-143 33 46 6 31
-144 2 57 62 32
-145 24 3 39 7
-146 8 9 20 21
-147 34 9 21 43
-148 22 44 35 10
-149 14 25 36 4
-150 37 48 5 71
-151 33 67 38 6
-152 91 40 8 20
-153 23 41 9 21
-154 22 89 42 10
-155 23 45 17 41
-156 24 46 39 31
-157 13 47 16 64
-158 27 28 51 52
-159 100 49 28 52
-160 101 50 29 53
-161 11 12 58 30
-162 13 46 16 31
-163 46 15 31 54
-164 45 17 18 65
-165 66 61 83 19
-166 25 4 62 32
-167 48 5 95 63
-168 33 47 6 64
-169 55 8 20 76
-170 22 77 56 10
-171 67 13 16 38
-172 68 80 27 51
-173 69 81 28 52
-174 70 82 29 53
-175 12 58 37 71
-176 14 36 72 106
-177 15 92 73 54
-178 34 45 17 43
-179 102 18 74 65
-180 66 103 19 75
-181 23 91 40 41
-182 78 24 39 97
-183 27 29 51 53
-184 79 59 29 53
-185 55 23 41 76
-186 77 56 61 83
-187 34 84 43 98
-188 44 99 35 85
-189 79 59 28 52
-190 89 113 42 86
-191 122 90 60 87
-192 55 88 110 76
-193 44 35 61 83
-194 89 61 83 42
-195 100 68 80 49
-196 101 93 50 94
-197 12 58 95 63
-198 14 36 96 107
-199 78 15 97 54
-200 18 84 65 98
-201 66 99 19 85
-202 24 92 39 73
-203 27 93 94 51
-204 34 102 74 43
-205 44 35 103 75
-206 68 79 80 59
-207 89 90 60 42
-208 90 114 60 104
-209 55 115 105 76
-210 72 62 106 32
-211 123 37 71 108
-212 67 38 116 109
-213 88 110 91 40
-214 123 47 64 108
-215 100 111 124 49
-216 101 112 125 50
-217 77 56 113 86
-218 77 56 90 60
-219 79 59 93 94
-220 68 69 80 81
-221 69 81 117 120
-222 121 70 82 118
-223 92 73 128 119
-224 70 82 93 94
-225 122 113 86 87
-226 62 96 107 32
-227 37 71 116 109
-228 67 123 38 108
-229 91 115 105 40
-230 47 116 64 109
-231 100 49 117 120
-232 121 101 50 118
-233 111 69 124 81
-234 112 70 125 82
-235 92 126 127 73
-236 123 95 63 108
-237 102 72 106 74
-238 102 74 96 107
-239 103 128 75 119
-240 78 128 97 119
-241 72 84 106 98
-242 99 126 127 85
-243 113 114 104 86
-244 122 112 125 87
-245 88 110 111 124
-246 121 114 104 118
-247 115 105 117 120
-248 116 95 63 109
-249 103 126 127 75
-250 78 126 127 97
-251 84 96 107 98
-252 99 128 85 119
-253 121 122 118 87
-254 88 110 117 120
-255 112 114 125 104
-256 111 124 115 105
0