C4graphGraph forms for C4 [ 256, 121 ] = SDD(UG(ATD[64,10]))

[Home] [Table] [Glossary] [Families]

On this page are computer-accessible forms for the graph C4[ 256, 121 ] = SDD(UG(ATD[64,10])).

(I) Following is a form readable by MAGMA:

g:=Graph<256|{ {128, 251}, {128, 254}, {128, 255}, {1, 129}, {126, 254}, {122, 250}, {121, 249}, {117, 245}, {95, 223}, {48, 176}, {55, 183}, {56, 184}, {69, 197}, {70, 198}, {71, 199}, {83, 211}, {3, 130}, {126, 255}, {125, 252}, {124, 253}, {104, 233}, {53, 180}, {51, 178}, {49, 176}, {47, 174}, {45, 172}, {43, 170}, {41, 168}, {39, 166}, {37, 164}, {35, 162}, {33, 160}, {31, 158}, {29, 156}, {27, 154}, {25, 152}, {23, 150}, {21, 148}, {19, 146}, {17, 144}, {15, 142}, {13, 140}, {11, 138}, {9, 136}, {7, 134}, {5, 132}, {55, 182}, {58, 187}, {66, 195}, {68, 197}, {75, 202}, {81, 208}, {83, 210}, {1, 131}, {64, 194}, {78, 204}, {1, 130}, {119, 244}, {115, 240}, {99, 224}, {50, 177}, {46, 173}, {42, 169}, {38, 165}, {34, 161}, {30, 157}, {26, 153}, {22, 149}, {18, 145}, {14, 141}, {10, 137}, {6, 133}, {2, 129}, {54, 181}, {57, 186}, {65, 194}, {74, 201}, {78, 205}, {82, 209}, {1, 133}, {121, 253}, {114, 246}, {110, 234}, {93, 217}, {92, 216}, {3, 135}, {2, 134}, {80, 212}, {24, 157}, {126, 251}, {114, 247}, {106, 239}, {95, 218}, {29, 152}, {25, 156}, {2, 132}, {122, 252}, {119, 241}, {77, 203}, {4, 131}, {125, 250}, {52, 179}, {47, 168}, {44, 171}, {41, 174}, {36, 163}, {28, 155}, {20, 147}, {12, 139}, {59, 188}, {67, 196}, {79, 199}, {122, 242}, {120, 240}, {116, 252}, {108, 228}, {107, 227}, {101, 237}, {3, 138}, {119, 254}, {30, 151}, {7, 142}, {5, 140}, {100, 238}, {124, 246}, {121, 243}, {117, 255}, {2, 137}, {124, 247}, {105, 226}, {96, 235}, {91, 208}, {6, 141}, {3, 143}, {106, 230}, {100, 232}, {87, 219}, {49, 189}, {4, 136}, {60, 177}, {117, 248}, {62, 179}, {73, 196}, {85, 216}, {40, 166}, {105, 231}, {89, 215}, {88, 214}, {4, 139}, {125, 242}, {120, 247}, {114, 253}, {96, 239}, {49, 190}, {40, 167}, {24, 151}, {8, 135}, {64, 207}, {41, 185}, {113, 225}, {61, 172}, {117, 228}, {101, 244}, {75, 218}, {76, 221}, {77, 220}, {80, 193}, {59, 169}, {43, 184}, {108, 255}, {105, 250}, {48, 163}, {4, 144}, {119, 227}, {108, 248}, {34, 182}, {12, 152}, {11, 159}, {10, 158}, {9, 157}, {8, 156}, {7, 147}, {6, 146}, {5, 145}, {75, 223}, {34, 183}, {107, 254}, {95, 202}, {74, 223}, {42, 188}, {124, 234}, {99, 245}, {47, 185}, {55, 161}, {39, 176}, {49, 166}, {60, 164}, {114, 234}, {70, 222}, {39, 190}, {108, 245}, {76, 213}, {79, 214}, {39, 189}, {107, 241}, {36, 191}, {116, 239}, {115, 232}, {87, 204}, {40, 179}, {5, 153}, {113, 237}, {106, 246}, {101, 249}, {96, 252}, {11, 151}, {10, 150}, {9, 149}, {8, 148}, {7, 155}, {6, 154}, {85, 201}, {38, 187}, {16, 143}, {120, 231}, {116, 235}, {107, 244}, {100, 251}, {48, 175}, {32, 191}, {80, 207}, {15, 175}, {30, 190}, {29, 189}, {8, 169}, {121, 216}, {92, 253}, {26, 187}, {24, 185}, {22, 183}, {20, 181}, {18, 179}, {16, 177}, {14, 175}, {12, 173}, {10, 171}, {74, 235}, {80, 241}, {61, 159}, {81, 243}, {9, 170}, {91, 248}, {89, 250}, {25, 186}, {21, 182}, {17, 178}, {13, 174}, {25, 189}, {113, 213}, {93, 249}, {66, 230}, {67, 231}, {71, 227}, {64, 229}, {99, 198}, {92, 249}, {69, 224}, {77, 232}, {24, 190}, {104, 206}, {103, 193}, {102, 192}, {70, 224}, {11, 172}, {30, 185}, {29, 186}, {27, 188}, {19, 180}, {75, 236}, {91, 243}, {50, 155}, {106, 195}, {97, 200}, {93, 244}, {69, 236}, {81, 248}, {82, 251}, {61, 151}, {102, 205}, {12, 160}, {15, 163}, {14, 162}, {13, 161}, {28, 177}, {66, 239}, {23, 184}, {116, 219}, {115, 220}, {92, 243}, {78, 225}, {93, 237}, {110, 222}, {91, 233}, {31, 172}, {95, 236}, {45, 158}, {60, 143}, {67, 240}, {70, 245}, {16, 164}, {19, 167}, {18, 166}, {17, 165}, {66, 246}, {67, 247}, {18, 167}, {104, 221}, {100, 209}, {83, 229}, {112, 198}, {97, 215}, {88, 238}, {61, 138}, {81, 233}, {115, 203}, {40, 145}, {82, 232}, {110, 212}, {102, 220}, {89, 226}, {96, 219}, {20, 168}, {120, 196}, {101, 217}, {82, 238}, {23, 170}, {99, 222}, {43, 150}, {77, 240}, {48, 142}, {105, 215}, {89, 231}, {88, 230}, {76, 242}, {15, 176}, {38, 153}, {32, 159}, {26, 165}, {37, 229}, {72, 136}, {22, 215}, {84, 150}, {21, 214}, {27, 216}, {23, 211}, {28, 217}, {113, 180}, {112, 181}, {110, 171}, {86, 147}, {46, 235}, {31, 218}, {44, 234}, {103, 161}, {102, 160}, {94, 152}, {90, 156}, {36, 227}, {42, 226}, {87, 159}, {103, 174}, {26, 208}, {104, 162}, {35, 233}, {84, 158}, {57, 242}, {13, 193}, {14, 194}, {65, 141}, {86, 155}, {63, 241}, {90, 148}, {85, 154}, {52, 228}, {86, 134}, {20, 198}, {27, 201}, {21, 199}, {16, 195}, {51, 224}, {31, 203}, {53, 225}, {17, 196}, {94, 139}, {72, 157}, {19, 197}, {97, 183}, {28, 202}, {56, 238}, {68, 146}, {54, 225}, {53, 237}, {112, 168}, {86, 142}, {59, 226}, {73, 144}, {62, 228}, {79, 148}, {72, 149}, {90, 135}, {84, 137}, {22, 200}, {56, 230}, {51, 236}, {58, 229}, {53, 213}, {109, 141}, {88, 184}, {33, 192}, {72, 170}, {36, 199}, {112, 147}, {65, 162}, {68, 167}, {57, 221}, {111, 139}, {64, 164}, {71, 163}, {45, 203}, {98, 132}, {37, 194}, {111, 136}, {46, 201}, {74, 173}, {58, 210}, {109, 133}, {87, 191}, {83, 187}, {58, 211}, {59, 210}, {85, 188}, {37, 207}, {50, 217}, {103, 140}, {63, 212}, {32, 204}, {111, 131}, {34, 206}, {33, 205}, {57, 213}, {73, 165}, {35, 206}, {56, 214}, {98, 140}, {65, 175}, {63, 207}, {68, 180}, {46, 223}, {118, 135}, {44, 222}, {123, 137}, {90, 169}, {98, 145}, {94, 173}, {52, 192}, {118, 130}, {97, 149}, {38, 208}, {51, 197}, {62, 200}, {76, 186}, {45, 218}, {109, 154}, {69, 178}, {41, 209}, {50, 202}, {44, 212}, {43, 211}, {42, 210}, {71, 191}, {55, 206}, {118, 143}, {79, 182}, {54, 204}, {127, 133}, {123, 129}, {32, 219}, {98, 153}, {54, 205}, {73, 178}, {78, 181}, {52, 200}, {127, 131}, {118, 138}, {33, 220}, {127, 130}, {123, 134}, {35, 221}, {127, 129}, {94, 160}, {47, 209}, {62, 192}, {63, 193}, {60, 195}, {123, 132}, {111, 144}, {109, 146}, {84, 171}, {122, 256}, {125, 256}, {126, 256}, {128, 256} }>;

(II) A more general form is to represent the graph as the orbit of {128, 251} under the group generated by the following permutations:

a: (15, 48)
b: (63, 80)
c: (37, 64)
d: (107, 119)
e: (35, 104)
f: (7, 86)
g: (22, 97)
h: (24, 30)
m: (46, 74)
n1: (23, 43)
a1: (96, 116)
b1: (56, 88)
c1: (3, 118)
d1: (70, 99)
e1: (108, 117)
f1: (5, 98)
g1: (67, 120)
h1: (18, 40)
m1: (44, 110)
n2: (6, 109)
a2: (12, 94)
b2: (1, 2)(3, 5)(4, 7)(6, 10)(8, 13)(9, 15)(11, 18)(12, 20)(14, 23)(16, 26)(17, 28)(19, 31)(21, 34)(22, 36)(24, 39)(25, 41)(27, 44)(29, 47)(30, 49)(32, 52)(33, 54)(35, 56)(37, 58)(38, 60)(40, 61)(42, 63)(43, 65)(45, 68)(46, 70)(48, 72)(50, 73)(51, 75)(53, 77)(55, 79)(57, 82)(59, 80)(62, 87)(64, 83)(66, 81)(67, 93)(69, 95)(71, 97)(74, 99)(76, 100)(78, 102)(84, 109)(85, 110)(86, 111)(88, 104)(89, 107)(90, 103)(91, 106)(92, 114)(94, 112)(96, 108)(98, 118)(101, 120)(105, 119)(113, 115)(116, 117)(121, 124)(122, 126)(123, 127)(125, 128)(130, 132)(131, 134)(133, 137)(135, 140)(136, 142)(138, 145)(139, 147)(141, 150)(143, 153)(144, 155)(146, 158)(148, 161)(149, 163)(151, 166)(152, 168)(154, 171)(156, 174)(157, 176)(159, 179)(160, 181)(162, 184)(164, 187)(165, 177)(167, 172)(169, 193)(170, 175)(173, 198)(178, 202)(180, 203)(183, 199)(185, 189)(186, 209)(188, 212)(191, 200)(192, 204)(194, 211)(195, 208)(196, 217)(197, 218)(201, 222)(206, 214)(207, 210)(213, 232)(215, 227)(216, 234)(219, 228)(220, 225)(221, 238)(223, 224)(226, 241)(230, 233)(231, 244)(235, 245)(237, 240)(239, 248)(242, 251)(243, 246)(247, 249)(250, 254)(252, 255)
c2: (2, 6)(5, 19)(7, 14)(8, 11)(9, 12)(10, 27)(13, 53)(20, 35)(21, 32)(22, 33)(23, 46)(24, 25)(26, 51)(28, 37)(29, 30)(31, 42)(34, 54)(38, 69)(41, 57)(43, 74)(44, 92)(45, 59)(47, 76)(50, 64)(55, 78)(56, 96)(58, 75)(61, 90)(63, 93)(65, 86)(68, 98)(70, 81)(72, 94)(77, 89)(79, 87)(80, 101)(82, 122)(83, 95)(84, 85)(88, 116)(91, 99)(97, 102)(100, 125)(103, 113)(104, 112)(105, 115)(109, 123)(110, 121)(129, 133)(132, 146)(134, 141)(135, 138)(136, 139)(137, 154)(140, 180)(142, 175)(145, 167)(147, 162)(148, 159)(149, 160)(150, 201)(151, 156)(152, 157)(153, 197)(155, 194)(158, 188)(161, 225)(164, 177)(165, 178)(168, 221)(169, 172)(170, 173)(171, 216)(174, 213)(181, 206)(182, 204)(183, 205)(184, 235)(185, 186)(187, 236)(189, 190)(191, 199)(192, 200)(193, 237)(198, 233)(202, 229)(203, 226)(207, 217)(208, 224)(209, 242)(210, 218)(211, 223)(212, 249)(214, 219)(215, 220)(222, 243)(230, 239)(231, 240)(232, 250)(234, 253)(238, 252)(241, 244)(245, 248)(251, 256)
d2: (51, 69)
e2: (41, 47)
f2: (25, 29)
g2: (27, 85)
h2: (75, 95)
m2: (93, 101)
n3: (126, 128)
a3: (20, 112)
b3: (54, 78)
c3: (16, 60)
d3: (53, 113)
e3: (77, 115)
f3: (31, 45)
g3: (19, 68)
h3: (8, 90)
m3: (66, 106)
n4: (114, 124)
a4: (32, 87)
b4: (81, 91)
c4: (14, 65)
d4: (13, 103)
e4: (17, 73)
f4: (4, 111)
g4: (92, 121)
h4: (28, 50)
m4: (10, 84)
n5: (21, 79)
a5: (42, 59)
b5: (26, 38)
c5: (89, 105)
d5: (11, 61)
e5: (2, 3)(4, 6)(5, 8)(7, 11)(9, 14)(10, 16)(12, 19)(13, 21)(15, 24)(17, 27)(18, 25)(20, 32)(22, 35)(23, 37)(26, 42)(28, 31)(29, 40)(30, 48)(33, 53)(36, 41)(38, 59)(43, 64)(44, 66)(45, 50)(46, 51)(47, 71)(52, 57)(56, 63)(60, 84)(61, 86)(62, 76)(65, 72)(67, 92)(68, 94)(69, 74)(70, 96)(73, 85)(77, 93)(79, 103)(80, 88)(81, 89)(82, 107)(87, 112)(90, 98)(91, 105)(97, 104)(99, 116)(100, 119)(101, 115)(102, 113)(106, 110)(108, 122)(109, 111)(117, 125)(118, 123)(120, 121)(129, 130)(131, 133)(132, 135)(134, 138)(136, 141)(137, 143)(139, 146)(140, 148)(142, 151)(144, 154)(145, 156)(147, 159)(149, 162)(150, 164)(152, 167)(153, 169)(155, 172)(157, 175)(158, 177)(160, 180)(161, 182)(163, 185)(165, 188)(166, 189)(168, 191)(170, 194)(171, 195)(173, 197)(174, 199)(176, 190)(178, 201)(179, 186)(181, 204)(183, 206)(184, 207)(187, 210)(192, 213)(193, 214)(196, 216)(198, 219)(200, 221)(202, 218)(203, 217)(205, 225)(208, 226)(209, 227)(211, 229)(212, 230)(215, 233)(220, 237)(222, 239)(223, 236)(224, 235)(228, 242)(231, 243)(232, 244)(234, 246)(238, 241)(240, 249)(245, 252)(247, 253)(248, 250)(251, 254)(255, 256)
f5: (34, 55)
g5: (9, 72)
h5: (57, 76)
m5: (33, 102)
n6: (122, 125)
a6: (39, 49)
b6: (4, 6)(7, 10)(9, 14)(11, 16)(12, 27)(15, 23)(17, 19)(18, 26)(20, 44)(22, 35)(24, 37)(25, 42)(28, 31)(29, 59)(30, 64)(32, 66)(33, 92)(36, 56)(38, 40)(39, 58)(41, 63)(43, 48)(45, 50)(47, 80)(49, 83)(52, 81)(53, 67)(54, 114)(57, 89)(60, 61)(62, 91)(65, 72)(68, 73)(71, 88)(76, 105)(77, 93)(78, 124)(82, 107)(84, 86)(85, 94)(87, 106)(97, 104)(100, 119)(101, 115)(102, 121)(109, 111)(110, 112)(113, 120)(131, 133)(134, 137)(136, 141)(138, 143)(139, 154)(142, 150)(144, 146)(145, 153)(147, 171)(149, 162)(151, 164)(152, 188)(155, 158)(156, 169)(157, 194)(159, 195)(160, 216)(163, 184)(165, 167)(166, 187)(168, 212)(170, 175)(172, 177)(173, 201)(174, 193)(176, 211)(178, 197)(179, 208)(180, 196)(181, 234)(183, 206)(185, 207)(186, 226)(189, 210)(190, 229)(191, 230)(192, 243)(198, 222)(199, 214)(200, 233)(202, 218)(203, 217)(204, 246)(205, 253)(209, 241)(213, 231)(215, 221)(219, 239)(220, 249)(225, 247)(227, 238)(228, 248)(232, 244)(237, 240)(242, 250)(251, 254)
c6: (2, 123)
d6: (52, 62)
e6: (82, 100)

(III) Last is Groups&Graphs. Copy everything between (not including) the lines of asterisks into a plain text file and save it as "graph.txt". Then launch G&G (Groups&Graphs) and select Read Text from the File menu.

**************

&Graph
C4[ 256, 121 ]
256
-1 133 129 130 131
-2 132 134 137 129
-3 143 135 138 130
-4 144 136 139 131
-5 132 145 140 153
-6 154 133 146 141
-7 155 134 147 142
-8 156 135 169 148
-9 157 136 170 149
-10 158 137 171 150
-11 159 138 172 151
-12 160 139 173 152
-13 193 161 140 174
-14 194 162 141 175
-15 176 163 142 175
-16 143 177 195 164
-17 165 144 178 196
-18 166 145 167 179
-19 167 146 180 197
-20 198 168 147 181
-21 199 148 214 182
-22 200 149 215 183
-23 211 170 150 184
-24 157 190 151 185
-25 156 189 152 186
-26 165 187 153 208
-27 154 188 201 216
-28 155 177 202 217
-29 156 189 152 186
-30 157 190 151 185
-31 158 203 172 218
-32 191 159 204 219
-33 220 192 160 205
-34 182 161 183 206
-35 221 233 162 206
-36 199 191 227 163
-37 194 207 229 164
-38 165 187 153 208
-39 176 166 189 190
-40 166 145 167 179
-41 209 168 174 185
-42 188 210 169 226
-43 211 170 150 184
-44 222 212 234 171
-45 158 203 172 218
-46 201 223 235 173
-47 209 168 174 185
-48 176 163 142 175
-49 176 166 189 190
-50 155 177 202 217
-51 178 224 236 197
-52 200 179 192 228
-53 180 213 225 237
-54 181 225 204 205
-55 182 161 183 206
-56 214 238 184 230
-57 242 221 213 186
-58 187 210 211 229
-59 188 210 169 226
-60 143 177 195 164
-61 159 138 172 151
-62 200 179 192 228
-63 212 193 207 241
-64 194 207 229 164
-65 194 162 141 175
-66 246 195 239 230
-67 231 247 196 240
-68 167 146 180 197
-69 178 224 236 197
-70 198 222 245 224
-71 199 191 227 163
-72 157 136 170 149
-73 165 144 178 196
-74 201 223 235 173
-75 223 202 236 218
-76 242 221 213 186
-77 220 232 203 240
-78 181 225 204 205
-79 199 148 214 182
-80 212 193 207 241
-81 243 233 248 208
-82 209 232 238 251
-83 187 210 211 229
-84 158 137 171 150
-85 154 188 201 216
-86 155 134 147 142
-87 191 159 204 219
-88 214 238 184 230
-89 231 215 226 250
-90 156 135 169 148
-91 243 233 248 208
-92 253 243 216 249
-93 244 237 249 217
-94 160 139 173 152
-95 223 202 236 218
-96 235 239 219 252
-97 200 149 215 183
-98 132 145 140 153
-99 198 222 245 224
-100 209 232 238 251
-101 244 237 249 217
-102 220 192 160 205
-103 193 161 140 174
-104 221 233 162 206
-105 231 215 226 250
-106 246 195 239 230
-107 254 244 227 241
-108 255 245 248 228
-109 154 133 146 141
-110 222 212 234 171
-111 144 136 139 131
-112 198 168 147 181
-113 180 213 225 237
-114 253 234 246 247
-115 220 232 203 240
-116 235 239 219 252
-117 255 245 248 228
-118 143 135 138 130
-119 254 244 227 241
-120 231 247 196 240
-121 253 243 216 249
-122 242 256 250 252
-123 132 134 137 129
-124 253 234 246 247
-125 242 256 250 252
-126 254 255 256 251
-127 133 129 130 131
-128 254 255 256 251
-129 1 2 123 127
-130 1 3 127 118
-131 1 111 4 127
-132 2 123 5 98
-133 1 6 127 109
-134 2 123 7 86
-135 90 3 8 118
-136 111 4 72 9
-137 2 123 84 10
-138 11 3 61 118
-139 12 111 4 94
-140 13 103 5 98
-141 14 6 65 109
-142 15 48 7 86
-143 3 16 60 118
-144 111 4 17 73
-145 5 18 40 98
-146 68 6 19 109
-147 112 7 20 86
-148 79 90 8 21
-149 22 72 9 97
-150 23 84 10 43
-151 11 24 61 30
-152 12 25 94 29
-153 26 5 38 98
-154 27 6 85 109
-155 28 50 7 86
-156 90 25 29 8
-157 24 72 30 9
-158 45 84 31 10
-159 11 61 32 87
-160 33 12 102 94
-161 55 34 13 103
-162 35 14 104 65
-163 36 15 48 71
-164 37 16 60 64
-165 26 38 17 73
-166 49 39 18 40
-167 68 18 40 19
-168 112 47 41 20
-169 90 59 8 42
-170 23 72 9 43
-171 44 110 84 10
-172 11 45 61 31
-173 12 46 94 74
-174 13 47 103 41
-175 14 15 48 65
-176 15 48 49 39
-177 16 60 28 50
-178 69 17 51 73
-179 18 40 62 52
-180 68 113 19 53
-181 78 112 20 54
-182 55 34 79 21
-183 22 55 34 97
-184 88 23 56 43
-185 24 47 30 41
-186 57 25 29 76
-187 58 26 38 83
-188 59 27 85 42
-189 25 49 39 29
-190 24 49 39 30
-191 36 71 32 87
-192 33 102 62 52
-193 13 80 103 63
-194 14 37 64 65
-195 66 16 60 106
-196 67 17 73 120
-197 68 69 51 19
-198 99 112 70 20
-199 79 36 71 21
-200 22 62 52 97
-201 46 27 74 85
-202 28 50 95 75
-203 77 45 115 31
-204 78 32 54 87
-205 33 78 102 54
-206 55 34 35 104
-207 80 37 63 64
-208 91 26 81 38
-209 100 47 82 41
-210 58 59 83 42
-211 23 58 83 43
-212 44 110 80 63
-213 57 113 53 76
-214 88 56 79 21
-215 22 89 105 97
-216 121 92 27 85
-217 101 93 28 50
-218 45 95 31 75
-219 116 96 32 87
-220 33 77 102 115
-221 35 57 104 76
-222 44 99 110 70
-223 46 95 74 75
-224 99 69 70 51
-225 78 113 53 54
-226 89 59 105 42
-227 36 71 107 119
-228 62 117 52 108
-229 58 37 83 64
-230 66 88 56 106
-231 67 89 105 120
-232 77 100 82 115
-233 35 91 81 104
-234 44 110 124 114
-235 46 116 74 96
-236 69 51 95 75
-237 101 113 93 53
-238 88 56 100 82
-239 66 116 106 96
-240 77 67 115 120
-241 80 63 107 119
-242 122 57 125 76
-243 121 91 81 92
-244 101 93 107 119
-245 99 70 117 108
-246 66 124 114 106
-247 67 124 114 120
-248 91 81 117 108
-249 121 101 92 93
-250 89 122 125 105
-251 100 82 126 128
-252 122 125 116 96
-253 121 124 92 114
-254 126 128 107 119
-255 126 117 128 108
-256 122 125 126 128
0

**************