C4graphGraph forms for C4 [ 256, 123 ] = PL(CS({4,4}_4,4[8^8],1))

[Home] [Table] [Glossary] [Families]

On this page are computer-accessible forms for the graph C4[ 256, 123 ] = PL(CS({4,4}_4,4[8^8],1)).

(I) Following is a form readable by MAGMA:

g:=Graph<256|{ {128, 156}, {128, 157}, {128, 188}, {128, 189}, {1, 129}, {124, 252}, {108, 236}, {43, 171}, {29, 157}, {2, 130}, {43, 170}, {124, 253}, {108, 237}, {70, 196}, {1, 130}, {29, 158}, {2, 129}, {67, 192}, {71, 196}, {72, 203}, {50, 182}, {121, 253}, {105, 237}, {68, 192}, {71, 195}, {72, 204}, {83, 215}, {50, 183}, {121, 252}, {117, 240}, {105, 236}, {70, 195}, {82, 215}, {44, 170}, {49, 183}, {44, 171}, {103, 224}, {49, 182}, {30, 150}, {120, 240}, {104, 224}, {42, 162}, {3, 138}, {89, 208}, {42, 163}, {31, 150}, {69, 204}, {3, 137}, {52, 190}, {48, 186}, {41, 163}, {31, 149}, {82, 216}, {30, 149}, {52, 191}, {48, 187}, {41, 162}, {80, 219}, {83, 216}, {84, 223}, {51, 191}, {92, 208}, {80, 220}, {4, 137}, {51, 190}, {4, 138}, {123, 245}, {122, 244}, {107, 229}, {106, 228}, {69, 203}, {81, 223}, {106, 229}, {123, 244}, {122, 245}, {107, 228}, {2, 146}, {54, 166}, {3, 146}, {54, 167}, {31, 142}, {77, 220}, {3, 145}, {90, 200}, {53, 167}, {31, 141}, {2, 145}, {92, 207}, {91, 200}, {53, 166}, {47, 187}, {117, 225}, {101, 241}, {47, 186}, {56, 174}, {89, 207}, {77, 219}, {56, 175}, {1, 153}, {55, 175}, {30, 134}, {29, 133}, {55, 174}, {120, 225}, {104, 241}, {78, 212}, {1, 154}, {96, 251}, {30, 133}, {29, 134}, {79, 212}, {46, 178}, {96, 252}, {91, 199}, {79, 211}, {4, 153}, {90, 199}, {46, 179}, {78, 211}, {4, 154}, {119, 233}, {118, 232}, {103, 249}, {102, 248}, {45, 179}, {45, 178}, {119, 232}, {118, 233}, {103, 248}, {102, 249}, {34, 130}, {124, 220}, {108, 204}, {8, 169}, {124, 221}, {108, 205}, {97, 192}, {93, 252}, {34, 131}, {28, 189}, {8, 170}, {33, 131}, {28, 190}, {60, 158}, {74, 232}, {33, 130}, {60, 159}, {75, 232}, {76, 239}, {5, 161}, {100, 192}, {25, 189}, {6, 162}, {59, 159}, {59, 158}, {73, 239}, {123, 221}, {107, 205}, {93, 251}, {5, 162}, {123, 220}, {119, 208}, {107, 204}, {25, 190}, {6, 161}, {35, 139}, {120, 208}, {35, 138}, {94, 244}, {95, 244}, {26, 182}, {121, 213}, {105, 197}, {95, 243}, {58, 150}, {75, 231}, {7, 170}, {121, 212}, {105, 196}, {94, 243}, {58, 151}, {32, 141}, {27, 182}, {74, 231}, {7, 169}, {122, 212}, {106, 196}, {57, 151}, {36, 138}, {32, 142}, {27, 181}, {26, 181}, {122, 213}, {106, 197}, {57, 150}, {36, 139}, {63, 143}, {8, 185}, {28, 173}, {63, 142}, {81, 224}, {8, 186}, {40, 154}, {28, 174}, {86, 228}, {40, 155}, {87, 228}, {88, 235}, {6, 178}, {38, 146}, {67, 247}, {84, 224}, {87, 227}, {88, 236}, {7, 178}, {38, 147}, {27, 174}, {66, 247}, {86, 227}, {7, 177}, {119, 193}, {103, 209}, {37, 147}, {27, 173}, {6, 177}, {37, 146}, {62, 134}, {62, 135}, {120, 193}, {104, 209}, {73, 240}, {85, 236}, {61, 135}, {64, 250}, {66, 248}, {61, 134}, {64, 251}, {67, 248}, {68, 255}, {5, 185}, {117, 201}, {101, 217}, {39, 155}, {26, 166}, {25, 165}, {76, 240}, {32, 157}, {117, 200}, {101, 216}, {39, 154}, {32, 158}, {118, 200}, {102, 216}, {65, 255}, {85, 235}, {5, 186}, {118, 201}, {102, 217}, {26, 165}, {25, 166}, {22, 214}, {125, 189}, {109, 173}, {39, 231}, {38, 230}, {11, 202}, {125, 188}, {113, 176}, {109, 172}, {39, 230}, {38, 231}, {23, 214}, {69, 132}, {11, 201}, {23, 213}, {70, 132}, {22, 213}, {99, 160}, {72, 139}, {72, 140}, {116, 176}, {100, 160}, {12, 201}, {24, 221}, {70, 131}, {82, 151}, {12, 202}, {40, 238}, {24, 222}, {61, 251}, {69, 131}, {81, 151}, {40, 239}, {61, 250}, {9, 193}, {21, 221}, {10, 194}, {81, 152}, {37, 239}, {127, 181}, {126, 180}, {111, 165}, {110, 164}, {82, 152}, {9, 194}, {127, 180}, {126, 181}, {111, 164}, {110, 165}, {91, 144}, {37, 238}, {21, 222}, {10, 193}, {71, 140}, {80, 155}, {84, 159}, {62, 242}, {92, 144}, {63, 243}, {71, 139}, {80, 156}, {83, 159}, {62, 243}, {63, 242}, {64, 142}, {64, 143}, {9, 217}, {113, 161}, {97, 177}, {22, 198}, {21, 197}, {89, 136}, {57, 235}, {90, 136}, {9, 218}, {92, 143}, {57, 234}, {22, 197}, {21, 198}, {79, 156}, {34, 246}, {91, 143}, {35, 247}, {79, 155}, {12, 217}, {116, 161}, {100, 177}, {35, 246}, {34, 247}, {24, 205}, {12, 218}, {24, 206}, {60, 234}, {60, 235}, {10, 210}, {58, 226}, {59, 227}, {11, 210}, {23, 206}, {58, 227}, {59, 226}, {77, 148}, {11, 209}, {115, 169}, {114, 168}, {99, 185}, {98, 184}, {36, 254}, {23, 205}, {78, 148}, {10, 209}, {115, 168}, {114, 169}, {99, 184}, {98, 185}, {96, 187}, {36, 255}, {96, 188}, {112, 172}, {78, 147}, {112, 173}, {90, 135}, {33, 255}, {89, 135}, {77, 147}, {33, 254}, {73, 168}, {45, 207}, {127, 157}, {111, 141}, {56, 218}, {74, 168}, {45, 206}, {127, 156}, {115, 144}, {111, 140}, {95, 188}, {56, 219}, {76, 175}, {18, 246}, {116, 144}, {95, 187}, {55, 211}, {54, 210}, {75, 175}, {15, 234}, {55, 210}, {54, 211}, {19, 246}, {15, 233}, {19, 245}, {18, 245}, {46, 198}, {125, 149}, {109, 133}, {47, 199}, {16, 249}, {125, 148}, {109, 132}, {93, 180}, {47, 198}, {46, 199}, {20, 253}, {16, 250}, {126, 148}, {110, 132}, {94, 180}, {20, 254}, {110, 133}, {126, 149}, {13, 225}, {17, 253}, {14, 226}, {74, 167}, {94, 179}, {53, 219}, {93, 179}, {73, 167}, {13, 226}, {53, 218}, {17, 254}, {14, 225}, {50, 194}, {51, 195}, {50, 195}, {51, 194}, {85, 164}, {44, 222}, {115, 129}, {99, 145}, {86, 164}, {44, 223}, {83, 160}, {88, 171}, {13, 249}, {18, 230}, {17, 229}, {84, 160}, {88, 172}, {66, 183}, {116, 129}, {100, 145}, {86, 163}, {41, 223}, {65, 183}, {85, 163}, {13, 250}, {41, 222}, {18, 229}, {17, 230}, {97, 153}, {113, 137}, {16, 233}, {113, 136}, {97, 152}, {20, 237}, {65, 184}, {16, 234}, {114, 136}, {98, 152}, {49, 203}, {20, 238}, {66, 184}, {49, 202}, {114, 137}, {98, 153}, {68, 191}, {75, 176}, {87, 172}, {14, 242}, {112, 140}, {43, 215}, {42, 214}, {67, 191}, {76, 176}, {87, 171}, {15, 242}, {112, 141}, {43, 214}, {42, 215}, {19, 238}, {15, 241}, {52, 202}, {48, 206}, {19, 237}, {14, 241}, {52, 203}, {48, 207}, {65, 256}, {68, 256}, {101, 256}, {104, 256} }>;

(II) A more general form is to represent the graph as the orbit of {128, 156} under the group generated by the following permutations:

a: (5, 8)(6, 7)(9, 10)(11, 12)(21, 22)(23, 24)(25, 28)(26, 27)(41, 43)(42, 44)(53, 55)(54, 56)(73, 76)(74, 75)(77, 78)(79, 80)(81, 82)(83, 84)(85, 88)(86, 87)(101, 104)(102, 103)(109, 110)(111, 112)(113, 114)(115, 116)(121, 124)(122, 123)(161, 169)(162, 170)(163, 171)(164, 172)(165, 173)(166, 174)(167, 175)(168, 176)(209, 217)(210, 218)(211, 219)(212, 220)(213, 221)(214, 222)(215, 223)(216, 224)
b: (2, 4)(5, 7)(9, 11)(13, 15)(17, 19)(21, 23)(25, 27)(30, 32)(33, 40)(34, 39)(35, 38)(36, 37)(41, 45)(42, 46)(43, 47)(44, 48)(49, 53)(50, 54)(51, 55)(52, 56)(57, 64)(58, 63)(59, 62)(60, 61)(65, 73)(66, 74)(67, 75)(68, 76)(69, 80)(70, 79)(71, 78)(72, 77)(81, 92)(82, 91)(83, 90)(84, 89)(85, 93)(86, 94)(87, 95)(88, 96)(97, 116)(98, 115)(99, 114)(100, 113)(101, 117)(102, 118)(103, 119)(104, 120)(105, 121)(106, 122)(107, 123)(108, 124)(109, 128)(110, 127)(111, 126)(112, 125)(129, 153)(130, 154)(131, 155)(132, 156)(133, 157)(134, 158)(135, 159)(136, 160)(137, 145)(138, 146)(139, 147)(140, 148)(141, 149)(142, 150)(143, 151)(144, 152)(161, 177)(162, 178)(163, 179)(164, 180)(165, 181)(166, 182)(167, 183)(168, 184)(169, 185)(170, 186)(171, 187)(172, 188)(173, 189)(174, 190)(175, 191)(176, 192)(193, 209)(194, 210)(195, 211)(196, 212)(197, 213)(198, 214)(199, 215)(200, 216)(201, 217)(202, 218)(203, 219)(204, 220)(205, 221)(206, 222)(207, 223)(208, 224)(225, 241)(226, 242)(227, 243)(228, 244)(229, 245)(230, 246)(231, 247)(232, 248)(233, 249)(234, 250)(235, 251)(236, 252)(237, 253)(238, 254)(239, 255)(240, 256)
c: (1, 5)(2, 6)(3, 7)(4, 8)(9, 13)(10, 14)(11, 15)(12, 16)(17, 21)(18, 22)(19, 23)(20, 24)(25, 29)(26, 30)(27, 31)(28, 32)(33, 41)(34, 42)(35, 43)(36, 44)(37, 45)(38, 46)(39, 47)(40, 48)(49, 57)(50, 58)(51, 59)(52, 60)(53, 61)(54, 62)(55, 63)(56, 64)(65, 81)(66, 82)(67, 83)(68, 84)(69, 85)(70, 86)(71, 87)(72, 88)(73, 89)(74, 90)(75, 91)(76, 92)(77, 93)(78, 94)(79, 95)(80, 96)(97, 99)(101, 103)(105, 107)(109, 111)(113, 115)(117, 119)(121, 123)(125, 127)(129, 161)(130, 162)(131, 163)(132, 164)(133, 165)(134, 166)(135, 167)(136, 168)(137, 169)(138, 170)(139, 171)(140, 172)(141, 173)(142, 174)(143, 175)(144, 176)(145, 177)(146, 178)(147, 179)(148, 180)(149, 181)(150, 182)(151, 183)(152, 184)(153, 185)(154, 186)(155, 187)(156, 188)(157, 189)(158, 190)(159, 191)(160, 192)(193, 225)(194, 226)(195, 227)(196, 228)(197, 229)(198, 230)(199, 231)(200, 232)(201, 233)(202, 234)(203, 235)(204, 236)(205, 237)(206, 238)(207, 239)(208, 240)(209, 241)(210, 242)(211, 243)(212, 244)(213, 245)(214, 246)(215, 247)(216, 248)(217, 249)(218, 250)(219, 251)(220, 252)(221, 253)(222, 254)(223, 255)(224, 256)
d: (9, 10)(11, 12)(21, 22)(23, 24)(41, 42)(43, 44)(53, 54)(55, 56)(77, 78)(79, 80)(81, 82)(83, 84)(101, 104)(102, 103)(121, 124)(122, 123)(209, 217)(210, 218)(211, 219)(212, 220)(213, 221)(214, 222)(215, 223)(216, 224)
e: (5, 6)(7, 8)(13, 14)(15, 16)(17, 18)(19, 20)(25, 26)(27, 28)(33, 34)(35, 36)(45, 48)(46, 47)(49, 52)(50, 51)(61, 62)(63, 64)(65, 67)(66, 68)(93, 95)(94, 96)(97, 98)(99, 100)(101, 102)(103, 104)(121, 122)(123, 124)(125, 126)(127, 128)(177, 185)(178, 186)(179, 187)(180, 188)(181, 189)(182, 190)(183, 191)(184, 192)(241, 249)(242, 250)(243, 251)(244, 252)(245, 253)(246, 254)(247, 255)(248, 256)
f: (9, 12)(10, 11)(21, 24)(22, 23)(45, 46)(47, 48)(49, 50)(51, 52)(69, 70)(71, 72)(89, 90)(91, 92)(105, 108)(106, 107)(117, 120)(118, 119)(193, 201)(194, 202)(195, 203)(196, 204)(197, 205)(198, 206)(199, 207)(200, 208)
g: (13, 16)(14, 15)(17, 20)(18, 19)(37, 38)(39, 40)(57, 58)(59, 60)(73, 74)(75, 76)(85, 86)(87, 88)(105, 106)(107, 108)(117, 118)(119, 120)(225, 233)(226, 234)(227, 235)(228, 236)(229, 237)(230, 238)(231, 239)(232, 240)
h: (2, 4)(5, 65, 20, 76)(6, 66, 17, 73)(7, 67, 18, 74)(8, 68, 19, 75)(9, 22, 10, 23)(11, 24, 12, 21)(13, 86, 26, 93)(14, 85, 27, 96)(15, 88, 28, 95)(16, 87, 25, 94)(29, 32, 31, 30)(33, 40, 116, 98)(34, 39, 115, 97)(35, 38, 114, 100)(36, 37, 113, 99)(41, 49, 124, 117)(42, 50, 121, 120)(43, 51, 122, 119)(44, 52, 123, 118)(45, 102, 106, 54)(46, 103, 107, 53)(47, 104, 108, 56)(48, 101, 105, 55)(57, 109, 128, 63)(58, 110, 127, 64)(59, 111, 126, 61)(60, 112, 125, 62)(69, 80, 91, 81)(70, 79, 92, 82)(71, 78, 89, 83)(72, 77, 90, 84)(129, 153, 130, 154)(131, 155, 144, 152)(132, 156, 143, 151)(133, 157, 142, 150)(134, 158, 141, 149)(135, 159, 140, 148)(136, 160, 139, 147)(137, 145, 138, 146)(161, 184, 254, 239)(162, 183, 253, 240)(163, 182, 252, 225)(164, 181, 251, 226)(165, 180, 250, 227)(166, 179, 249, 228)(167, 178, 248, 229)(168, 177, 247, 230)(169, 192, 246, 231)(170, 191, 245, 232)(171, 190, 244, 233)(172, 189, 243, 234)(173, 188, 242, 235)(174, 187, 241, 236)(175, 186, 256, 237)(176, 185, 255, 238)(193, 214, 194, 213)(195, 212, 208, 215)(196, 211, 207, 216)(197, 210, 206, 217)(198, 209, 205, 218)(199, 224, 204, 219)(200, 223, 203, 220)(201, 222, 202, 221)
m: (1, 33, 20, 105, 22, 43, 7, 97)(2, 36, 19, 106, 23, 44, 6, 98)(3, 35, 18, 107, 24, 41, 5, 99)(4, 34, 17, 108, 21, 42, 8, 100)(9, 54, 28, 127, 30, 64, 15, 117)(10, 55, 27, 126, 31, 63, 14, 120)(11, 56, 26, 125, 32, 62, 13, 119)(12, 53, 25, 128, 29, 61, 16, 118)(37, 71, 122, 87, 45, 81, 116, 65)(38, 72, 123, 86, 48, 84, 113, 66)(39, 69, 124, 85, 47, 83, 114, 67)(40, 70, 121, 88, 46, 82, 115, 68)(49, 77, 111, 95, 59, 89, 103, 75)(50, 78, 112, 94, 58, 92, 104, 76)(51, 79, 109, 93, 57, 91, 101, 73)(52, 80, 110, 96, 60, 90, 102, 74)(129, 255, 238, 196, 213, 171, 178, 152)(130, 254, 237, 197, 214, 170, 177, 153)(131, 253, 236, 198, 215, 169, 192, 154)(132, 252, 235, 199, 216, 168, 191, 155)(133, 251, 234, 200, 217, 167, 190, 156)(134, 250, 233, 201, 218, 166, 189, 157)(135, 249, 232, 202, 219, 165, 188, 158)(136, 248, 231, 203, 220, 164, 187, 159)(137, 247, 230, 204, 221, 163, 186, 160)(138, 246, 229, 205, 222, 162, 185, 145)(139, 245, 228, 206, 223, 161, 184, 146)(140, 244, 227, 207, 224, 176, 183, 147)(141, 243, 226, 208, 209, 175, 182, 148)(142, 242, 225, 193, 210, 174, 181, 149)(143, 241, 240, 194, 211, 173, 180, 150)(144, 256, 239, 195, 212, 172, 179, 151)
n1: (13, 14)(15, 16)(17, 18)(19, 20)(33, 34)(35, 36)(61, 62)(63, 64)(65, 66)(67, 68)(93, 94)(95, 96)(101, 102)(103, 104)(121, 122)(123, 124)(241, 249)(242, 250)(243, 251)(244, 252)(245, 253)(246, 254)(247, 255)(248, 256)
a1: (1, 2)(3, 4)(29, 30)(31, 32)(37, 40)(38, 39)(57, 60)(58, 59)(77, 80)(78, 79)(81, 84)(82, 83)(97, 100)(98, 99)(125, 128)(126, 127)(145, 153)(146, 154)(147, 155)(148, 156)(149, 157)(150, 158)(151, 159)(152, 160)

(III) Last is Groups&Graphs. Copy everything between (not including) the lines of asterisks into a plain text file and save it as "graph.txt". Then launch G&G (Groups&Graphs) and select Read Text from the File menu.

**************

&Graph
C4[ 256, 123 ]
256
-1 154 129 130 153
-2 145 146 129 130
-3 145 146 137 138
-4 154 137 138 153
-5 161 162 185 186
-6 177 178 161 162
-7 177 178 169 170
-8 169 170 185 186
-9 193 194 217 218
-10 209 210 193 194
-11 209 210 201 202
-12 201 202 217 218
-13 225 226 249 250
-14 242 225 226 241
-15 242 233 234 241
-16 233 234 249 250
-17 253 254 229 230
-18 245 246 229 230
-19 245 246 237 238
-20 253 254 237 238
-21 198 221 222 197
-22 198 213 214 197
-23 213 214 205 206
-24 221 222 205 206
-25 165 166 189 190
-26 165 166 181 182
-27 181 182 173 174
-28 189 190 173 174
-29 133 134 157 158
-30 133 134 149 150
-31 149 150 141 142
-32 157 158 141 142
-33 254 255 130 131
-34 246 247 130 131
-35 246 247 138 139
-36 254 255 138 139
-37 146 147 238 239
-38 231 146 147 230
-39 154 231 155 230
-40 154 155 238 239
-41 222 223 162 163
-42 214 215 162 163
-43 170 214 171 215
-44 222 223 170 171
-45 178 179 206 207
-46 198 199 178 179
-47 187 198 199 186
-48 187 206 207 186
-49 202 203 182 183
-50 182 183 194 195
-51 190 191 194 195
-52 190 191 202 203
-53 166 167 218 219
-54 166 210 167 211
-55 210 211 174 175
-56 174 218 175 219
-57 234 235 150 151
-58 226 150 227 151
-59 158 159 226 227
-60 234 158 235 159
-61 134 135 250 251
-62 242 243 134 135
-63 143 242 243 142
-64 143 250 251 142
-65 255 256 183 184
-66 247 248 183 184
-67 191 192 247 248
-68 255 256 191 192
-69 132 203 204 131
-70 132 195 196 131
-71 139 140 195 196
-72 203 204 139 140
-73 167 168 239 240
-74 231 232 167 168
-75 176 231 232 175
-76 176 239 240 175
-77 220 147 148 219
-78 211 212 147 148
-79 155 156 211 212
-80 220 155 156 219
-81 223 224 151 152
-82 215 216 151 152
-83 159 160 215 216
-84 223 224 159 160
-85 235 236 163 164
-86 227 228 163 164
-87 171 172 227 228
-88 235 236 171 172
-89 135 136 207 208
-90 199 200 135 136
-91 143 144 199 200
-92 143 144 207 208
-93 179 180 251 252
-94 243 244 179 180
-95 187 188 243 244
-96 187 188 251 252
-97 177 192 152 153
-98 184 152 185 153
-99 145 160 184 185
-100 177 145 192 160
-101 256 216 217 241
-102 248 216 249 217
-103 209 224 248 249
-104 209 256 224 241
-105 236 237 196 197
-106 228 196 229 197
-107 204 205 228 229
-108 236 204 237 205
-109 132 133 172 173
-110 132 165 133 164
-111 165 140 141 164
-112 172 140 173 141
-113 176 136 137 161
-114 168 136 169 137
-115 144 168 169 129
-116 176 144 161 129
-117 200 201 225 240
-118 232 200 233 201
-119 232 233 193 208
-120 225 193 240 208
-121 253 212 213 252
-122 244 212 245 213
-123 220 221 244 245
-124 220 253 221 252
-125 188 189 148 149
-126 180 148 181 149
-127 156 157 180 181
-128 188 156 189 157
-129 1 2 115 116
-130 33 1 34 2
-131 33 34 69 70
-132 110 69 70 109
-133 110 29 30 109
-134 61 29 62 30
-135 89 90 61 62
-136 89 90 113 114
-137 3 113 4 114
-138 35 3 36 4
-139 35 36 71 72
-140 111 112 71 72
-141 111 112 31 32
-142 63 31 64 32
-143 91 92 63 64
-144 91 92 115 116
-145 99 100 2 3
-146 2 3 37 38
-147 77 78 37 38
-148 77 78 125 126
-149 125 126 30 31
-150 57 58 30 31
-151 57 58 81 82
-152 81 82 97 98
-153 1 4 97 98
-154 1 4 39 40
-155 79 80 39 40
-156 79 80 127 128
-157 127 29 128 32
-158 59 60 29 32
-159 59 60 83 84
-160 99 100 83 84
-161 113 5 6 116
-162 5 6 41 42
-163 41 85 42 86
-164 110 111 85 86
-165 110 111 25 26
-166 25 26 53 54
-167 73 74 53 54
-168 114 115 73 74
-169 114 115 7 8
-170 44 7 8 43
-171 44 88 43 87
-172 88 112 87 109
-173 112 27 28 109
-174 55 56 27 28
-175 55 56 75 76
-176 113 116 75 76
-177 100 6 7 97
-178 45 46 6 7
-179 45 46 93 94
-180 93 126 94 127
-181 26 27 126 127
-182 26 27 49 50
-183 66 49 50 65
-184 66 99 65 98
-185 99 5 8 98
-186 47 48 5 8
-187 47 48 95 96
-188 125 95 128 96
-189 25 125 28 128
-190 25 28 51 52
-191 67 68 51 52
-192 67 100 68 97
-193 9 119 10 120
-194 50 51 9 10
-195 70 71 50 51
-196 70 71 105 106
-197 22 105 106 21
-198 22 46 47 21
-199 46 90 47 91
-200 90 91 117 118
-201 11 12 117 118
-202 11 12 49 52
-203 69 49 72 52
-204 69 72 107 108
-205 23 24 107 108
-206 23 45 24 48
-207 45 89 48 92
-208 89 92 119 120
-209 11 103 104 10
-210 11 55 10 54
-211 55 78 79 54
-212 121 78 122 79
-213 22 121 23 122
-214 22 23 42 43
-215 82 83 42 43
-216 101 102 82 83
-217 12 101 102 9
-218 12 56 9 53
-219 77 56 80 53
-220 77 123 80 124
-221 24 123 124 21
-222 44 24 41 21
-223 44 81 84 41
-224 81 103 104 84
-225 13 14 117 120
-226 13 14 58 59
-227 58 59 86 87
-228 106 107 86 87
-229 17 18 106 107
-230 38 17 39 18
-231 38 39 74 75
-232 74 118 75 119
-233 15 16 118 119
-234 57 15 16 60
-235 88 57 60 85
-236 88 105 85 108
-237 105 19 20 108
-238 37 40 19 20
-239 37 40 73 76
-240 73 117 76 120
-241 101 14 15 104
-242 14 15 62 63
-243 94 62 95 63
-244 122 123 94 95
-245 122 123 18 19
-246 34 35 18 19
-247 66 34 67 35
-248 66 67 102 103
-249 13 102 103 16
-250 13 16 61 64
-251 93 61 96 64
-252 121 124 93 96
-253 121 124 17 20
-254 33 36 17 20
-255 33 68 36 65
-256 68 101 104 65
0

**************