C4graphGraph forms for C4 [ 256, 125 ] = PL(CS(MSY(4,8,5,4)[8^8],1))

[Home] [Table] [Glossary] [Families]

On this page are computer-accessible forms for the graph C4[ 256, 125 ] = PL(CS(MSY(4,8,5,4)[8^8],1)).

(I) Following is a form readable by MAGMA:

g:=Graph<256|{ {128, 187}, {128, 188}, {128, 235}, {128, 236}, {1, 129}, {124, 252}, {57, 185}, {32, 160}, {31, 159}, {2, 130}, {63, 191}, {64, 192}, {57, 184}, {113, 240}, {92, 221}, {8, 138}, {121, 251}, {119, 245}, {118, 244}, {93, 223}, {92, 222}, {58, 184}, {1, 130}, {119, 244}, {118, 245}, {93, 222}, {58, 185}, {8, 139}, {2, 129}, {6, 130}, {120, 252}, {116, 240}, {98, 230}, {17, 149}, {89, 221}, {6, 131}, {121, 252}, {120, 253}, {99, 230}, {61, 184}, {29, 152}, {17, 148}, {5, 131}, {109, 235}, {99, 229}, {62, 184}, {30, 152}, {18, 148}, {5, 130}, {124, 251}, {109, 234}, {98, 229}, {18, 149}, {89, 222}, {20, 156}, {123, 243}, {117, 253}, {95, 215}, {94, 214}, {3, 138}, {122, 243}, {117, 252}, {100, 237}, {95, 214}, {94, 215}, {62, 183}, {30, 151}, {20, 157}, {3, 137}, {100, 238}, {61, 183}, {59, 177}, {29, 151}, {107, 224}, {7, 139}, {111, 227}, {110, 226}, {108, 224}, {97, 237}, {90, 214}, {4, 137}, {111, 226}, {110, 227}, {91, 214}, {60, 177}, {7, 138}, {4, 138}, {122, 244}, {91, 213}, {19, 157}, {16, 158}, {16, 159}, {123, 244}, {111, 224}, {97, 238}, {90, 213}, {19, 156}, {2, 146}, {113, 225}, {112, 224}, {102, 246}, {15, 159}, {86, 198}, {87, 199}, {3, 146}, {125, 236}, {103, 246}, {15, 158}, {86, 199}, {87, 198}, {3, 145}, {108, 254}, {103, 245}, {2, 145}, {108, 255}, {102, 245}, {82, 198}, {83, 198}, {116, 225}, {104, 253}, {83, 197}, {125, 235}, {105, 255}, {104, 254}, {88, 206}, {82, 197}, {105, 254}, {88, 207}, {1, 153}, {101, 253}, {14, 150}, {14, 151}, {84, 205}, {13, 151}, {126, 228}, {115, 233}, {114, 232}, {112, 234}, {84, 206}, {85, 207}, {1, 154}, {127, 228}, {115, 232}, {114, 233}, {112, 235}, {101, 254}, {13, 150}, {85, 206}, {81, 205}, {127, 227}, {107, 247}, {106, 246}, {4, 153}, {126, 227}, {107, 246}, {106, 247}, {4, 154}, {81, 206}, {11, 171}, {8, 169}, {102, 199}, {11, 170}, {8, 170}, {101, 199}, {99, 193}, {51, 144}, {6, 162}, {52, 144}, {7, 162}, {100, 193}, {7, 161}, {12, 170}, {6, 161}, {104, 207}, {55, 144}, {23, 176}, {12, 171}, {10, 162}, {103, 207}, {97, 201}, {56, 144}, {24, 176}, {10, 163}, {97, 200}, {9, 163}, {98, 200}, {16, 186}, {9, 162}, {98, 201}, {27, 176}, {16, 187}, {5, 169}, {28, 176}, {101, 200}, {102, 200}, {5, 170}, {112, 223}, {64, 239}, {9, 185}, {111, 223}, {105, 217}, {64, 240}, {25, 168}, {105, 216}, {54, 135}, {26, 168}, {106, 216}, {53, 135}, {51, 129}, {9, 186}, {106, 217}, {99, 208}, {28, 175}, {27, 175}, {100, 208}, {12, 185}, {109, 216}, {52, 129}, {12, 186}, {110, 216}, {23, 161}, {13, 187}, {13, 186}, {103, 208}, {56, 143}, {10, 178}, {104, 208}, {55, 143}, {49, 137}, {11, 178}, {110, 215}, {49, 136}, {24, 161}, {11, 177}, {109, 215}, {107, 209}, {50, 136}, {10, 177}, {50, 137}, {14, 178}, {21, 169}, {15, 179}, {14, 179}, {108, 209}, {53, 136}, {26, 167}, {21, 168}, {15, 178}, {22, 168}, {96, 222}, {54, 136}, {25, 167}, {22, 169}, {96, 223}, {32, 159}, {31, 160}, {25, 217}, {124, 188}, {34, 226}, {70, 134}, {35, 226}, {124, 189}, {70, 135}, {35, 225}, {58, 248}, {45, 239}, {69, 135}, {83, 145}, {25, 218}, {127, 188}, {95, 156}, {60, 255}, {59, 248}, {45, 238}, {34, 225}, {69, 134}, {53, 241}, {127, 187}, {95, 155}, {65, 133}, {66, 134}, {28, 217}, {84, 145}, {28, 218}, {123, 189}, {57, 255}, {29, 219}, {72, 142}, {29, 218}, {123, 188}, {65, 134}, {66, 133}, {72, 143}, {26, 210}, {47, 231}, {46, 230}, {33, 233}, {71, 143}, {81, 153}, {27, 210}, {125, 180}, {93, 148}, {56, 241}, {47, 230}, {46, 231}, {68, 141}, {71, 142}, {81, 152}, {27, 209}, {126, 180}, {94, 148}, {68, 142}, {80, 154}, {82, 152}, {26, 209}, {33, 234}, {80, 155}, {82, 153}, {30, 210}, {121, 181}, {59, 247}, {31, 211}, {30, 211}, {126, 179}, {121, 180}, {94, 147}, {61, 240}, {58, 247}, {36, 233}, {31, 210}, {67, 142}, {36, 234}, {125, 179}, {122, 180}, {93, 147}, {55, 249}, {54, 248}, {67, 141}, {54, 249}, {122, 181}, {55, 248}, {18, 194}, {19, 194}, {40, 249}, {19, 193}, {61, 239}, {41, 251}, {40, 250}, {24, 202}, {18, 193}, {41, 250}, {24, 203}, {22, 194}, {38, 242}, {23, 195}, {66, 150}, {79, 155}, {22, 195}, {39, 242}, {23, 194}, {67, 150}, {79, 154}, {39, 241}, {51, 229}, {50, 228}, {44, 250}, {62, 232}, {67, 149}, {38, 241}, {51, 228}, {50, 229}, {44, 251}, {63, 232}, {66, 149}, {17, 201}, {52, 236}, {43, 243}, {42, 242}, {63, 231}, {42, 243}, {52, 237}, {43, 242}, {62, 231}, {68, 157}, {68, 158}, {17, 202}, {37, 249}, {49, 237}, {65, 157}, {78, 146}, {20, 201}, {49, 236}, {78, 147}, {20, 202}, {48, 238}, {21, 203}, {77, 147}, {21, 202}, {48, 239}, {37, 250}, {65, 158}, {77, 146}, {70, 166}, {37, 196}, {71, 166}, {38, 196}, {71, 165}, {76, 174}, {40, 203}, {70, 165}, {76, 175}, {33, 197}, {40, 204}, {75, 175}, {33, 196}, {38, 195}, {72, 173}, {75, 174}, {34, 196}, {37, 195}, {72, 174}, {34, 197}, {36, 204}, {69, 173}, {36, 205}, {39, 204}, {48, 219}, {69, 174}, {39, 203}, {48, 220}, {74, 166}, {74, 167}, {35, 205}, {73, 167}, {80, 190}, {35, 204}, {73, 166}, {80, 191}, {44, 220}, {92, 172}, {91, 171}, {85, 165}, {44, 221}, {117, 132}, {76, 189}, {85, 164}, {76, 190}, {118, 132}, {77, 191}, {86, 164}, {47, 220}, {120, 139}, {77, 190}, {83, 160}, {86, 165}, {47, 219}, {120, 140}, {113, 133}, {73, 189}, {84, 160}, {88, 172}, {88, 173}, {118, 131}, {113, 132}, {43, 221}, {117, 131}, {114, 132}, {43, 220}, {114, 133}, {92, 171}, {91, 172}, {73, 190}, {78, 182}, {116, 140}, {79, 183}, {45, 212}, {116, 141}, {78, 183}, {79, 182}, {90, 163}, {32, 218}, {46, 212}, {87, 173}, {89, 163}, {32, 219}, {119, 140}, {96, 155}, {59, 192}, {87, 172}, {41, 213}, {119, 139}, {96, 156}, {60, 192}, {74, 182}, {41, 212}, {46, 211}, {75, 182}, {89, 164}, {42, 212}, {115, 141}, {45, 211}, {75, 181}, {90, 164}, {42, 213}, {115, 140}, {63, 192}, {64, 191}, {74, 181}, {53, 256}, {56, 256}, {57, 256}, {60, 256} }>;

(II) A more general form is to represent the graph as the orbit of {128, 187} under the group generated by the following permutations:

a: (17, 18)(19, 20)(21, 22)(23, 24)(33, 35)(34, 36)(37, 40)(38, 39)(45, 46)(47, 48)(49, 50)(51, 52)(61, 62)(63, 64)(81, 82)(83, 84)(85, 86)(87, 88)(97, 99)(98, 100)(101, 104)(102, 103)(109, 110)(111, 112)(113, 114)(115, 116)(125, 126)(127, 128)(193, 201)(194, 202)(195, 203)(196, 204)(197, 205)(198, 206)(199, 207)(200, 208)(225, 233)(226, 234)(227, 235)(228, 236)(229, 237)(230, 238)(231, 239)(232, 240)
b: (33, 34)(35, 36)(45, 46)(47, 48)(49, 50)(51, 52)(61, 62)(63, 64)(97, 98)(99, 100)(109, 110)(111, 112)(113, 114)(115, 116)(125, 126)(127, 128)(225, 233)(226, 234)(227, 235)(228, 236)(229, 237)(230, 238)(231, 239)(232, 240)
c: (5, 6)(7, 8)(9, 12)(10, 11)(21, 24)(22, 23)(25, 28)(26, 27)(69, 70)(71, 72)(73, 76)(74, 75)(85, 88)(86, 87)(89, 92)(90, 91)(161, 169)(162, 170)(163, 171)(164, 172)(165, 173)(166, 174)(167, 175)(168, 176)
d: (37, 38)(39, 40)(41, 42)(43, 44)(53, 54)(55, 56)(57, 58)(59, 60)(101, 102)(103, 104)(105, 106)(107, 108)(117, 118)(119, 120)(121, 122)(123, 124)(241, 249)(242, 250)(243, 251)(244, 252)(245, 253)(246, 254)(247, 255)(248, 256)
e: (9, 10)(11, 12)(13, 14)(15, 16)(57, 60)(58, 59)(61, 64)(62, 63)(73, 74)(75, 76)(77, 78)(79, 80)(121, 124)(122, 123)(125, 128)(126, 127)(177, 185)(178, 186)(179, 187)(180, 188)(181, 189)(182, 190)(183, 191)(184, 192)
f: (25, 26)(27, 28)(29, 30)(31, 32)(37, 38)(39, 40)(41, 43)(42, 44)(45, 48)(46, 47)(53, 54)(55, 56)(57, 58)(59, 60)(89, 90)(91, 92)(93, 94)(95, 96)(101, 102)(103, 104)(105, 107)(106, 108)(109, 112)(110, 111)(117, 118)(119, 120)(121, 122)(123, 124)(209, 217)(210, 218)(211, 219)(212, 220)(213, 221)(214, 222)(215, 223)(216, 224)(241, 249)(242, 250)(243, 251)(244, 252)(245, 253)(246, 254)(247, 255)(248, 256)
g: (1, 2)(3, 4)(13, 16)(14, 15)(17, 20)(18, 19)(25, 26)(27, 28)(29, 31)(30, 32)(37, 38)(39, 40)(41, 43)(42, 44)(45, 48)(46, 47)(53, 54)(55, 56)(57, 58)(59, 60)(65, 66)(67, 68)(77, 80)(78, 79)(81, 84)(82, 83)(89, 90)(91, 92)(93, 95)(94, 96)(101, 102)(103, 104)(105, 107)(106, 108)(109, 112)(110, 111)(117, 118)(119, 120)(121, 122)(123, 124)(145, 153)(146, 154)(147, 155)(148, 156)(149, 157)(150, 158)(151, 159)(152, 160)(209, 217)(210, 218)(211, 219)(212, 220)(213, 221)(214, 222)(215, 223)(216, 224)(241, 249)(242, 250)(243, 251)(244, 252)(245, 253)(246, 254)(247, 255)(248, 256)
h: (5, 52, 6, 51)(7, 50, 8, 49)(9, 126, 12, 125)(10, 127, 11, 128)(13, 14)(15, 16)(21, 97, 24, 98)(22, 100, 23, 99)(25, 48, 28, 47)(26, 45, 27, 46)(33, 85, 34, 88)(35, 87, 36, 86)(37, 103, 38, 104)(39, 101, 40, 102)(41, 107, 42, 108)(43, 105, 44, 106)(53, 120, 54, 119)(55, 118, 56, 117)(57, 121, 58, 122)(59, 123, 60, 124)(61, 75, 62, 74)(63, 73, 64, 76)(65, 68)(66, 67)(69, 115, 70, 116)(71, 113, 72, 114)(81, 82)(83, 84)(89, 110, 92, 109)(90, 111, 91, 112)(93, 94)(95, 96)(129, 130)(131, 144)(132, 143)(133, 142)(134, 141)(135, 140)(136, 139)(137, 138)(161, 229, 169, 237)(162, 228, 170, 236)(163, 227, 171, 235)(164, 226, 172, 234)(165, 225, 173, 233)(166, 240, 174, 232)(167, 239, 175, 231)(168, 238, 176, 230)(177, 188)(178, 187)(179, 186)(180, 185)(181, 184)(182, 183)(189, 192)(190, 191)(193, 194)(195, 208)(196, 207)(197, 206)(198, 205)(199, 204)(200, 203)(201, 202)(209, 212)(210, 211)(213, 224)(214, 223)(215, 222)(216, 221)(217, 220)(218, 219)(241, 253, 249, 245)(242, 254, 250, 246)(243, 255, 251, 247)(244, 256, 252, 248)
m: (1, 5, 117, 113, 65, 69, 54, 49, 3, 7, 119, 115, 67, 71, 56, 51)(2, 6, 118, 114, 66, 70, 53, 50, 4, 8, 120, 116, 68, 72, 55, 52)(9, 122, 63, 13, 74, 60, 127, 79, 11, 124, 61, 15, 76, 58, 125, 77)(10, 123, 62, 14, 73, 57, 126, 80, 12, 121, 64, 16, 75, 59, 128, 78)(17, 85, 38, 98, 81, 22, 101, 35, 19, 87, 40, 100, 83, 24, 103, 33)(18, 86, 39, 99, 82, 21, 104, 34, 20, 88, 37, 97, 84, 23, 102, 36)(25, 105, 110, 95, 91, 41, 45, 31, 27, 107, 112, 93, 89, 43, 47, 29)(26, 108, 111, 96, 92, 44, 48, 32, 28, 106, 109, 94, 90, 42, 46, 30)(129, 130, 131, 132, 133, 134, 135, 136, 137, 138, 139, 140, 141, 142, 143, 144)(145, 161, 245, 233, 149, 165, 241, 229, 153, 169, 253, 225, 157, 173, 249, 237)(146, 162, 244, 232, 150, 166, 256, 228, 154, 170, 252, 240, 158, 174, 248, 236)(147, 163, 243, 231, 151, 167, 255, 227, 155, 171, 251, 239, 159, 175, 247, 235)(148, 164, 242, 230, 152, 168, 254, 226, 156, 172, 250, 238, 160, 176, 246, 234)(177, 188, 183, 178, 189, 184, 179, 190, 185, 180, 191, 186, 181, 192, 187, 182)(193, 198, 203, 208, 197, 202, 207, 196, 201, 206, 195, 200, 205, 194, 199, 204)(209, 224, 223, 222, 221, 220, 219, 218, 217, 216, 215, 214, 213, 212, 211, 210)
n1: (2, 4)(5, 80, 6, 79)(7, 78, 8, 77)(9, 74, 11, 76)(10, 75, 12, 73)(13, 71, 14, 72)(15, 69, 16, 70)(17, 115)(18, 116)(19, 113)(20, 114)(21, 63, 24, 62)(22, 64, 23, 61)(25, 59, 27, 57)(26, 60, 28, 58)(29, 55, 30, 56)(31, 53, 32, 54)(33, 97)(34, 100)(35, 99)(36, 98)(37, 45, 38, 48)(39, 47, 40, 46)(41, 42, 43, 44)(49, 83)(50, 84)(51, 81)(52, 82)(66, 68)(85, 126, 88, 127)(86, 125, 87, 128)(89, 121, 91, 123)(90, 122, 92, 124)(93, 120, 94, 119)(95, 118, 96, 117)(101, 109, 102, 112)(103, 111, 104, 110)(105, 106, 107, 108)(129, 153)(130, 154)(131, 155)(132, 156)(133, 157)(134, 158)(135, 159)(136, 160)(137, 145)(138, 146)(139, 147)(140, 148)(141, 149)(142, 150)(143, 151)(144, 152)(161, 183, 169, 191)(162, 182, 170, 190)(163, 181, 171, 189)(164, 180, 172, 188)(165, 179, 173, 187)(166, 178, 174, 186)(167, 177, 175, 185)(168, 192, 176, 184)(193, 225)(194, 240)(195, 239)(196, 238)(197, 237)(198, 236)(199, 235)(200, 234)(201, 233)(202, 232)(203, 231)(204, 230)(205, 229)(206, 228)(207, 227)(208, 226)(209, 255, 217, 247)(210, 256, 218, 248)(211, 241, 219, 249)(212, 242, 220, 250)(213, 243, 221, 251)(214, 244, 222, 252)(215, 245, 223, 253)(216, 246, 224, 254)

(III) Last is Groups&Graphs. Copy everything between (not including) the lines of asterisks into a plain text file and save it as "graph.txt". Then launch G&G (Groups&Graphs) and select Read Text from the File menu.

**************

&Graph
C4[ 256, 125 ]
256
-1 154 129 130 153
-2 145 146 129 130
-3 145 146 137 138
-4 154 137 138 153
-5 169 170 130 131
-6 161 162 130 131
-7 138 139 161 162
-8 169 170 138 139
-9 162 163 185 186
-10 177 178 162 163
-11 177 178 170 171
-12 170 171 185 186
-13 187 150 151 186
-14 178 179 150 151
-15 178 179 158 159
-16 187 158 159 186
-17 201 202 148 149
-18 148 149 193 194
-19 156 157 193 194
-20 156 157 201 202
-21 168 169 202 203
-22 168 169 194 195
-23 176 161 194 195
-24 176 202 203 161
-25 167 168 217 218
-26 209 210 167 168
-27 176 209 210 175
-28 176 217 218 175
-29 151 152 218 219
-30 210 211 151 152
-31 210 211 159 160
-32 159 160 218 219
-33 233 234 196 197
-34 225 226 196 197
-35 225 204 226 205
-36 233 234 204 205
-37 249 195 250 196
-38 242 195 196 241
-39 242 203 204 241
-40 203 204 249 250
-41 212 213 250 251
-42 242 243 212 213
-43 220 242 221 243
-44 220 221 250 251
-45 211 212 238 239
-46 231 211 212 230
-47 220 231 219 230
-48 220 238 239 219
-49 136 137 236 237
-50 136 137 228 229
-51 144 129 228 229
-52 144 236 237 129
-53 135 256 136 241
-54 135 136 248 249
-55 143 144 248 249
-56 143 144 256 241
-57 255 256 184 185
-58 247 248 184 185
-59 177 192 247 248
-60 177 255 256 192
-61 183 184 239 240
-62 231 232 183 184
-63 231 232 191 192
-64 191 192 239 240
-65 133 134 157 158
-66 133 134 149 150
-67 149 150 141 142
-68 157 158 141 142
-69 134 135 173 174
-70 165 166 134 135
-71 143 165 166 142
-72 143 173 174 142
-73 166 167 189 190
-74 166 167 181 182
-75 181 182 174 175
-76 189 190 174 175
-77 146 190 147 191
-78 146 147 182 183
-79 154 155 182 183
-80 154 155 190 191
-81 205 206 152 153
-82 198 152 153 197
-83 198 145 160 197
-84 145 160 205 206
-85 165 206 207 164
-86 165 198 199 164
-87 198 199 172 173
-88 172 173 206 207
-89 221 222 163 164
-90 213 214 163 164
-91 213 214 171 172
-92 221 222 171 172
-93 222 223 147 148
-94 147 148 214 215
-95 155 156 214 215
-96 155 156 222 223
-97 200 201 237 238
-98 200 201 229 230
-99 193 229 208 230
-100 193 237 238 208
-101 253 199 254 200
-102 199 200 245 246
-103 245 246 207 208
-104 253 254 207 208
-105 254 255 216 217
-106 246 247 216 217
-107 209 224 246 247
-108 209 254 255 224
-109 234 235 215 216
-110 215 226 216 227
-111 223 224 226 227
-112 223 234 224 235
-113 132 133 225 240
-114 132 133 232 233
-115 232 233 140 141
-116 225 140 141 240
-117 132 253 131 252
-118 132 244 245 131
-119 244 245 139 140
-120 253 139 140 252
-121 180 181 251 252
-122 243 244 180 181
-123 188 243 189 244
-124 188 189 251 252
-125 179 180 235 236
-126 179 180 227 228
-127 187 188 227 228
-128 187 188 235 236
-129 1 2 51 52
-130 1 2 5 6
-131 5 6 117 118
-132 113 114 117 118
-133 66 113 114 65
-134 66 69 70 65
-135 69 70 53 54
-136 49 50 53 54
-137 3 4 49 50
-138 3 4 7 8
-139 7 8 119 120
-140 115 116 119 120
-141 67 68 115 116
-142 67 68 71 72
-143 55 56 71 72
-144 55 56 51 52
-145 2 3 83 84
-146 77 78 2 3
-147 77 78 93 94
-148 93 17 94 18
-149 66 67 17 18
-150 66 67 13 14
-151 13 14 29 30
-152 81 82 29 30
-153 1 4 81 82
-154 1 79 80 4
-155 79 80 95 96
-156 95 19 96 20
-157 68 19 20 65
-158 68 15 16 65
-159 15 16 31 32
-160 83 84 31 32
-161 23 24 6 7
-162 6 7 9 10
-163 89 90 9 10
-164 89 90 85 86
-165 70 71 85 86
-166 70 71 73 74
-167 25 26 73 74
-168 22 25 26 21
-169 22 5 8 21
-170 11 12 5 8
-171 11 12 91 92
-172 88 91 92 87
-173 88 69 72 87
-174 69 72 75 76
-175 27 28 75 76
-176 23 24 27 28
-177 11 59 60 10
-178 11 14 15 10
-179 14 15 125 126
-180 121 122 125 126
-181 121 122 74 75
-182 78 79 74 75
-183 78 79 61 62
-184 57 58 61 62
-185 12 57 58 9
-186 12 13 16 9
-187 13 16 127 128
-188 123 124 127 128
-189 123 124 73 76
-190 77 80 73 76
-191 77 80 63 64
-192 59 60 63 64
-193 99 100 18 19
-194 22 23 18 19
-195 22 23 37 38
-196 33 34 37 38
-197 33 34 82 83
-198 82 83 86 87
-199 101 102 86 87
-200 101 102 97 98
-201 17 20 97 98
-202 24 17 20 21
-203 24 39 40 21
-204 35 36 39 40
-205 35 36 81 84
-206 88 81 84 85
-207 88 103 104 85
-208 99 100 103 104
-209 26 27 107 108
-210 26 27 30 31
-211 45 46 30 31
-212 45 46 41 42
-213 90 91 41 42
-214 90 91 94 95
-215 110 94 95 109
-216 110 105 106 109
-217 25 28 105 106
-218 25 28 29 32
-219 47 48 29 32
-220 44 47 48 43
-221 44 89 92 43
-222 89 92 93 96
-223 111 112 93 96
-224 111 112 107 108
-225 34 35 113 116
-226 110 34 111 35
-227 110 111 126 127
-228 126 50 127 51
-229 99 50 51 98
-230 99 46 47 98
-231 46 47 62 63
-232 114 115 62 63
-233 33 36 114 115
-234 33 112 36 109
-235 112 125 128 109
-236 125 49 128 52
-237 100 49 52 97
-238 45 100 48 97
-239 45 48 61 64
-240 113 61 116 64
-241 56 38 39 53
-242 38 39 42 43
-243 122 123 42 43
-244 122 123 118 119
-245 102 103 118 119
-246 102 103 106 107
-247 58 59 106 107
-248 55 58 59 54
-249 55 37 40 54
-250 44 37 40 41
-251 44 121 124 41
-252 121 124 117 120
-253 101 104 117 120
-254 101 104 105 108
-255 57 60 105 108
-256 56 57 60 53
0

**************