C4graphGraph forms for C4 [ 256, 127 ] = SDD({4,4}_[8,4])

[Home] [Table] [Glossary] [Families]

On this page are computer-accessible forms for the graph C4[ 256, 127 ] = SDD({4,4}_[8,4]).

(I) Following is a form readable by MAGMA:

g:=Graph<256|{ {128, 191}, {128, 192}, {128, 255}, {1, 129}, {127, 255}, {126, 254}, {125, 253}, {124, 252}, {123, 251}, {122, 250}, {121, 249}, {120, 248}, {119, 247}, {118, 246}, {117, 245}, {116, 244}, {115, 243}, {113, 241}, {112, 240}, {111, 239}, {24, 152}, {110, 239}, {127, 254}, {125, 252}, {123, 250}, {121, 248}, {119, 246}, {117, 244}, {115, 242}, {3, 129}, {108, 238}, {27, 153}, {21, 151}, {1, 130}, {126, 253}, {122, 249}, {118, 245}, {114, 241}, {113, 242}, {109, 238}, {108, 239}, {2, 129}, {6, 130}, {106, 238}, {104, 236}, {48, 180}, {30, 154}, {18, 150}, {4, 129}, {105, 236}, {104, 237}, {7, 130}, {5, 131}, {107, 237}, {5, 130}, {124, 251}, {116, 243}, {106, 237}, {12, 132}, {98, 234}, {96, 232}, {14, 134}, {10, 131}, {97, 232}, {96, 233}, {13, 132}, {9, 131}, {102, 236}, {99, 233}, {15, 133}, {8, 131}, {98, 233}, {14, 133}, {8, 132}, {103, 235}, {102, 235}, {11, 133}, {100, 234}, {11, 132}, {120, 247}, {101, 234}, {100, 235}, {47, 160}, {24, 136}, {111, 255}, {26, 138}, {79, 223}, {22, 135}, {25, 136}, {78, 223}, {2, 144}, {51, 161}, {50, 160}, {27, 137}, {21, 135}, {3, 145}, {76, 222}, {20, 135}, {109, 254}, {26, 137}, {76, 223}, {77, 222}, {6, 146}, {55, 163}, {30, 138}, {18, 134}, {72, 220}, {74, 222}, {16, 133}, {105, 252}, {31, 138}, {28, 137}, {19, 134}, {72, 221}, {73, 220}, {17, 135}, {107, 253}, {29, 139}, {75, 221}, {17, 134}, {53, 162}, {29, 138}, {74, 221}, {12, 148}, {63, 167}, {64, 216}, {66, 218}, {40, 177}, {97, 248}, {43, 178}, {64, 217}, {65, 216}, {9, 147}, {99, 249}, {15, 149}, {67, 217}, {70, 220}, {61, 166}, {66, 217}, {20, 136}, {103, 251}, {71, 219}, {34, 191}, {57, 164}, {46, 179}, {70, 219}, {23, 137}, {110, 240}, {59, 165}, {68, 218}, {23, 136}, {101, 250}, {68, 219}, {69, 218}, {48, 144}, {49, 145}, {79, 239}, {80, 240}, {28, 189}, {46, 143}, {31, 190}, {45, 143}, {54, 148}, {51, 145}, {82, 240}, {83, 241}, {44, 143}, {50, 145}, {49, 146}, {77, 238}, {42, 142}, {55, 147}, {87, 243}, {25, 188}, {54, 147}, {43, 142}, {40, 141}, {73, 236}, {41, 143}, {52, 146}, {62, 152}, {75, 237}, {41, 142}, {53, 146}, {52, 147}, {85, 242}, {36, 140}, {95, 247}, {38, 142}, {63, 151}, {16, 185}, {37, 140}, {34, 139}, {19, 186}, {62, 151}, {65, 232}, {33, 139}, {60, 150}, {39, 141}, {67, 233}, {32, 139}, {93, 246}, {60, 151}, {38, 141}, {61, 150}, {32, 140}, {58, 150}, {56, 148}, {71, 235}, {22, 187}, {89, 244}, {57, 148}, {56, 149}, {35, 141}, {91, 245}, {59, 149}, {78, 224}, {35, 140}, {58, 149}, {69, 234}, {80, 224}, {112, 192}, {81, 225}, {4, 181}, {7, 182}, {45, 159}, {114, 192}, {83, 225}, {86, 228}, {81, 226}, {82, 225}, {42, 158}, {87, 227}, {13, 184}, {86, 227}, {84, 226}, {94, 232}, {84, 227}, {85, 226}, {36, 156}, {95, 231}, {94, 231}, {33, 155}, {92, 230}, {39, 157}, {92, 231}, {93, 230}, {44, 144}, {90, 230}, {88, 228}, {10, 183}, {89, 228}, {88, 229}, {91, 229}, {47, 144}, {90, 229}, {1, 193}, {127, 191}, {126, 190}, {125, 189}, {124, 188}, {123, 187}, {122, 186}, {121, 185}, {120, 184}, {119, 183}, {118, 182}, {117, 181}, {116, 180}, {115, 179}, {113, 177}, {112, 176}, {111, 175}, {24, 216}, {110, 175}, {127, 190}, {125, 188}, {123, 186}, {121, 184}, {119, 182}, {117, 180}, {115, 178}, {3, 193}, {108, 174}, {27, 217}, {21, 215}, {1, 194}, {126, 189}, {122, 185}, {118, 181}, {114, 177}, {113, 178}, {109, 174}, {108, 175}, {2, 193}, {6, 194}, {106, 174}, {104, 172}, {48, 244}, {30, 218}, {18, 214}, {4, 193}, {105, 172}, {104, 173}, {7, 194}, {5, 195}, {107, 173}, {5, 194}, {124, 187}, {116, 179}, {106, 173}, {12, 196}, {98, 170}, {96, 168}, {14, 198}, {10, 195}, {97, 168}, {96, 169}, {13, 196}, {9, 195}, {102, 172}, {99, 169}, {15, 197}, {8, 195}, {98, 169}, {14, 197}, {8, 196}, {103, 171}, {102, 171}, {11, 197}, {100, 170}, {11, 196}, {120, 183}, {101, 170}, {100, 171}, {47, 224}, {24, 200}, {111, 191}, {26, 202}, {79, 159}, {22, 199}, {25, 200}, {78, 159}, {2, 208}, {51, 225}, {50, 224}, {27, 201}, {21, 199}, {3, 209}, {76, 158}, {20, 199}, {109, 190}, {26, 201}, {76, 159}, {77, 158}, {6, 210}, {55, 227}, {30, 202}, {18, 198}, {72, 156}, {74, 158}, {16, 197}, {105, 188}, {31, 202}, {28, 201}, {19, 198}, {72, 157}, {73, 156}, {17, 199}, {107, 189}, {29, 203}, {75, 157}, {17, 198}, {53, 226}, {29, 202}, {74, 157}, {12, 212}, {63, 231}, {64, 152}, {66, 154}, {40, 241}, {97, 184}, {43, 242}, {64, 153}, {65, 152}, {9, 211}, {99, 185}, {15, 213}, {67, 153}, {70, 156}, {61, 230}, {66, 153}, {20, 200}, {103, 187}, {71, 155}, {34, 255}, {57, 228}, {46, 243}, {70, 155}, {23, 201}, {110, 176}, {59, 229}, {68, 154}, {23, 200}, {101, 186}, {68, 155}, {69, 154}, {48, 208}, {49, 209}, {79, 175}, {80, 176}, {28, 253}, {46, 207}, {31, 254}, {45, 207}, {54, 212}, {51, 209}, {82, 176}, {83, 177}, {44, 207}, {50, 209}, {49, 210}, {77, 174}, {42, 206}, {55, 211}, {87, 179}, {25, 252}, {54, 211}, {43, 206}, {40, 205}, {37, 192}, {73, 172}, {41, 207}, {52, 210}, {62, 216}, {75, 173}, {41, 206}, {53, 210}, {52, 211}, {85, 178}, {36, 204}, {95, 183}, {38, 206}, {63, 215}, {16, 249}, {37, 204}, {34, 203}, {19, 250}, {62, 215}, {65, 168}, {33, 203}, {60, 214}, {39, 205}, {67, 169}, {32, 203}, {93, 182}, {38, 205}, {60, 215}, {61, 214}, {32, 204}, {58, 214}, {56, 212}, {71, 171}, {22, 251}, {89, 180}, {57, 212}, {56, 213}, {35, 205}, {91, 181}, {59, 213}, {78, 160}, {35, 204}, {58, 213}, {69, 170}, {80, 160}, {81, 161}, {4, 245}, {7, 246}, {45, 223}, {83, 161}, {86, 164}, {81, 162}, {82, 161}, {42, 222}, {87, 163}, {13, 248}, {86, 163}, {84, 162}, {94, 168}, {84, 163}, {85, 162}, {36, 220}, {95, 167}, {94, 167}, {33, 219}, {92, 166}, {39, 221}, {92, 167}, {93, 166}, {44, 208}, {90, 166}, {88, 164}, {10, 247}, {89, 164}, {88, 165}, {91, 165}, {47, 208}, {90, 165}, {37, 256}, {112, 256}, {114, 256}, {128, 256} }>;

(II) A more general form is to represent the graph as the orbit of {128, 191} under the group generated by the following permutations:

a: (131, 195)
b: (135, 199)
c: (174, 238)
d: (169, 233)
e: (191, 255)
f: (152, 216)
g: (134, 198)
h: (141, 205)
m: (185, 249)
n1: (158, 222)
a1: (168, 232)
b1: (175, 239)
c1: (151, 215)
d1: (192, 256)
e1: (149, 213)
f1: (178, 242)
g1: (179, 243)
h1: (148, 212)
m1: (166, 230)
n2: (161, 225)
a2: (132, 196)
b2: (143, 207)
c2: (183, 247)
d2: (160, 224)
e2: (147, 211)
f2: (180, 244)
g2: (145, 209)
h2: (182, 246)
m2: (181, 245)
n3: (146, 210)
a3: (144, 208)
b3: (165, 229)
c3: (162, 226)
d3: (167, 231)
e3: (176, 240)
f3: (184, 248)
g3: (159, 223)
h3: (150, 214)
m3: (177, 241)
n4: (133, 197)
a4: (142, 206)
b4: (163, 227)
c4: (164, 228)
d4: (140, 204)
e4: (186, 250)
f4: (157, 221)
g4: (173, 237)
h4: (170, 234)
m4: (156, 220)
n5: (187, 251)
a5: (190, 254)
b5: (153, 217)
c5: (139, 203)
d5: (136, 200)
e5: (171, 235)
f5: (172, 236)
g5: (154, 218)
h5: (189, 253)
m5: (188, 252)
n6: (137, 201)
a6: (138, 202)
b6: (129, 193)
c6: (130, 194)
d6: (1, 2, 44, 41, 38, 35, 32, 29, 26, 23, 20, 17, 14, 11, 8, 5)(3, 47, 45, 42, 39, 36, 33, 30, 27, 24, 21, 18, 15, 12, 9, 6)(4, 48, 46, 43, 40, 37, 34, 31, 28, 25, 22, 19, 16, 13, 10, 7)(49, 50, 78, 76, 74, 72, 70, 68, 66, 64, 62, 60, 58, 56, 54, 52)(51, 80, 79, 77, 75, 73, 71, 69, 67, 65, 63, 61, 59, 57, 55, 53)(81, 82, 110, 108, 106, 104, 102, 100, 98, 96, 94, 92, 90, 88, 86, 84)(83, 112, 111, 109, 107, 105, 103, 101, 99, 97, 95, 93, 91, 89, 87, 85)(113, 114, 128, 127, 126, 125, 124, 123, 122, 121, 120, 119, 118, 117, 116, 115)(129, 144, 143, 142, 141, 140, 139, 138, 137, 136, 135, 134, 133, 132, 131, 130)(145, 160, 159, 158, 157, 156, 155, 154, 153, 152, 151, 150, 149, 148, 147, 146)(161, 176, 175, 174, 173, 172, 171, 170, 169, 168, 167, 166, 165, 164, 163, 162)(177, 192, 191, 190, 189, 188, 187, 186, 185, 184, 183, 182, 181, 180, 179, 178)(193, 208, 207, 206, 205, 204, 203, 202, 201, 200, 199, 198, 197, 196, 195, 194)(209, 224, 223, 222, 221, 220, 219, 218, 217, 216, 215, 214, 213, 212, 211, 210)(225, 240, 239, 238, 237, 236, 235, 234, 233, 232, 231, 230, 229, 228, 227, 226)(241, 256, 255, 254, 253, 252, 251, 250, 249, 248, 247, 246, 245, 244, 243, 242)
e6: (1, 3)(2, 4)(5, 51)(6, 49)(7, 50)(8, 83)(9, 81)(10, 82)(11, 40)(12, 113)(13, 114)(14, 39)(15, 38)(16, 35)(17, 75)(18, 74)(19, 72)(20, 107)(21, 106)(22, 104)(23, 28)(24, 126)(25, 125)(26, 27)(29, 67)(30, 66)(31, 64)(32, 99)(33, 98)(34, 96)(36, 122)(37, 121)(41, 59)(42, 58)(43, 56)(44, 91)(45, 90)(46, 88)(47, 118)(48, 117)(52, 53)(54, 85)(55, 84)(57, 115)(60, 77)(61, 76)(62, 109)(63, 108)(65, 127)(68, 69)(70, 101)(71, 100)(73, 123)(78, 93)(79, 92)(80, 119)(86, 87)(89, 116)(94, 111)(95, 110)(97, 128)(102, 103)(105, 124)(112, 120)(130, 145)(131, 161)(132, 177)(133, 141)(134, 157)(135, 173)(136, 189)(138, 153)(139, 169)(140, 185)(142, 149)(143, 165)(144, 181)(147, 162)(148, 178)(150, 158)(151, 174)(152, 190)(155, 170)(156, 186)(159, 166)(160, 182)(164, 179)(167, 175)(168, 191)(172, 187)(176, 183)(184, 192)(194, 209)(195, 225)(196, 241)(197, 205)(198, 221)(199, 237)(200, 253)(202, 217)(203, 233)(204, 249)(206, 213)(207, 229)(208, 245)(211, 226)(212, 242)(214, 222)(215, 238)(216, 254)(219, 234)(220, 250)(223, 230)(224, 246)(228, 243)(231, 239)(232, 255)(236, 251)(240, 247)(248, 256)
f6: (2, 5)(3, 7)(4, 6)(8, 44)(9, 48)(10, 47)(11, 41)(12, 46)(13, 45)(14, 38)(15, 43)(16, 42)(17, 35)(18, 40)(19, 39)(20, 32)(21, 37)(22, 36)(23, 29)(24, 34)(25, 33)(27, 31)(28, 30)(49, 118)(50, 119)(51, 93)(52, 117)(53, 91)(54, 116)(55, 89)(56, 115)(57, 87)(58, 113)(59, 85)(60, 114)(61, 83)(62, 128)(63, 112)(64, 127)(65, 111)(66, 126)(67, 109)(68, 125)(69, 107)(70, 124)(71, 105)(72, 123)(73, 103)(74, 122)(75, 101)(76, 121)(77, 99)(78, 120)(79, 97)(80, 95)(81, 90)(82, 92)(84, 88)(94, 110)(96, 108)(98, 106)(100, 104)(129, 130)(131, 144)(132, 143)(133, 142)(134, 141)(135, 140)(136, 139)(137, 138)(145, 182)(146, 181)(147, 180)(148, 179)(149, 178)(150, 177)(151, 192)(152, 191)(153, 190)(154, 189)(155, 188)(156, 187)(157, 186)(158, 185)(159, 184)(160, 183)(161, 166)(162, 165)(163, 164)(167, 176)(168, 175)(169, 174)(170, 173)(171, 172)(193, 194)(195, 208)(196, 207)(197, 206)(198, 205)(199, 204)(200, 203)(201, 202)(209, 246)(210, 245)(211, 244)(212, 243)(213, 242)(214, 241)(215, 256)(216, 255)(217, 254)(218, 253)(219, 252)(220, 251)(221, 250)(222, 249)(223, 248)(224, 247)(225, 230)(226, 229)(227, 228)(231, 240)(232, 239)(233, 238)(234, 237)(235, 236)

(III) Last is Groups&Graphs. Copy everything between (not including) the lines of asterisks into a plain text file and save it as "graph.txt". Then launch G&G (Groups&Graphs) and select Read Text from the File menu.

**************

&Graph
C4[ 256, 127 ]
256
-1 193 194 129 130
-2 144 193 129 208
-3 209 145 193 129
-4 245 181 193 129
-5 194 195 130 131
-6 210 146 194 130
-7 246 182 194 130
-8 132 195 196 131
-9 211 147 195 131
-10 247 183 195 131
-11 132 133 196 197
-12 132 212 148 196
-13 132 248 184 196
-14 198 133 134 197
-15 133 213 149 197
-16 133 249 185 197
-17 198 199 134 135
-18 198 134 214 150
-19 198 134 250 186
-20 199 200 135 136
-21 199 135 215 151
-22 187 199 135 251
-23 200 201 136 137
-24 200 136 216 152
-25 188 200 136 252
-26 201 202 137 138
-27 201 137 217 153
-28 253 189 201 137
-29 202 203 138 139
-30 154 202 138 218
-31 254 190 202 138
-32 203 204 139 140
-33 155 203 139 219
-34 255 191 203 139
-35 204 205 140 141
-36 220 156 204 140
-37 256 192 204 140
-38 205 206 141 142
-39 221 157 205 141
-40 177 205 141 241
-41 143 206 207 142
-42 222 158 206 142
-43 242 178 206 142
-44 143 144 207 208
-45 143 223 159 207
-46 143 243 179 207
-47 144 224 160 208
-48 144 244 180 208
-49 209 210 145 146
-50 209 145 224 160
-51 209 145 225 161
-52 210 211 146 147
-53 210 146 226 162
-54 211 212 147 148
-55 211 147 227 163
-56 212 213 148 149
-57 212 148 228 164
-58 213 214 149 150
-59 165 213 149 229
-60 214 215 150 151
-61 166 214 150 230
-62 215 216 151 152
-63 231 167 215 151
-64 216 217 152 153
-65 232 168 216 152
-66 154 217 218 153
-67 233 169 217 153
-68 154 155 218 219
-69 154 234 170 218
-70 220 155 156 219
-71 155 235 171 219
-72 220 221 156 157
-73 220 156 236 172
-74 221 222 157 158
-75 221 157 237 173
-76 222 223 158 159
-77 222 158 238 174
-78 223 224 159 160
-79 223 159 239 175
-80 176 224 160 240
-81 225 226 161 162
-82 176 225 161 240
-83 177 225 161 241
-84 226 227 162 163
-85 242 178 226 162
-86 227 228 163 164
-87 243 179 227 163
-88 165 228 229 164
-89 244 180 228 164
-90 165 166 229 230
-91 165 245 181 229
-92 231 166 167 230
-93 166 246 182 230
-94 231 232 167 168
-95 231 167 247 183
-96 232 233 168 169
-97 232 168 248 184
-98 233 234 169 170
-99 233 169 249 185
-100 234 235 170 171
-101 234 170 250 186
-102 235 236 171 172
-103 187 235 171 251
-104 236 237 172 173
-105 188 236 172 252
-106 237 238 173 174
-107 253 189 237 173
-108 238 239 174 175
-109 254 190 238 174
-110 176 239 240 175
-111 255 191 239 175
-112 176 256 192 240
-113 242 177 178 241
-114 177 256 192 241
-115 242 243 178 179
-116 243 244 179 180
-117 244 245 180 181
-118 245 246 181 182
-119 246 247 182 183
-120 247 248 183 184
-121 248 249 184 185
-122 249 250 185 186
-123 187 250 251 186
-124 187 188 251 252
-125 253 188 189 252
-126 253 254 189 190
-127 254 255 190 191
-128 255 256 191 192
-129 1 2 3 4
-130 1 5 6 7
-131 5 8 9 10
-132 11 12 13 8
-133 11 14 15 16
-134 14 17 18 19
-135 22 17 20 21
-136 23 24 25 20
-137 23 26 27 28
-138 26 29 30 31
-139 33 34 29 32
-140 35 36 37 32
-141 35 38 39 40
-142 38 41 42 43
-143 44 45 46 41
-144 44 2 47 48
-145 3 49 50 51
-146 49 6 52 53
-147 55 52 9 54
-148 12 56 57 54
-149 56 58 15 59
-150 58 60 61 18
-151 60 62 63 21
-152 24 62 64 65
-153 66 67 27 64
-154 66 68 69 30
-155 33 68 70 71
-156 36 70 72 73
-157 39 72 74 75
-158 77 74 42 76
-159 45 78 79 76
-160 78 47 80 50
-161 81 82 83 51
-162 81 84 85 53
-163 55 84 86 87
-164 88 89 57 86
-165 88 90 91 59
-166 90 92 93 61
-167 92 94 95 63
-168 94 96 97 65
-169 99 67 96 98
-170 100 101 69 98
-171 100 102 103 71
-172 102 104 105 73
-173 104 106 107 75
-174 77 106 108 109
-175 110 111 79 108
-176 110 112 80 82
-177 113 114 83 40
-178 113 115 85 43
-179 46 115 116 87
-180 89 48 116 117
-181 91 4 117 118
-182 93 7 118 119
-183 95 119 10 120
-184 121 13 97 120
-185 99 121 122 16
-186 122 101 123 19
-187 22 123 124 103
-188 25 124 125 105
-189 125 126 28 107
-190 126 127 31 109
-191 34 111 127 128
-192 112 37 114 128
-193 1 2 3 4
-194 1 5 6 7
-195 5 8 9 10
-196 11 12 13 8
-197 11 14 15 16
-198 14 17 18 19
-199 22 17 20 21
-200 23 24 25 20
-201 23 26 27 28
-202 26 29 30 31
-203 33 34 29 32
-204 35 36 37 32
-205 35 38 39 40
-206 38 41 42 43
-207 44 45 46 41
-208 44 2 47 48
-209 3 49 50 51
-210 49 6 52 53
-211 55 52 9 54
-212 12 56 57 54
-213 56 58 15 59
-214 58 60 61 18
-215 60 62 63 21
-216 24 62 64 65
-217 66 67 27 64
-218 66 68 69 30
-219 33 68 70 71
-220 36 70 72 73
-221 39 72 74 75
-222 77 74 42 76
-223 45 78 79 76
-224 78 47 80 50
-225 81 82 83 51
-226 81 84 85 53
-227 55 84 86 87
-228 88 89 57 86
-229 88 90 91 59
-230 90 92 93 61
-231 92 94 95 63
-232 94 96 97 65
-233 99 67 96 98
-234 100 101 69 98
-235 100 102 103 71
-236 102 104 105 73
-237 104 106 107 75
-238 77 106 108 109
-239 110 111 79 108
-240 110 112 80 82
-241 113 114 83 40
-242 113 115 85 43
-243 46 115 116 87
-244 89 48 116 117
-245 91 4 117 118
-246 93 7 118 119
-247 95 119 10 120
-248 121 13 97 120
-249 99 121 122 16
-250 122 101 123 19
-251 22 123 124 103
-252 25 124 125 105
-253 125 126 28 107
-254 126 127 31 109
-255 34 111 127 128
-256 112 37 114 128
0

**************