C4graphGraph forms for C4 [ 256, 129 ] = SDD(PS(8,16;3))

[Home] [Table] [Glossary] [Families]

On this page are computer-accessible forms for the graph C4[ 256, 129 ] = SDD(PS(8,16;3)).

(I) Following is a form readable by MAGMA:

g:=Graph<256|{ {128, 184}, {128, 188}, {128, 248}, {128, 252}, {1, 129}, {121, 249}, {113, 241}, {112, 240}, {10, 139}, {115, 242}, {110, 239}, {3, 129}, {123, 249}, {109, 239}, {108, 238}, {14, 140}, {2, 129}, {119, 244}, {114, 241}, {9, 138}, {6, 130}, {127, 251}, {105, 237}, {104, 236}, {4, 129}, {126, 251}, {118, 243}, {107, 238}, {7, 130}, {13, 139}, {124, 250}, {117, 243}, {116, 242}, {5, 130}, {127, 248}, {125, 250}, {112, 247}, {106, 237}, {1, 137}, {119, 255}, {97, 233}, {96, 232}, {11, 131}, {10, 131}, {126, 247}, {118, 255}, {99, 234}, {13, 132}, {8, 130}, {125, 247}, {124, 246}, {116, 254}, {14, 132}, {9, 131}, {15, 132}, {117, 254}, {103, 236}, {98, 233}, {5, 137}, {121, 245}, {120, 244}, {6, 138}, {102, 235}, {123, 246}, {113, 252}, {30, 144}, {115, 253}, {101, 235}, {100, 234}, {12, 131}, {122, 245}, {114, 253}, {22, 134}, {100, 244}, {96, 240}, {20, 133}, {23, 134}, {78, 223}, {2, 144}, {99, 241}, {97, 243}, {29, 143}, {76, 222}, {77, 223}, {21, 134}, {102, 245}, {16, 132}, {108, 248}, {103, 243}, {17, 133}, {72, 220}, {73, 221}, {26, 143}, {29, 136}, {75, 222}, {19, 133}, {30, 136}, {18, 133}, {101, 242}, {31, 136}, {25, 142}, {74, 221}, {21, 141}, {110, 246}, {56, 160}, {22, 142}, {64, 216}, {65, 217}, {67, 218}, {58, 160}, {98, 248}, {28, 135}, {66, 217}, {71, 220}, {27, 135}, {109, 241}, {64, 220}, {17, 140}, {111, 242}, {106, 247}, {105, 244}, {32, 189}, {26, 135}, {70, 219}, {24, 134}, {107, 245}, {104, 246}, {25, 135}, {68, 218}, {69, 219}, {18, 141}, {111, 240}, {28, 188}, {57, 153}, {49, 145}, {48, 144}, {70, 230}, {46, 143}, {51, 146}, {27, 185}, {59, 153}, {45, 143}, {44, 142}, {74, 232}, {82, 240}, {50, 145}, {55, 148}, {40, 140}, {63, 155}, {41, 141}, {69, 225}, {31, 186}, {62, 155}, {54, 147}, {43, 142}, {65, 228}, {66, 231}, {71, 226}, {52, 146}, {60, 154}, {53, 147}, {67, 229}, {42, 141}, {63, 152}, {61, 154}, {48, 151}, {32, 136}, {55, 159}, {33, 137}, {76, 228}, {19, 186}, {62, 151}, {54, 159}, {35, 138}, {52, 158}, {61, 151}, {60, 150}, {73, 227}, {75, 225}, {20, 191}, {53, 158}, {39, 140}, {34, 137}, {78, 229}, {23, 187}, {57, 149}, {56, 148}, {68, 232}, {79, 227}, {38, 139}, {59, 150}, {49, 156}, {16, 190}, {51, 157}, {37, 139}, {36, 138}, {50, 157}, {58, 149}, {72, 231}, {77, 226}, {79, 224}, {36, 148}, {95, 239}, {80, 224}, {81, 225}, {83, 226}, {94, 239}, {33, 147}, {92, 238}, {35, 145}, {38, 149}, {93, 238}, {82, 225}, {87, 228}, {39, 147}, {44, 152}, {88, 236}, {86, 227}, {89, 236}, {11, 189}, {91, 237}, {15, 185}, {80, 230}, {84, 226}, {85, 227}, {8, 191}, {95, 232}, {90, 237}, {37, 146}, {3, 187}, {120, 192}, {46, 150}, {81, 233}, {94, 231}, {4, 190}, {122, 192}, {93, 231}, {92, 230}, {34, 152}, {83, 233}, {7, 188}, {45, 145}, {87, 235}, {88, 228}, {89, 229}, {41, 148}, {91, 230}, {47, 146}, {42, 151}, {86, 235}, {40, 150}, {43, 149}, {84, 234}, {47, 144}, {90, 229}, {85, 234}, {1, 193}, {121, 185}, {113, 177}, {112, 176}, {10, 203}, {115, 178}, {110, 175}, {3, 193}, {123, 185}, {109, 175}, {108, 174}, {14, 204}, {2, 193}, {119, 180}, {114, 177}, {9, 202}, {6, 194}, {127, 187}, {105, 173}, {104, 172}, {4, 193}, {126, 187}, {118, 179}, {107, 174}, {7, 194}, {13, 203}, {124, 186}, {117, 179}, {116, 178}, {5, 194}, {127, 184}, {125, 186}, {112, 183}, {106, 173}, {1, 201}, {119, 191}, {97, 169}, {96, 168}, {11, 195}, {10, 195}, {126, 183}, {118, 191}, {99, 170}, {13, 196}, {8, 194}, {125, 183}, {124, 182}, {116, 190}, {14, 196}, {9, 195}, {15, 196}, {117, 190}, {103, 172}, {98, 169}, {5, 201}, {121, 181}, {120, 180}, {12, 192}, {6, 202}, {102, 171}, {123, 182}, {113, 188}, {30, 208}, {115, 189}, {101, 171}, {100, 170}, {12, 195}, {122, 181}, {114, 189}, {22, 198}, {100, 180}, {96, 176}, {20, 197}, {23, 198}, {78, 159}, {2, 208}, {99, 177}, {97, 179}, {29, 207}, {76, 158}, {77, 159}, {21, 198}, {102, 181}, {16, 196}, {108, 184}, {103, 179}, {17, 197}, {72, 156}, {73, 157}, {26, 207}, {29, 200}, {75, 158}, {19, 197}, {30, 200}, {18, 197}, {101, 178}, {31, 200}, {25, 206}, {74, 157}, {21, 205}, {110, 182}, {56, 224}, {24, 192}, {22, 206}, {64, 152}, {65, 153}, {67, 154}, {58, 224}, {98, 184}, {28, 199}, {66, 153}, {71, 156}, {27, 199}, {109, 177}, {64, 156}, {17, 204}, {111, 178}, {106, 183}, {105, 180}, {32, 253}, {26, 199}, {70, 155}, {24, 198}, {107, 181}, {104, 182}, {25, 199}, {68, 154}, {69, 155}, {18, 205}, {111, 176}, {28, 252}, {57, 217}, {49, 209}, {48, 208}, {70, 166}, {46, 207}, {51, 210}, {27, 249}, {59, 217}, {45, 207}, {44, 206}, {74, 168}, {82, 176}, {50, 209}, {55, 212}, {40, 204}, {41, 205}, {63, 219}, {69, 161}, {31, 250}, {62, 219}, {54, 211}, {43, 206}, {65, 164}, {66, 167}, {71, 162}, {52, 210}, {60, 218}, {53, 211}, {67, 165}, {42, 205}, {61, 218}, {48, 215}, {63, 216}, {32, 200}, {55, 223}, {33, 201}, {76, 164}, {19, 250}, {62, 215}, {54, 223}, {35, 202}, {52, 222}, {61, 215}, {60, 214}, {73, 163}, {75, 161}, {20, 255}, {53, 222}, {39, 204}, {34, 201}, {78, 165}, {23, 251}, {57, 213}, {56, 212}, {68, 168}, {79, 163}, {38, 203}, {59, 214}, {49, 220}, {16, 254}, {51, 221}, {37, 203}, {36, 202}, {50, 221}, {58, 213}, {72, 167}, {77, 162}, {79, 160}, {36, 212}, {95, 175}, {80, 160}, {81, 161}, {83, 162}, {94, 175}, {33, 211}, {92, 174}, {35, 209}, {38, 213}, {93, 174}, {82, 161}, {87, 164}, {39, 211}, {44, 216}, {88, 172}, {86, 163}, {89, 172}, {11, 253}, {91, 173}, {15, 249}, {80, 166}, {84, 162}, {85, 163}, {8, 255}, {95, 168}, {90, 173}, {37, 210}, {3, 251}, {46, 214}, {81, 169}, {94, 167}, {4, 254}, {93, 167}, {92, 166}, {34, 216}, {83, 169}, {7, 252}, {45, 209}, {87, 171}, {88, 164}, {89, 165}, {41, 212}, {91, 166}, {47, 210}, {42, 215}, {86, 171}, {40, 214}, {43, 213}, {84, 170}, {47, 208}, {90, 165}, {85, 170}, {12, 256}, {24, 256}, {120, 256}, {122, 256} }>;

(II) A more general form is to represent the graph as the orbit of {128, 184} under the group generated by the following permutations:

a: (187, 251)
b: (143, 207)
c: (167, 231)
d: (171, 235)
e: (177, 241)
f: (157, 221)
g: (149, 213)
h: (185, 249)
m: (133, 197)
n1: (141, 205)
a1: (161, 225)
b1: (169, 233)
c1: (162, 226)
d1: (176, 240)
e1: (148, 212)
f1: (186, 250)
g1: (145, 209)
h1: (189, 253)
m1: (179, 243)
n2: (155, 219)
a2: (136, 200)
b2: (138, 202)
c2: (178, 242)
d2: (156, 220)
e2: (183, 247)
f2: (159, 223)
g2: (130, 194)
h2: (144, 208)
m2: (152, 216)
n3: (190, 254)
a3: (147, 211)
b3: (191, 255)
c3: (151, 215)
d3: (158, 222)
e3: (184, 248)
f3: (140, 204)
g3: (134, 198)
h3: (142, 206)
m3: (132, 196)
n4: (188, 252)
a4: (146, 210)
b4: (139, 203)
c4: (135, 199)
d4: (131, 195)
e4: (174, 238)
f4: (164, 228)
g4: (192, 256)
h4: (150, 214)
m4: (172, 236)
n5: (166, 230)
a5: (154, 218)
b5: (180, 244)
c5: (173, 237)
d5: (165, 229)
e5: (153, 217)
f5: (181, 245)
g5: (160, 224)
h5: (182, 246)
m5: (170, 234)
n6: (168, 232)
a6: (175, 239)
b6: (137, 201)
c6: (129, 193)
d6: (2, 5)(3, 33)(4, 34)(6, 30)(7, 47)(8, 48)(9, 29)(10, 26)(11, 45)(12, 46)(13, 25)(14, 22)(15, 43)(16, 44)(17, 21)(19, 41)(20, 42)(23, 39)(24, 40)(27, 38)(28, 37)(31, 36)(32, 35)(49, 115)(50, 114)(51, 113)(52, 128)(53, 127)(54, 126)(55, 125)(56, 124)(57, 121)(58, 123)(59, 122)(60, 120)(61, 119)(62, 118)(63, 117)(64, 116)(65, 107)(66, 102)(67, 105)(68, 100)(69, 97)(70, 103)(71, 111)(72, 101)(73, 109)(74, 99)(75, 98)(76, 108)(77, 112)(78, 106)(79, 110)(80, 104)(82, 83)(84, 96)(85, 95)(86, 94)(87, 93)(88, 92)(89, 91)(129, 137)(130, 144)(131, 143)(132, 142)(133, 141)(134, 140)(135, 139)(136, 138)(145, 189)(146, 188)(147, 187)(148, 186)(149, 185)(150, 192)(151, 191)(152, 190)(153, 181)(154, 180)(155, 179)(156, 178)(157, 177)(158, 184)(159, 183)(160, 182)(161, 169)(162, 176)(163, 175)(164, 174)(165, 173)(166, 172)(167, 171)(168, 170)(193, 201)(194, 208)(195, 207)(196, 206)(197, 205)(198, 204)(199, 203)(200, 202)(209, 253)(210, 252)(211, 251)(212, 250)(213, 249)(214, 256)(215, 255)(216, 254)(217, 245)(218, 244)(219, 243)(220, 242)(221, 241)(222, 248)(223, 247)(224, 246)(225, 233)(226, 240)(227, 239)(228, 238)(229, 237)(230, 236)(231, 235)(232, 234)
e6: (1, 2)(3, 4)(5, 30)(6, 29)(7, 32)(8, 31)(9, 26)(10, 25)(11, 28)(12, 27)(13, 22)(14, 21)(15, 24)(16, 23)(17, 18)(19, 20)(33, 48)(34, 47)(35, 45)(36, 46)(37, 44)(38, 43)(39, 42)(40, 41)(49, 50)(51, 64)(52, 63)(53, 62)(54, 61)(55, 60)(56, 59)(57, 58)(65, 80)(66, 79)(67, 78)(68, 77)(69, 75)(70, 76)(71, 74)(72, 73)(81, 82)(83, 96)(84, 95)(85, 94)(86, 93)(87, 92)(88, 91)(89, 90)(97, 112)(98, 111)(99, 109)(100, 110)(101, 108)(102, 107)(103, 106)(104, 105)(113, 114)(115, 128)(116, 127)(117, 126)(118, 125)(119, 124)(120, 123)(121, 122)(130, 136)(131, 135)(132, 134)(137, 144)(138, 143)(139, 142)(140, 141)(146, 152)(147, 151)(148, 150)(153, 160)(154, 159)(155, 158)(156, 157)(162, 168)(163, 167)(164, 166)(169, 176)(170, 175)(171, 174)(172, 173)(178, 184)(179, 183)(180, 182)(185, 192)(186, 191)(187, 190)(188, 189)(194, 200)(195, 199)(196, 198)(201, 208)(202, 207)(203, 206)(204, 205)(210, 216)(211, 215)(212, 214)(217, 224)(218, 223)(219, 222)(220, 221)(226, 232)(227, 231)(228, 230)(233, 240)(234, 239)(235, 238)(236, 237)(242, 248)(243, 247)(244, 246)(249, 256)(250, 255)(251, 254)(252, 253)
f6: (1, 3, 126, 106, 90, 78, 54, 33)(2, 23, 125, 105, 89, 77, 53, 34)(4, 127, 112, 91, 67, 55, 39, 5)(6, 16, 128, 111, 92, 68, 56, 40)(7, 116, 108, 96, 80, 60, 36, 14)(8, 117, 98, 82, 70, 61, 41, 17)(9, 15, 113, 101, 93, 74, 58, 46)(10, 27, 114, 102, 94, 73, 57, 45)(11, 121, 109, 86, 66, 50, 38, 26)(12, 123, 99, 87, 72, 51, 43, 29)(13, 28, 115, 107, 95, 79, 59, 35)(18, 20, 118, 97, 81, 69, 62, 42)(19, 119, 103, 83, 75, 63, 48, 21)(22, 31, 120, 104, 84, 76, 64, 47)(24, 124, 100, 88, 71, 52, 44, 30)(25, 32, 122, 110, 85, 65, 49, 37)(129, 187, 183, 173, 165, 159, 147, 137)(130, 190, 184, 176, 166, 154, 148, 140)(131, 185, 177, 171, 167, 157, 149, 143)(132, 188, 178, 174, 168, 160, 150, 138)(133, 191, 179, 169, 161, 155, 151, 141)(134, 186, 180, 172, 162, 158, 152, 144)(135, 189, 181, 175, 163, 153, 145, 139)(136, 192, 182, 170, 164, 156, 146, 142)(193, 251, 247, 237, 229, 223, 211, 201)(194, 254, 248, 240, 230, 218, 212, 204)(195, 249, 241, 235, 231, 221, 213, 207)(196, 252, 242, 238, 232, 224, 214, 202)(197, 255, 243, 233, 225, 219, 215, 205)(198, 250, 244, 236, 226, 222, 216, 208)(199, 253, 245, 239, 227, 217, 209, 203)(200, 256, 246, 234, 228, 220, 210, 206)

(III) Last is Groups&Graphs. Copy everything between (not including) the lines of asterisks into a plain text file and save it as "graph.txt". Then launch G&G (Groups&Graphs) and select Read Text from the File menu.

**************

&Graph
C4[ 256, 129 ]
256
-1 201 137 193 129
-2 144 193 129 208
-3 187 193 129 251
-4 254 190 193 129
-5 201 137 194 130
-6 202 138 194 130
-7 188 194 130 252
-8 255 191 194 130
-9 202 138 195 131
-10 203 139 195 131
-11 253 189 195 131
-12 256 192 195 131
-13 132 203 139 196
-14 132 204 140 196
-15 132 249 185 196
-16 132 254 190 196
-17 133 204 140 197
-18 133 205 141 197
-19 133 250 186 197
-20 133 255 191 197
-21 198 134 205 141
-22 198 134 206 142
-23 187 198 134 251
-24 198 134 256 192
-25 199 135 206 142
-26 143 199 135 207
-27 199 135 249 185
-28 188 199 135 252
-29 143 200 136 207
-30 144 200 136 208
-31 200 136 250 186
-32 253 189 200 136
-33 211 201 147 137
-34 201 137 216 152
-35 209 145 202 138
-36 212 202 148 138
-37 210 146 203 139
-38 213 203 149 139
-39 211 147 204 140
-40 214 204 150 140
-41 212 148 205 141
-42 215 205 151 141
-43 213 149 206 142
-44 216 206 152 142
-45 143 209 145 207
-46 143 214 150 207
-47 144 210 146 208
-48 144 215 151 208
-49 209 220 145 156
-50 209 221 145 157
-51 210 221 146 157
-52 210 222 146 158
-53 211 222 147 158
-54 211 223 147 159
-55 212 223 148 159
-56 212 224 148 160
-57 213 149 217 153
-58 213 224 149 160
-59 214 150 217 153
-60 154 214 150 218
-61 154 215 151 218
-62 155 215 151 219
-63 155 216 152 219
-64 220 156 216 152
-65 217 228 153 164
-66 231 167 217 153
-67 154 165 218 229
-68 154 232 168 218
-69 155 225 161 219
-70 155 166 219 230
-71 220 156 226 162
-72 220 231 156 167
-73 221 157 227 163
-74 221 232 157 168
-75 222 158 225 161
-76 222 158 228 164
-77 223 159 226 162
-78 165 223 159 229
-79 224 160 227 163
-80 166 224 160 230
-81 233 169 225 161
-82 176 225 161 240
-83 233 169 226 162
-84 234 170 226 162
-85 234 170 227 163
-86 235 171 227 163
-87 235 171 228 164
-88 236 172 228 164
-89 165 236 172 229
-90 165 237 173 229
-91 166 237 173 230
-92 166 238 174 230
-93 231 167 238 174
-94 231 167 239 175
-95 232 168 239 175
-96 176 232 168 240
-97 243 233 179 169
-98 233 169 248 184
-99 177 234 170 241
-100 244 234 180 170
-101 242 178 235 171
-102 245 235 181 171
-103 243 179 236 172
-104 246 236 182 172
-105 244 180 237 173
-106 247 237 183 173
-107 245 181 238 174
-108 248 238 184 174
-109 177 239 175 241
-110 246 182 239 175
-111 176 242 178 240
-112 176 247 183 240
-113 177 188 241 252
-114 253 177 189 241
-115 242 253 178 189
-116 242 254 178 190
-117 243 254 179 190
-118 243 255 179 191
-119 244 255 180 191
-120 244 256 180 192
-121 245 181 249 185
-122 245 256 181 192
-123 246 182 249 185
-124 246 182 250 186
-125 247 183 250 186
-126 187 247 183 251
-127 187 248 184 251
-128 188 248 184 252
-129 1 2 3 4
-130 5 6 7 8
-131 11 12 9 10
-132 13 14 15 16
-133 17 18 19 20
-134 22 23 24 21
-135 25 26 27 28
-136 29 30 31 32
-137 33 1 34 5
-138 35 36 6 9
-139 13 37 38 10
-140 14 17 39 40
-141 18 41 42 21
-142 22 44 25 43
-143 45 46 26 29
-144 2 47 48 30
-145 45 35 49 50
-146 47 37 51 52
-147 33 39 53 54
-148 55 56 36 41
-149 57 58 38 43
-150 46 59 60 40
-151 48 61 62 42
-152 44 34 63 64
-153 66 57 59 65
-154 67 68 60 61
-155 69 70 62 63
-156 49 71 72 64
-157 50 51 73 74
-158 52 53 75 76
-159 55 77 78 54
-160 56 79 58 80
-161 69 81 82 75
-162 77 71 83 84
-163 79 73 85 86
-164 88 65 76 87
-165 67 78 89 90
-166 80 91 70 92
-167 66 93 72 94
-168 68 95 74 96
-169 81 83 97 98
-170 99 100 84 85
-171 101 102 86 87
-172 88 89 103 104
-173 90 91 105 106
-174 92 93 107 108
-175 110 94 95 109
-176 111 112 82 96
-177 99 113 114 109
-178 111 101 115 116
-179 103 117 118 97
-180 100 105 119 120
-181 121 122 102 107
-182 110 123 124 104
-183 112 125 126 106
-184 127 128 108 98
-185 121 123 15 27
-186 124 125 19 31
-187 23 3 126 127
-188 113 28 7 128
-189 11 114 115 32
-190 4 16 116 117
-191 8 118 20 119
-192 12 122 24 120
-193 1 2 3 4
-194 5 6 7 8
-195 11 12 9 10
-196 13 14 15 16
-197 17 18 19 20
-198 22 23 24 21
-199 25 26 27 28
-200 29 30 31 32
-201 33 1 34 5
-202 35 36 6 9
-203 13 37 38 10
-204 14 17 39 40
-205 18 41 42 21
-206 22 44 25 43
-207 45 46 26 29
-208 2 47 48 30
-209 45 35 49 50
-210 47 37 51 52
-211 33 39 53 54
-212 55 56 36 41
-213 57 58 38 43
-214 46 59 60 40
-215 48 61 62 42
-216 44 34 63 64
-217 66 57 59 65
-218 67 68 60 61
-219 69 70 62 63
-220 49 71 72 64
-221 50 51 73 74
-222 52 53 75 76
-223 55 77 78 54
-224 56 79 58 80
-225 69 81 82 75
-226 77 71 83 84
-227 79 73 85 86
-228 88 65 76 87
-229 67 78 89 90
-230 80 91 70 92
-231 66 93 72 94
-232 68 95 74 96
-233 81 83 97 98
-234 99 100 84 85
-235 101 102 86 87
-236 88 89 103 104
-237 90 91 105 106
-238 92 93 107 108
-239 110 94 95 109
-240 111 112 82 96
-241 99 113 114 109
-242 111 101 115 116
-243 103 117 118 97
-244 100 105 119 120
-245 121 122 102 107
-246 110 123 124 104
-247 112 125 126 106
-248 127 128 108 98
-249 121 123 15 27
-250 124 125 19 31
-251 23 3 126 127
-252 113 28 7 128
-253 11 114 115 32
-254 4 16 116 117
-255 8 118 20 119
-256 12 122 24 120
0

**************