[Home] [Table] [Glossary]
[Families]
On this page are computer-accessible forms for the graph C4[ 256, 130 ] =
SDD(MPS(8,16;3)).
(I) Following is a form readable by MAGMA:
g:=Graph<256|{ {128, 184}, {128, 188}, {128, 248}, {128, 252}, {1, 129}, {121,
249}, {113, 241}, {112, 240}, {10, 139}, {115, 242}, {110, 239}, {3, 129}, {123,
249}, {109, 239}, {108, 238}, {14, 140}, {2, 129}, {119, 244}, {114, 241}, {9,
138}, {6, 130}, {127, 251}, {105, 237}, {104, 236}, {4, 129}, {126, 251}, {118,
243}, {107, 238}, {7, 130}, {13, 139}, {124, 250}, {117, 243}, {116, 242}, {5,
130}, {127, 248}, {125, 250}, {112, 247}, {106, 237}, {1, 137}, {119, 255}, {97,
233}, {96, 232}, {11, 131}, {10, 131}, {126, 247}, {118, 255}, {99, 234}, {13,
132}, {8, 130}, {125, 247}, {124, 246}, {116, 254}, {14, 132}, {9, 131}, {15,
132}, {117, 254}, {103, 236}, {98, 233}, {5, 137}, {121, 245}, {120, 244}, {6,
138}, {102, 235}, {123, 246}, {113, 252}, {30, 144}, {115, 253}, {101, 235},
{100, 234}, {12, 131}, {122, 245}, {114, 253}, {22, 134}, {100, 244}, {96, 240},
{20, 133}, {23, 134}, {78, 223}, {2, 144}, {99, 241}, {97, 243}, {29, 143}, {76,
222}, {77, 223}, {21, 134}, {102, 245}, {16, 132}, {108, 248}, {103, 243}, {17,
133}, {72, 220}, {73, 221}, {26, 143}, {29, 136}, {75, 222}, {19, 133}, {30,
136}, {18, 133}, {101, 242}, {31, 136}, {25, 142}, {74, 221}, {21, 141}, {110,
246}, {56, 160}, {22, 142}, {64, 216}, {65, 217}, {67, 218}, {58, 160}, {98,
248}, {28, 135}, {66, 217}, {71, 220}, {27, 135}, {109, 241}, {64, 220}, {17,
140}, {111, 242}, {106, 247}, {105, 244}, {26, 135}, {70, 219}, {24, 134}, {107,
245}, {104, 246}, {32, 190}, {25, 135}, {68, 218}, {69, 219}, {18, 141}, {111,
240}, {48, 144}, {57, 153}, {49, 145}, {70, 230}, {46, 143}, {51, 146}, {44,
142}, {59, 153}, {45, 143}, {74, 232}, {82, 240}, {50, 145}, {55, 148}, {40,
140}, {63, 155}, {41, 141}, {69, 225}, {43, 142}, {62, 155}, {54, 147}, {65,
228}, {66, 231}, {71, 226}, {27, 189}, {60, 154}, {53, 147}, {52, 146}, {31,
185}, {67, 229}, {24, 191}, {63, 152}, {61, 154}, {48, 151}, {42, 141}, {19,
187}, {55, 159}, {33, 137}, {32, 136}, {76, 228}, {35, 138}, {62, 151}, {54,
159}, {20, 190}, {61, 151}, {60, 150}, {52, 158}, {73, 227}, {75, 225}, {23,
188}, {53, 158}, {39, 140}, {34, 137}, {78, 229}, {56, 148}, {57, 149}, {68,
232}, {79, 227}, {16, 189}, {59, 150}, {49, 156}, {38, 139}, {36, 138}, {51,
157}, {37, 139}, {50, 157}, {58, 149}, {72, 231}, {77, 226}, {79, 224}, {12,
188}, {95, 239}, {36, 148}, {80, 224}, {81, 225}, {83, 226}, {94, 239}, {11,
185}, {92, 238}, {35, 145}, {33, 147}, {38, 149}, {93, 238}, {82, 225}, {87,
228}, {39, 147}, {44, 152}, {88, 236}, {15, 186}, {86, 227}, {89, 236}, {80,
230}, {91, 237}, {84, 226}, {85, 227}, {37, 146}, {95, 232}, {90, 237}, {46,
150}, {120, 192}, {81, 233}, {3, 186}, {94, 231}, {34, 152}, {122, 192}, {93,
231}, {92, 230}, {83, 233}, {4, 191}, {7, 187}, {45, 145}, {87, 235}, {88, 228},
{89, 229}, {41, 148}, {91, 230}, {47, 146}, {42, 151}, {86, 235}, {40, 150},
{43, 149}, {84, 234}, {47, 144}, {90, 229}, {85, 234}, {1, 193}, {121, 185},
{113, 177}, {112, 176}, {10, 203}, {115, 178}, {110, 175}, {3, 193}, {123, 185},
{109, 175}, {108, 174}, {14, 204}, {2, 193}, {119, 180}, {114, 177}, {9, 202},
{6, 194}, {127, 187}, {105, 173}, {104, 172}, {4, 193}, {126, 187}, {118, 179},
{107, 174}, {7, 194}, {13, 203}, {124, 186}, {117, 179}, {116, 178}, {5, 194},
{127, 184}, {125, 186}, {112, 183}, {106, 173}, {1, 201}, {119, 191}, {97, 169},
{96, 168}, {11, 195}, {8, 192}, {10, 195}, {126, 183}, {118, 191}, {99, 170},
{13, 196}, {8, 194}, {125, 183}, {124, 182}, {116, 190}, {14, 196}, {9, 195},
{15, 196}, {117, 190}, {103, 172}, {98, 169}, {5, 201}, {121, 181}, {120, 180},
{6, 202}, {102, 171}, {123, 182}, {113, 188}, {30, 208}, {115, 189}, {101, 171},
{100, 170}, {12, 195}, {122, 181}, {114, 189}, {22, 198}, {100, 180}, {96, 176},
{20, 197}, {23, 198}, {78, 159}, {2, 208}, {99, 177}, {97, 179}, {29, 207}, {76,
158}, {77, 159}, {21, 198}, {102, 181}, {16, 196}, {108, 184}, {103, 179}, {17,
197}, {72, 156}, {73, 157}, {26, 207}, {29, 200}, {75, 158}, {19, 197}, {30,
200}, {18, 197}, {101, 178}, {31, 200}, {25, 206}, {74, 157}, {21, 205}, {110,
182}, {56, 224}, {22, 206}, {64, 152}, {65, 153}, {67, 154}, {58, 224}, {98,
184}, {28, 199}, {66, 153}, {71, 156}, {27, 199}, {109, 177}, {28, 192}, {64,
156}, {17, 204}, {111, 178}, {106, 183}, {105, 180}, {26, 199}, {70, 155}, {24,
198}, {107, 181}, {104, 182}, {32, 254}, {25, 199}, {68, 154}, {69, 155}, {18,
205}, {111, 176}, {48, 208}, {57, 217}, {49, 209}, {70, 166}, {46, 207}, {51,
210}, {44, 206}, {59, 217}, {45, 207}, {74, 168}, {82, 176}, {50, 209}, {55,
212}, {40, 204}, {63, 219}, {41, 205}, {69, 161}, {43, 206}, {62, 219}, {54,
211}, {65, 164}, {66, 167}, {71, 162}, {27, 253}, {60, 218}, {53, 211}, {52,
210}, {31, 249}, {67, 165}, {24, 255}, {63, 216}, {61, 218}, {48, 215}, {42,
205}, {19, 251}, {55, 223}, {33, 201}, {32, 200}, {76, 164}, {35, 202}, {62,
215}, {54, 223}, {20, 254}, {61, 215}, {60, 214}, {52, 222}, {73, 163}, {75,
161}, {23, 252}, {53, 222}, {39, 204}, {34, 201}, {78, 165}, {56, 212}, {57,
213}, {68, 168}, {79, 163}, {16, 253}, {59, 214}, {49, 220}, {38, 203}, {36,
202}, {51, 221}, {37, 203}, {50, 221}, {58, 213}, {72, 167}, {77, 162}, {79,
160}, {12, 252}, {95, 175}, {36, 212}, {80, 160}, {81, 161}, {83, 162}, {94,
175}, {11, 249}, {92, 174}, {35, 209}, {33, 211}, {38, 213}, {93, 174}, {82,
161}, {87, 164}, {39, 211}, {44, 216}, {88, 172}, {15, 250}, {86, 163}, {89,
172}, {80, 166}, {91, 173}, {84, 162}, {85, 163}, {37, 210}, {95, 168}, {90,
173}, {46, 214}, {81, 169}, {3, 250}, {94, 167}, {34, 216}, {93, 167}, {92,
166}, {83, 169}, {4, 255}, {7, 251}, {45, 209}, {87, 171}, {88, 164}, {89, 165},
{41, 212}, {91, 166}, {47, 210}, {42, 215}, {86, 171}, {40, 214}, {43, 213},
{84, 170}, {47, 208}, {85, 170}, {90, 165}, {8, 256}, {28, 256}, {120, 256},
{122, 256} }>;
(II) A more general form is to represent the graph as the orbit of {128, 184}
under the group generated by the following permutations:
a: (191, 255) (III) Last is Groups&Graphs. Copy everything between (not including)
the lines of asterisks into a plain text file and save it as "graph.txt". Then
launch G&G (Groups&Graphs) and select Read Text from the File menu.
**************
&Graph **************
b: (181, 245)
c: (157, 221)
d: (170, 234)
e: (143, 207)
f: (169, 233)
g: (131, 195)
h: (165, 229)
m: (172, 236)
n1: (185, 249)
a1: (162, 226)
b1: (145, 209)
c1: (173, 237)
d1: (139, 203)
e1: (135, 199)
f1: (161, 225)
g1: (133, 197)
h1: (141, 205)
m1: (134, 198)
n2: (151, 215)
a2: (182, 246)
b2: (156, 220)
c2: (179, 243)
d2: (138, 202)
e2: (159, 223)
f2: (136, 200)
g2: (152, 216)
h2: (186, 250)
m2: (147, 211)
n3: (130, 194)
a3: (144, 208)
b3: (187, 251)
c3: (140, 204)
d3: (183, 247)
e3: (132, 196)
f3: (155, 219)
g3: (142, 206)
h3: (192, 256)
m3: (180, 244)
n4: (146, 210)
a4: (158, 222)
b4: (148, 212)
c4: (190, 254)
d4: (164, 228)
e4: (189, 253)
f4: (176, 240)
g4: (166, 230)
h4: (149, 213)
m4: (188, 252)
n5: (154, 218)
a5: (184, 248)
b5: (150, 214)
c5: (175, 239)
d5: (167, 231)
e5: (178, 242)
f5: (160, 224)
g5: (163, 227)
h5: (171, 235)
m5: (168, 232)
n6: (177, 241)
a6: (174, 238)
b6: (137, 201)
c6: (129, 193)
d6: (1, 2)(3, 4)(5, 30)(6, 29)(7, 32)(8, 31)(9, 26)(10, 25)(11, 28)(12, 27)(13,
22)(14, 21)(15, 24)(16, 23)(17, 18)(19, 20)(33, 48)(34, 47)(35, 45)(36, 46)(37,
44)(38, 43)(39, 42)(40, 41)(49, 50)(51, 64)(52, 63)(53, 62)(54, 61)(55, 60)(56,
59)(57, 58)(65, 80)(66, 79)(67, 78)(68, 77)(69, 75)(70, 76)(71, 74)(72, 73)(81,
82)(83, 96)(84, 95)(85, 94)(86, 93)(87, 92)(88, 91)(89, 90)(97, 112)(98,
111)(99, 109)(100, 110)(101, 108)(102, 107)(103, 106)(104, 105)(113, 114)(115,
128)(116, 127)(117, 126)(118, 125)(119, 124)(120, 123)(121, 122)(130, 136)(131,
135)(132, 134)(137, 144)(138, 143)(139, 142)(140, 141)(146, 152)(147, 151)(148,
150)(153, 160)(154, 159)(155, 158)(156, 157)(162, 168)(163, 167)(164, 166)(169,
176)(170, 175)(171, 174)(172, 173)(178, 184)(179, 183)(180, 182)(185, 192)(186,
191)(187, 190)(188, 189)(194, 200)(195, 199)(196, 198)(201, 208)(202, 207)(203,
206)(204, 205)(210, 216)(211, 215)(212, 214)(217, 224)(218, 223)(219, 222)(220,
221)(226, 232)(227, 231)(228, 230)(233, 240)(234, 239)(235, 238)(236, 237)(242,
248)(243, 247)(244, 246)(249, 256)(250, 255)(251, 254)(252, 253)
e6: (2, 4)(5, 33)(6, 54)(7, 39)(8, 53)(9, 78)(10, 90)(11, 89)(12, 67)(13,
106)(14, 126)(15, 125)(16, 112)(17, 19)(21, 42)(22, 62)(23, 61)(24, 48)(25,
69)(26, 81)(27, 82)(28, 75)(29, 97)(30, 118)(31, 103)(32, 117)(35, 77)(36,
55)(37, 105)(38, 91)(40, 127)(43, 70)(44, 63)(45, 83)(46, 98)(47, 119)(49,
71)(50, 84)(51, 100)(52, 120)(57, 92)(58, 80)(59, 108)(60, 128)(65, 107)(66,
93)(68, 113)(73, 85)(74, 99)(76, 122)(87, 102)(88, 121)(95, 109)(96, 114)(104,
123)(111, 115)(130, 147)(131, 165)(132, 183)(134, 151)(135, 161)(136, 179)(138,
159)(139, 173)(140, 187)(142, 155)(143, 169)(144, 191)(145, 162)(146, 180)(149,
166)(150, 184)(153, 174)(154, 188)(157, 170)(158, 192)(164, 181)(168, 177)(172,
185)(176, 189)(194, 211)(195, 229)(196, 247)(198, 215)(199, 225)(200, 243)(202,
223)(203, 237)(204, 251)(206, 219)(207, 233)(208, 255)(209, 226)(210, 244)(213,
230)(214, 248)(217, 238)(218, 252)(221, 234)(222, 256)(228, 245)(232, 241)(236,
249)(240, 253)
f6: (2, 33)(3, 34)(4, 5)(6, 118)(7, 24)(8, 119)(9, 97)(10, 81)(11, 83)(12,
98)(13, 69)(14, 62)(15, 63)(16, 70)(17, 42)(19, 21)(20, 41)(22, 126)(23,
127)(25, 106)(26, 90)(27, 91)(28, 105)(29, 78)(30, 54)(31, 77)(32, 55)(35,
103)(36, 117)(37, 75)(38, 82)(39, 48)(40, 61)(43, 112)(44, 125)(45, 89)(46,
67)(47, 53)(49, 104)(50, 88)(51, 76)(56, 116)(57, 96)(58, 111)(59, 68)(64,
124)(65, 74)(66, 95)(71, 123)(72, 110)(73, 87)(79, 101)(80, 115)(84, 121)(85,
102)(92, 114)(93, 109)(99, 107)(100, 122)(108, 113)(129, 137)(130, 191)(131,
169)(132, 155)(133, 141)(134, 187)(135, 173)(136, 159)(138, 179)(139, 161)(140,
151)(142, 183)(143, 165)(144, 147)(145, 172)(146, 158)(148, 190)(149, 176)(150,
154)(152, 186)(153, 168)(156, 182)(157, 164)(160, 178)(162, 185)(163, 171)(166,
189)(167, 175)(170, 181)(174, 177)(180, 192)(184, 188)(193, 201)(194, 255)(195,
233)(196, 219)(197, 205)(198, 251)(199, 237)(200, 223)(202, 243)(203, 225)(204,
215)(206, 247)(207, 229)(208, 211)(209, 236)(210, 222)(212, 254)(213, 240)(214,
218)(216, 250)(217, 232)(220, 246)(221, 228)(224, 242)(226, 249)(227, 235)(230,
253)(231, 239)(234, 245)(238, 241)(244, 256)(248, 252)
C4[ 256, 130 ]
256
-1 201 137 193 129
-2 144 193 129 208
-3 193 129 250 186
-4 255 191 193 129
-5 201 137 194 130
-6 202 138 194 130
-7 187 194 130 251
-8 256 192 194 130
-9 202 138 195 131
-10 203 139 195 131
-11 249 195 185 131
-12 188 195 131 252
-13 132 203 139 196
-14 132 204 140 196
-15 132 250 196 186
-16 132 253 189 196
-17 133 204 140 197
-18 133 205 141 197
-19 187 133 251 197
-20 133 254 190 197
-21 198 134 205 141
-22 198 134 206 142
-23 198 188 134 252
-24 198 134 255 191
-25 199 135 206 142
-26 143 199 135 207
-27 253 199 189 135
-28 199 135 256 192
-29 143 200 136 207
-30 144 200 136 208
-31 200 136 249 185
-32 254 200 190 136
-33 211 201 147 137
-34 201 137 216 152
-35 209 145 202 138
-36 212 202 148 138
-37 210 146 203 139
-38 213 203 149 139
-39 211 147 204 140
-40 214 204 150 140
-41 212 148 205 141
-42 215 205 151 141
-43 213 149 206 142
-44 216 206 152 142
-45 143 209 145 207
-46 143 214 150 207
-47 144 210 146 208
-48 144 215 151 208
-49 209 220 145 156
-50 209 221 145 157
-51 210 221 146 157
-52 210 222 146 158
-53 211 222 147 158
-54 211 223 147 159
-55 212 223 148 159
-56 212 224 148 160
-57 213 149 217 153
-58 213 224 149 160
-59 214 150 217 153
-60 154 214 150 218
-61 154 215 151 218
-62 155 215 151 219
-63 155 216 152 219
-64 220 156 216 152
-65 217 228 153 164
-66 231 167 217 153
-67 154 165 218 229
-68 154 232 168 218
-69 155 225 161 219
-70 155 166 219 230
-71 220 156 226 162
-72 220 231 156 167
-73 221 157 227 163
-74 221 232 157 168
-75 222 158 225 161
-76 222 158 228 164
-77 223 159 226 162
-78 165 223 159 229
-79 224 160 227 163
-80 166 224 160 230
-81 233 169 225 161
-82 176 225 161 240
-83 233 169 226 162
-84 234 170 226 162
-85 234 170 227 163
-86 235 171 227 163
-87 235 171 228 164
-88 236 172 228 164
-89 165 236 172 229
-90 165 237 173 229
-91 166 237 173 230
-92 166 238 174 230
-93 231 167 238 174
-94 231 167 239 175
-95 232 168 239 175
-96 176 232 168 240
-97 243 233 179 169
-98 233 169 248 184
-99 177 234 170 241
-100 244 234 180 170
-101 242 178 235 171
-102 245 235 181 171
-103 243 179 236 172
-104 246 236 182 172
-105 244 180 237 173
-106 247 237 183 173
-107 245 181 238 174
-108 248 238 184 174
-109 177 239 175 241
-110 246 182 239 175
-111 176 242 178 240
-112 176 247 183 240
-113 177 188 241 252
-114 253 177 189 241
-115 242 253 178 189
-116 242 254 178 190
-117 243 254 179 190
-118 243 255 179 191
-119 244 255 180 191
-120 244 256 180 192
-121 245 181 249 185
-122 245 256 181 192
-123 246 182 249 185
-124 246 182 250 186
-125 247 183 250 186
-126 187 247 183 251
-127 187 248 184 251
-128 188 248 184 252
-129 1 2 3 4
-130 5 6 7 8
-131 11 12 9 10
-132 13 14 15 16
-133 17 18 19 20
-134 22 23 24 21
-135 25 26 27 28
-136 29 30 31 32
-137 33 1 34 5
-138 35 36 6 9
-139 13 37 38 10
-140 14 17 39 40
-141 18 41 42 21
-142 22 44 25 43
-143 45 46 26 29
-144 2 47 48 30
-145 45 35 49 50
-146 47 37 51 52
-147 33 39 53 54
-148 55 56 36 41
-149 57 58 38 43
-150 46 59 60 40
-151 48 61 62 42
-152 44 34 63 64
-153 66 57 59 65
-154 67 68 60 61
-155 69 70 62 63
-156 49 71 72 64
-157 50 51 73 74
-158 52 53 75 76
-159 55 77 78 54
-160 56 79 58 80
-161 69 81 82 75
-162 77 71 83 84
-163 79 73 85 86
-164 88 65 76 87
-165 67 78 89 90
-166 80 91 70 92
-167 66 93 72 94
-168 68 95 74 96
-169 81 83 97 98
-170 99 100 84 85
-171 101 102 86 87
-172 88 89 103 104
-173 90 91 105 106
-174 92 93 107 108
-175 110 94 95 109
-176 111 112 82 96
-177 99 113 114 109
-178 111 101 115 116
-179 103 117 118 97
-180 100 105 119 120
-181 121 122 102 107
-182 110 123 124 104
-183 112 125 126 106
-184 127 128 108 98
-185 11 121 123 31
-186 3 124 15 125
-187 126 127 7 19
-188 12 23 113 128
-189 114 16 27 115
-190 116 117 20 32
-191 24 4 118 119
-192 122 28 8 120
-193 1 2 3 4
-194 5 6 7 8
-195 11 12 9 10
-196 13 14 15 16
-197 17 18 19 20
-198 22 23 24 21
-199 25 26 27 28
-200 29 30 31 32
-201 33 1 34 5
-202 35 36 6 9
-203 13 37 38 10
-204 14 17 39 40
-205 18 41 42 21
-206 22 44 25 43
-207 45 46 26 29
-208 2 47 48 30
-209 45 35 49 50
-210 47 37 51 52
-211 33 39 53 54
-212 55 56 36 41
-213 57 58 38 43
-214 46 59 60 40
-215 48 61 62 42
-216 44 34 63 64
-217 66 57 59 65
-218 67 68 60 61
-219 69 70 62 63
-220 49 71 72 64
-221 50 51 73 74
-222 52 53 75 76
-223 55 77 78 54
-224 56 79 58 80
-225 69 81 82 75
-226 77 71 83 84
-227 79 73 85 86
-228 88 65 76 87
-229 67 78 89 90
-230 80 91 70 92
-231 66 93 72 94
-232 68 95 74 96
-233 81 83 97 98
-234 99 100 84 85
-235 101 102 86 87
-236 88 89 103 104
-237 90 91 105 106
-238 92 93 107 108
-239 110 94 95 109
-240 111 112 82 96
-241 99 113 114 109
-242 111 101 115 116
-243 103 117 118 97
-244 100 105 119 120
-245 121 122 102 107
-246 110 123 124 104
-247 112 125 126 106
-248 127 128 108 98
-249 11 121 123 31
-250 3 124 15 125
-251 126 127 7 19
-252 12 23 113 128
-253 114 16 27 115
-254 116 117 20 32
-255 24 4 118 119
-256 122 28 8 120
0