[Home] [Table] [Glossary]
[Families]
On this page are computer-accessible forms for the graph C4[ 256, 131 ] =
SDD(MSY(4,16,5,4)).
(I) Following is a form readable by MAGMA:
g:=Graph<256|{ {128, 191}, {128, 192}, {128, 255}, {1, 129}, {127, 255}, {126,
254}, {124, 252}, {123, 251}, {122, 250}, {120, 248}, {119, 247}, {118, 246},
{115, 243}, {114, 242}, {113, 241}, {112, 240}, {54, 182}, {43, 170}, {127,
254}, {125, 252}, {123, 250}, {121, 248}, {119, 246}, {117, 244}, {114, 243},
{110, 239}, {3, 129}, {109, 239}, {108, 238}, {1, 130}, {126, 253}, {122, 249},
{118, 245}, {113, 242}, {108, 239}, {104, 235}, {11, 136}, {2, 129}, {6, 130},
{4, 129}, {121, 252}, {107, 238}, {105, 236}, {22, 147}, {7, 130}, {63, 186},
{5, 131}, {107, 237}, {106, 236}, {97, 231}, {39, 161}, {27, 157}, {9, 143}, {5,
130}, {124, 251}, {116, 243}, {115, 244}, {96, 231}, {12, 132}, {96, 232}, {14,
134}, {10, 131}, {13, 132}, {9, 131}, {98, 232}, {15, 133}, {8, 131}, {116,
255}, {103, 236}, {99, 232}, {14, 133}, {8, 132}, {103, 235}, {102, 234}, {101,
233}, {25, 149}, {62, 178}, {82, 223}, {117, 248}, {112, 253}, {102, 235}, {100,
233}, {32, 174}, {100, 234}, {98, 236}, {51, 189}, {80, 222}, {81, 223}, {11,
132}, {120, 247}, {23, 135}, {26, 138}, {24, 136}, {76, 220}, {77, 221}, {79,
223}, {22, 135}, {40, 185}, {25, 136}, {74, 219}, {79, 222}, {20, 134}, {97,
243}, {27, 137}, {21, 135}, {72, 218}, {73, 219}, {26, 137}, {106, 249}, {77,
222}, {78, 221}, {17, 133}, {30, 138}, {29, 137}, {24, 140}, {18, 134}, {16,
133}, {110, 251}, {60, 169}, {31, 138}, {30, 139}, {28, 137}, {19, 134}, {18,
135}, {73, 220}, {15, 153}, {99, 245}, {65, 215}, {2, 149}, {50, 165}, {64,
215}, {75, 220}, {6, 158}, {101, 253}, {64, 216}, {105, 240}, {66, 216}, {53,
174}, {111, 244}, {58, 161}, {67, 216}, {35, 191}, {69, 217}, {70, 218}, {12,
145}, {109, 240}, {21, 136}, {68, 217}, {70, 219}, {71, 218}, {44, 178}, {66,
220}, {68, 218}, {104, 247}, {111, 240}, {48, 144}, {49, 145}, {7, 166}, {57,
152}, {46, 143}, {29, 188}, {16, 177}, {44, 142}, {51, 145}, {45, 143}, {65,
227}, {49, 146}, {55, 148}, {50, 145}, {86, 245}, {41, 141}, {55, 147}, {54,
146}, {42, 142}, {40, 141}, {43, 142}, {42, 143}, {76, 233}, {52, 146}, {88,
254}, {67, 229}, {52, 147}, {94, 249}, {56, 159}, {53, 146}, {35, 139}, {38,
142}, {36, 140}, {62, 150}, {69, 237}, {17, 184}, {60, 149}, {37, 140}, {34,
139}, {28, 181}, {63, 150}, {32, 138}, {39, 141}, {33, 139}, {61, 151}, {80,
250}, {38, 141}, {56, 147}, {61, 150}, {75, 224}, {23, 187}, {33, 140}, {92,
241}, {59, 150}, {57, 148}, {48, 157}, {74, 231}, {3, 173}, {59, 149}, {58,
148}, {4, 180}, {19, 162}, {71, 246}, {81, 224}, {83, 224}, {91, 232}, {36,
144}, {84, 224}, {85, 225}, {87, 227}, {34, 151}, {90, 239}, {46, 155}, {87,
226}, {72, 254}, {83, 228}, {85, 226}, {86, 225}, {92, 228}, {95, 231}, {93,
229}, {31, 166}, {95, 230}, {90, 227}, {82, 235}, {84, 237}, {88, 226}, {89,
227}, {47, 148}, {94, 229}, {93, 230}, {37, 153}, {10, 183}, {125, 192}, {89,
228}, {45, 144}, {20, 170}, {47, 144}, {91, 228}, {78, 241}, {1, 193}, {127,
191}, {126, 190}, {124, 188}, {123, 187}, {122, 186}, {120, 184}, {119, 183},
{118, 182}, {115, 179}, {114, 178}, {113, 177}, {112, 176}, {54, 246}, {43,
234}, {127, 190}, {125, 188}, {123, 186}, {121, 184}, {119, 182}, {117, 180},
{114, 179}, {110, 175}, {3, 193}, {109, 175}, {108, 174}, {1, 194}, {126, 189},
{122, 185}, {118, 181}, {113, 178}, {108, 175}, {104, 171}, {11, 200}, {2, 193},
{6, 194}, {4, 193}, {121, 188}, {107, 174}, {105, 172}, {22, 211}, {7, 194},
{63, 250}, {5, 195}, {107, 173}, {106, 172}, {97, 167}, {39, 225}, {27, 221},
{9, 207}, {5, 194}, {124, 187}, {116, 179}, {115, 180}, {96, 167}, {12, 196},
{96, 168}, {14, 198}, {10, 195}, {13, 196}, {9, 195}, {98, 168}, {15, 197}, {8,
195}, {116, 191}, {103, 172}, {99, 168}, {14, 197}, {8, 196}, {103, 171}, {102,
170}, {101, 169}, {25, 213}, {62, 242}, {13, 192}, {117, 184}, {112, 189}, {102,
171}, {100, 169}, {82, 159}, {32, 238}, {100, 170}, {98, 172}, {51, 253}, {80,
158}, {81, 159}, {11, 196}, {120, 183}, {23, 199}, {26, 202}, {24, 200}, {76,
156}, {77, 157}, {79, 159}, {22, 199}, {40, 249}, {25, 200}, {74, 155}, {79,
158}, {20, 198}, {97, 179}, {27, 201}, {21, 199}, {72, 154}, {73, 155}, {26,
201}, {106, 185}, {77, 158}, {78, 157}, {17, 197}, {30, 202}, {29, 201}, {24,
204}, {18, 198}, {16, 197}, {110, 187}, {31, 202}, {30, 203}, {28, 201}, {19,
198}, {18, 199}, {60, 233}, {73, 156}, {15, 217}, {99, 181}, {65, 151}, {2,
213}, {50, 229}, {64, 151}, {75, 156}, {6, 222}, {101, 189}, {64, 152}, {105,
176}, {66, 152}, {53, 238}, {111, 180}, {58, 225}, {67, 152}, {35, 255}, {69,
153}, {70, 154}, {12, 209}, {109, 176}, {21, 200}, {68, 153}, {70, 155}, {71,
154}, {44, 242}, {66, 156}, {68, 154}, {104, 183}, {111, 176}, {48, 208}, {49,
209}, {7, 230}, {57, 216}, {46, 207}, {29, 252}, {16, 241}, {44, 206}, {51,
209}, {45, 207}, {65, 163}, {49, 210}, {55, 212}, {50, 209}, {86, 181}, {41,
205}, {55, 211}, {54, 210}, {42, 206}, {40, 205}, {43, 206}, {42, 207}, {76,
169}, {52, 210}, {88, 190}, {67, 165}, {52, 211}, {94, 185}, {56, 223}, {53,
210}, {35, 203}, {38, 206}, {36, 204}, {62, 214}, {69, 173}, {17, 248}, {60,
213}, {41, 192}, {37, 204}, {34, 203}, {28, 245}, {63, 214}, {32, 202}, {39,
205}, {33, 203}, {61, 215}, {80, 186}, {38, 205}, {56, 211}, {61, 214}, {75,
160}, {23, 251}, {33, 204}, {92, 177}, {59, 214}, {57, 212}, {48, 221}, {74,
167}, {3, 237}, {59, 213}, {58, 212}, {4, 244}, {19, 226}, {71, 182}, {81, 160},
{83, 160}, {91, 168}, {36, 208}, {84, 160}, {85, 161}, {87, 163}, {34, 215},
{90, 175}, {46, 219}, {87, 162}, {72, 190}, {83, 164}, {85, 162}, {86, 161},
{92, 164}, {95, 167}, {93, 165}, {31, 230}, {95, 166}, {90, 163}, {82, 171},
{84, 173}, {88, 162}, {89, 163}, {47, 212}, {94, 165}, {93, 166}, {37, 217},
{10, 247}, {89, 164}, {45, 208}, {20, 234}, {47, 208}, {91, 164}, {78, 177},
{13, 256}, {41, 256}, {125, 256}, {128, 256} }>;
(II) A more general form is to represent the graph as the orbit of {128, 191}
under the group generated by the following permutations:
a: (180, 244) (III) Last is Groups&Graphs. Copy everything between (not including)
the lines of asterisks into a plain text file and save it as "graph.txt". Then
launch G&G (Groups&Graphs) and select Read Text from the File menu.
**************
&Graph **************
b: (164, 228)
c: (177, 241)
d: (172, 236)
e: (142, 206)
f: (170, 234)
g: (152, 216)
h: (154, 218)
m: (144, 208)
n1: (189, 253)
a1: (137, 201)
b1: (175, 239)
c1: (185, 249)
d1: (133, 197)
e1: (145, 209)
f1: (140, 204)
g1: (155, 219)
h1: (156, 220)
m1: (179, 243)
n2: (159, 223)
a2: (169, 233)
b2: (143, 207)
c2: (153, 217)
d2: (165, 229)
e2: (176, 240)
f2: (157, 221)
g2: (131, 195)
h2: (149, 213)
m2: (166, 230)
n3: (173, 237)
a3: (158, 222)
b3: (183, 247)
c3: (150, 214)
d3: (186, 250)
e3: (184, 248)
f3: (138, 202)
g3: (174, 238)
h3: (167, 231)
m3: (160, 224)
n4: (132, 196)
a4: (136, 200)
b4: (178, 242)
c4: (171, 235)
d4: (168, 232)
e4: (135, 199)
f4: (192, 256)
g4: (191, 255)
h4: (147, 211)
m4: (151, 215)
n5: (182, 246)
a5: (146, 210)
b5: (139, 203)
c5: (188, 252)
d5: (187, 251)
e5: (148, 212)
f5: (190, 254)
g5: (181, 245)
h5: (163, 227)
m5: (141, 205)
n6: (162, 226)
a6: (161, 225)
b6: (130, 194)
c6: (129, 193)
d6: (2, 5)(3, 7)(4, 6)(8, 25)(9, 60)(10, 59)(12, 24)(13, 21)(14, 40)(15, 94)(16,
106)(17, 122)(18, 41)(19, 39)(20, 38)(22, 128)(23, 125)(26, 108)(27, 109)(28,
90)(29, 110)(30, 53)(31, 107)(33, 49)(34, 54)(35, 52)(36, 51)(37, 50)(42,
100)(44, 102)(45, 101)(46, 76)(47, 126)(48, 112)(55, 127)(56, 116)(57, 72)(58,
88)(61, 119)(62, 104)(63, 120)(64, 71)(65, 118)(66, 70)(67, 68)(69, 93)(74,
75)(77, 111)(78, 105)(79, 115)(80, 117)(81, 97)(82, 114)(83, 96)(84, 95)(86,
87)(89, 99)(92, 98)(103, 113)(121, 123)(129, 130)(131, 149)(132, 136)(133,
185)(134, 141)(135, 192)(137, 175)(138, 174)(139, 146)(140, 145)(142, 170)(143,
169)(144, 189)(147, 191)(148, 190)(150, 183)(151, 182)(152, 154)(153, 165)(155,
156)(157, 176)(158, 180)(159, 179)(160, 167)(161, 162)(163, 181)(164, 168)(166,
173)(171, 178)(172, 177)(184, 186)(187, 188)(193, 194)(195, 213)(196, 200)(197,
249)(198, 205)(199, 256)(201, 239)(202, 238)(203, 210)(204, 209)(206, 234)(207,
233)(208, 253)(211, 255)(212, 254)(214, 247)(215, 246)(216, 218)(217, 229)(219,
220)(221, 240)(222, 244)(223, 243)(224, 231)(225, 226)(227, 245)(228, 232)(230,
237)(235, 242)(236, 241)(248, 250)(251, 252)
e6: (1, 2, 25, 24, 33, 35, 127, 88, 85, 86, 99, 98, 103, 82, 79, 6)(3, 59, 11,
37, 34, 128, 72, 87, 39, 118, 91, 106, 104, 81, 80, 5)(4, 60, 21, 36, 30, 116,
126, 19, 58, 28, 96, 105, 102, 56, 77, 7)(8, 69, 61, 13, 68, 65, 41, 71, 89, 40,
119, 83, 122, 10, 84, 63)(9, 107, 62, 12, 15, 64, 125, 70, 90, 38, 54, 92, 94,
120, 75, 123)(14, 57, 29, 74, 109, 43, 52, 78, 93, 117, 76, 23, 45, 32, 114,
51)(16, 67, 121, 73, 110, 42, 53, 113, 50, 17, 66, 124, 46, 108, 44, 49)(18, 47,
26, 97, 112, 20, 55, 27, 95, 111, 100, 22, 48, 31, 115, 101)(129, 149, 136, 140,
139, 191, 190, 162, 161, 181, 168, 172, 171, 159, 158, 130)(131, 173, 150, 132,
153, 151, 192, 154, 163, 141, 182, 164, 185, 183, 160, 186)(133, 152, 188, 155,
175, 142, 146, 177, 165, 184, 156, 187, 143, 174, 178, 145)(134, 148, 137, 167,
176, 170, 147, 157, 166, 180, 169, 135, 144, 138, 179, 189)(193, 213, 200, 204,
203, 255, 254, 226, 225, 245, 232, 236, 235, 223, 222, 194)(195, 237, 214, 196,
217, 215, 256, 218, 227, 205, 246, 228, 249, 247, 224, 250)(197, 216, 252, 219,
239, 206, 210, 241, 229, 248, 220, 251, 207, 238, 242, 209)(198, 212, 201, 231,
240, 234, 211, 221, 230, 244, 233, 199, 208, 202, 243, 253)
C4[ 256, 131 ]
256
-1 193 194 129 130
-2 213 149 193 129
-3 193 237 129 173
-4 244 180 193 129
-5 194 195 130 131
-6 222 158 194 130
-7 166 194 130 230
-8 132 195 196 131
-9 143 195 207 131
-10 247 183 195 131
-11 132 200 136 196
-12 132 209 145 196
-13 132 256 192 196
-14 198 133 134 197
-15 133 217 153 197
-16 133 177 197 241
-17 133 248 184 197
-18 198 199 134 135
-19 198 134 226 162
-20 198 134 234 170
-21 199 200 135 136
-22 199 211 135 147
-23 187 199 135 251
-24 200 136 204 140
-25 200 136 213 149
-26 201 202 137 138
-27 221 157 201 137
-28 201 245 137 181
-29 188 201 137 252
-30 202 203 138 139
-31 166 202 138 230
-32 202 138 238 174
-33 203 204 139 140
-34 203 215 139 151
-35 255 191 203 139
-36 144 204 140 208
-37 204 140 217 153
-38 205 206 141 142
-39 225 161 205 141
-40 205 249 141 185
-41 256 192 205 141
-42 143 206 207 142
-43 234 170 206 142
-44 242 178 206 142
-45 143 144 207 208
-46 143 155 207 219
-47 144 212 148 208
-48 144 221 157 208
-49 209 210 145 146
-50 165 209 145 229
-51 209 253 145 189
-52 210 211 146 147
-53 210 146 238 174
-54 210 146 246 182
-55 211 212 147 148
-56 211 223 147 159
-57 212 148 216 152
-58 212 148 225 161
-59 213 214 149 150
-60 233 169 213 149
-61 214 215 150 151
-62 242 178 214 150
-63 214 150 250 186
-64 215 216 151 152
-65 215 227 151 163
-66 220 156 216 152
-67 165 216 152 229
-68 154 217 218 153
-69 237 173 217 153
-70 154 155 218 219
-71 154 246 182 218
-72 154 254 190 218
-73 220 155 156 219
-74 231 155 167 219
-75 220 156 224 160
-76 220 156 233 169
-77 221 222 157 158
-78 177 221 157 241
-79 222 223 158 159
-80 222 158 250 186
-81 223 224 159 160
-82 223 235 159 171
-83 224 160 228 164
-84 224 160 237 173
-85 225 226 161 162
-86 245 181 225 161
-87 226 227 162 163
-88 254 190 226 162
-89 227 228 163 164
-90 227 239 163 175
-91 232 168 228 164
-92 177 228 164 241
-93 165 166 229 230
-94 165 249 185 229
-95 231 166 167 230
-96 231 232 167 168
-97 231 243 167 179
-98 232 168 236 172
-99 232 168 245 181
-100 233 234 169 170
-101 253 189 233 169
-102 234 235 170 171
-103 235 236 171 172
-104 235 247 171 183
-105 176 236 172 240
-106 236 172 249 185
-107 237 238 173 174
-108 238 239 174 175
-109 176 239 240 175
-110 187 239 251 175
-111 176 244 180 240
-112 176 253 189 240
-113 242 177 178 241
-114 242 243 178 179
-115 243 244 179 180
-116 243 255 179 191
-117 244 180 248 184
-118 245 246 181 182
-119 246 247 182 183
-120 247 248 183 184
-121 188 248 184 252
-122 249 250 185 186
-123 187 250 251 186
-124 187 188 251 252
-125 188 256 192 252
-126 253 254 189 190
-127 254 255 190 191
-128 255 256 191 192
-129 1 2 3 4
-130 1 5 6 7
-131 5 8 9 10
-132 11 12 13 8
-133 14 15 16 17
-134 14 18 19 20
-135 22 23 18 21
-136 11 24 25 21
-137 26 27 28 29
-138 26 30 31 32
-139 33 34 35 30
-140 33 24 36 37
-141 38 39 40 41
-142 44 38 42 43
-143 45 46 9 42
-144 45 36 47 48
-145 12 49 50 51
-146 49 52 53 54
-147 22 55 56 52
-148 55 57 47 58
-149 2 25 59 60
-150 59 61 62 63
-151 34 61 64 65
-152 66 67 57 64
-153 68 69 15 37
-154 68 70 71 72
-155 46 70 73 74
-156 66 73 75 76
-157 77 78 48 27
-158 77 79 80 6
-159 56 79 81 82
-160 81 83 84 75
-161 58 39 85 86
-162 88 19 85 87
-163 89 90 65 87
-164 89 91 92 83
-165 67 93 50 94
-166 93 7 95 31
-167 95 74 96 97
-168 99 91 96 98
-169 100 101 60 76
-170 100 102 20 43
-171 102 103 82 104
-172 103 105 106 98
-173 3 69 84 107
-174 107 53 108 32
-175 110 90 108 109
-176 111 112 105 109
-177 78 113 92 16
-178 44 113 114 62
-179 114 115 116 97
-180 111 4 115 117
-181 99 28 118 86
-182 71 118 119 54
-183 104 119 10 120
-184 121 17 117 120
-185 122 94 40 106
-186 122 123 80 63
-187 110 23 123 124
-188 121 124 125 29
-189 101 112 126 51
-190 88 126 72 127
-191 35 116 127 128
-192 13 125 128 41
-193 1 2 3 4
-194 1 5 6 7
-195 5 8 9 10
-196 11 12 13 8
-197 14 15 16 17
-198 14 18 19 20
-199 22 23 18 21
-200 11 24 25 21
-201 26 27 28 29
-202 26 30 31 32
-203 33 34 35 30
-204 33 24 36 37
-205 38 39 40 41
-206 44 38 42 43
-207 45 46 9 42
-208 45 36 47 48
-209 12 49 50 51
-210 49 52 53 54
-211 22 55 56 52
-212 55 57 47 58
-213 2 25 59 60
-214 59 61 62 63
-215 34 61 64 65
-216 66 67 57 64
-217 68 69 15 37
-218 68 70 71 72
-219 46 70 73 74
-220 66 73 75 76
-221 77 78 48 27
-222 77 79 80 6
-223 56 79 81 82
-224 81 83 84 75
-225 58 39 85 86
-226 88 19 85 87
-227 89 90 65 87
-228 89 91 92 83
-229 67 93 50 94
-230 93 7 95 31
-231 95 74 96 97
-232 99 91 96 98
-233 100 101 60 76
-234 100 102 20 43
-235 102 103 82 104
-236 103 105 106 98
-237 3 69 84 107
-238 107 53 108 32
-239 110 90 108 109
-240 111 112 105 109
-241 78 113 92 16
-242 44 113 114 62
-243 114 115 116 97
-244 111 4 115 117
-245 99 28 118 86
-246 71 118 119 54
-247 104 119 10 120
-248 121 17 117 120
-249 122 94 40 106
-250 122 123 80 63
-251 110 23 123 124
-252 121 124 125 29
-253 101 112 126 51
-254 88 126 72 127
-255 35 116 127 128
-256 13 125 128 41
0