C4graphGraph forms for C4 [ 256, 132 ] = SDD(KE_16(1,7,2,11,1))

[Home] [Table] [Glossary] [Families]

On this page are computer-accessible forms for the graph C4[ 256, 132 ] = SDD(KE_16(1,7,2,11,1)).

(I) Following is a form readable by MAGMA:

g:=Graph<256|{ {128, 191}, {128, 192}, {128, 255}, {1, 129}, {127, 255}, {126, 254}, {125, 253}, {124, 252}, {123, 251}, {122, 250}, {121, 249}, {120, 248}, {119, 247}, {118, 246}, {117, 245}, {116, 244}, {115, 243}, {113, 241}, {112, 240}, {111, 239}, {110, 238}, {109, 237}, {108, 236}, {107, 235}, {106, 234}, {105, 233}, {104, 232}, {103, 231}, {102, 230}, {101, 229}, {100, 228}, {99, 227}, {98, 226}, {97, 225}, {96, 224}, {48, 176}, {46, 175}, {127, 254}, {125, 252}, {123, 250}, {121, 248}, {119, 246}, {117, 244}, {115, 242}, {3, 129}, {93, 223}, {1, 130}, {126, 253}, {122, 249}, {118, 245}, {114, 241}, {113, 242}, {92, 223}, {2, 129}, {60, 191}, {6, 130}, {91, 223}, {90, 222}, {4, 129}, {43, 174}, {40, 173}, {7, 130}, {5, 131}, {88, 222}, {5, 130}, {124, 251}, {116, 243}, {89, 222}, {57, 190}, {12, 132}, {14, 134}, {84, 220}, {85, 221}, {10, 131}, {37, 172}, {34, 171}, {27, 146}, {24, 145}, {13, 132}, {9, 131}, {15, 133}, {81, 219}, {87, 221}, {8, 131}, {54, 189}, {14, 133}, {80, 219}, {86, 221}, {8, 132}, {18, 159}, {30, 147}, {11, 133}, {82, 220}, {11, 132}, {120, 247}, {51, 188}, {83, 220}, {24, 136}, {111, 255}, {110, 254}, {109, 253}, {108, 252}, {107, 251}, {106, 250}, {105, 249}, {104, 248}, {103, 247}, {102, 246}, {101, 245}, {100, 244}, {99, 243}, {98, 242}, {97, 241}, {49, 161}, {26, 138}, {72, 216}, {73, 217}, {12, 157}, {53, 164}, {50, 163}, {25, 136}, {22, 135}, {15, 158}, {2, 144}, {27, 137}, {21, 135}, {69, 215}, {75, 217}, {20, 135}, {26, 137}, {68, 215}, {74, 217}, {18, 134}, {55, 163}, {30, 138}, {66, 214}, {67, 215}, {78, 218}, {79, 219}, {9, 156}, {31, 138}, {28, 137}, {19, 134}, {16, 133}, {17, 135}, {52, 162}, {29, 139}, {64, 214}, {76, 218}, {17, 134}, {29, 138}, {65, 214}, {77, 218}, {61, 165}, {3, 154}, {62, 167}, {96, 251}, {20, 136}, {6, 155}, {56, 165}, {59, 166}, {23, 137}, {58, 164}, {70, 216}, {23, 136}, {71, 216}, {48, 144}, {49, 145}, {73, 233}, {46, 143}, {74, 235}, {77, 236}, {45, 143}, {51, 145}, {44, 143}, {90, 249}, {50, 145}, {84, 247}, {42, 142}, {55, 147}, {54, 146}, {67, 231}, {79, 235}, {4, 161}, {43, 142}, {40, 141}, {7, 162}, {41, 143}, {52, 146}, {64, 230}, {76, 234}, {41, 142}, {93, 250}, {53, 146}, {81, 246}, {36, 140}, {38, 142}, {60, 148}, {61, 149}, {10, 163}, {89, 240}, {37, 140}, {34, 139}, {13, 164}, {65, 232}, {33, 139}, {57, 147}, {39, 141}, {63, 149}, {32, 139}, {56, 147}, {38, 141}, {62, 149}, {32, 140}, {68, 233}, {71, 234}, {35, 141}, {58, 148}, {70, 232}, {35, 140}, {95, 240}, {87, 248}, {59, 148}, {112, 192}, {22, 167}, {39, 150}, {36, 149}, {25, 168}, {114, 192}, {66, 241}, {92, 239}, {16, 165}, {45, 152}, {33, 148}, {31, 170}, {28, 169}, {21, 160}, {19, 166}, {47, 153}, {88, 238}, {69, 242}, {85, 237}, {86, 239}, {91, 225}, {72, 243}, {78, 245}, {44, 144}, {94, 226}, {42, 151}, {80, 237}, {83, 238}, {82, 236}, {94, 224}, {47, 144}, {95, 224}, {75, 244}, {1, 193}, {127, 191}, {126, 190}, {125, 189}, {124, 188}, {123, 187}, {122, 186}, {121, 185}, {120, 184}, {119, 183}, {118, 182}, {117, 181}, {116, 180}, {115, 179}, {113, 177}, {112, 176}, {111, 175}, {110, 174}, {109, 173}, {108, 172}, {107, 171}, {106, 170}, {105, 169}, {104, 168}, {103, 167}, {102, 166}, {101, 165}, {100, 164}, {99, 163}, {98, 162}, {97, 161}, {96, 160}, {48, 240}, {46, 239}, {127, 190}, {125, 188}, {123, 186}, {121, 184}, {119, 182}, {117, 180}, {115, 178}, {3, 193}, {93, 159}, {1, 194}, {126, 189}, {122, 185}, {118, 181}, {114, 177}, {113, 178}, {92, 159}, {2, 193}, {60, 255}, {6, 194}, {91, 159}, {90, 158}, {4, 193}, {43, 238}, {40, 237}, {7, 194}, {5, 195}, {88, 158}, {5, 194}, {124, 187}, {116, 179}, {89, 158}, {57, 254}, {12, 196}, {14, 198}, {84, 156}, {85, 157}, {10, 195}, {37, 236}, {34, 235}, {27, 210}, {24, 209}, {13, 196}, {9, 195}, {15, 197}, {81, 155}, {87, 157}, {8, 195}, {54, 253}, {14, 197}, {80, 155}, {86, 157}, {8, 196}, {18, 223}, {30, 211}, {11, 197}, {82, 156}, {11, 196}, {120, 183}, {51, 252}, {83, 156}, {24, 200}, {111, 191}, {110, 190}, {109, 189}, {108, 188}, {107, 187}, {106, 186}, {105, 185}, {104, 184}, {103, 183}, {102, 182}, {101, 181}, {100, 180}, {99, 179}, {98, 178}, {97, 177}, {49, 225}, {26, 202}, {72, 152}, {73, 153}, {12, 221}, {53, 228}, {50, 227}, {25, 200}, {22, 199}, {15, 222}, {2, 208}, {27, 201}, {21, 199}, {69, 151}, {75, 153}, {20, 199}, {26, 201}, {68, 151}, {74, 153}, {18, 198}, {55, 227}, {30, 202}, {66, 150}, {67, 151}, {78, 154}, {79, 155}, {9, 220}, {31, 202}, {28, 201}, {19, 198}, {16, 197}, {17, 199}, {52, 226}, {29, 203}, {64, 150}, {76, 154}, {17, 198}, {29, 202}, {65, 150}, {77, 154}, {61, 229}, {3, 218}, {62, 231}, {96, 187}, {20, 200}, {6, 219}, {56, 229}, {59, 230}, {23, 201}, {58, 228}, {70, 152}, {23, 200}, {71, 152}, {48, 208}, {49, 209}, {73, 169}, {46, 207}, {74, 171}, {77, 172}, {45, 207}, {51, 209}, {44, 207}, {90, 185}, {50, 209}, {84, 183}, {42, 206}, {55, 211}, {54, 210}, {67, 167}, {79, 171}, {4, 225}, {43, 206}, {40, 205}, {7, 226}, {41, 207}, {52, 210}, {64, 166}, {76, 170}, {41, 206}, {93, 186}, {53, 210}, {81, 182}, {36, 204}, {38, 206}, {60, 212}, {61, 213}, {10, 227}, {89, 176}, {37, 204}, {34, 203}, {13, 228}, {65, 168}, {33, 203}, {57, 211}, {39, 205}, {63, 213}, {32, 203}, {56, 211}, {38, 205}, {62, 213}, {32, 204}, {68, 169}, {71, 170}, {35, 205}, {58, 212}, {70, 168}, {35, 204}, {95, 176}, {59, 212}, {87, 184}, {22, 231}, {39, 214}, {36, 213}, {25, 232}, {66, 177}, {92, 175}, {16, 229}, {45, 216}, {33, 212}, {31, 234}, {28, 233}, {21, 224}, {19, 230}, {47, 217}, {88, 174}, {69, 178}, {85, 173}, {86, 175}, {91, 161}, {72, 179}, {78, 181}, {44, 208}, {94, 162}, {42, 215}, {80, 173}, {83, 174}, {82, 172}, {94, 160}, {47, 208}, {95, 160}, {63, 192}, {75, 180}, {63, 256}, {112, 256}, {114, 256}, {128, 256} }>;

(II) A more general form is to represent the graph as the orbit of {128, 191} under the group generated by the following permutations:

a: (161, 225)
b: (174, 238)
c: (158, 222)
d: (150, 214)
e: (140, 204)
f: (165, 229)
g: (135, 199)
h: (151, 215)
m: (157, 221)
n1: (175, 239)
a1: (164, 228)
b1: (189, 253)
c1: (186, 250)
d1: (152, 216)
e1: (188, 252)
f1: (180, 244)
g1: (187, 251)
h1: (179, 243)
m1: (163, 227)
n2: (145, 209)
a2: (146, 210)
b2: (170, 234)
c2: (143, 207)
d2: (173, 237)
e2: (159, 223)
f2: (132, 196)
g2: (154, 218)
h2: (162, 226)
m2: (155, 219)
n3: (144, 208)
a3: (131, 195)
b3: (153, 217)
c3: (171, 235)
d3: (156, 220)
e3: (177, 241)
f3: (176, 240)
g3: (182, 246)
h3: (178, 242)
m3: (160, 224)
n4: (172, 236)
a4: (181, 245)
b4: (192, 256)
c4: (183, 247)
d4: (166, 230)
e4: (136, 200)
f4: (169, 233)
g4: (147, 211)
h4: (139, 203)
m4: (141, 205)
n5: (142, 206)
a5: (133, 197)
b5: (134, 198)
c5: (137, 201)
d5: (138, 202)
e5: (185, 249)
f5: (168, 232)
g5: (190, 254)
h5: (167, 231)
m5: (149, 213)
n6: (184, 248)
a6: (191, 255)
b6: (129, 193)
c6: (130, 194)
d6: (2, 6)(3, 7)(4, 5)(8, 91)(9, 97)(10, 49)(11, 18)(12, 92)(13, 93)(15, 19)(16, 17)(20, 56)(21, 101)(22, 61)(23, 30)(24, 55)(25, 57)(27, 31)(28, 29)(32, 68)(33, 105)(34, 73)(35, 42)(36, 67)(37, 69)(39, 43)(40, 41)(44, 80)(45, 109)(46, 85)(47, 79)(48, 81)(51, 99)(52, 76)(53, 106)(54, 71)(58, 122)(59, 90)(60, 121)(63, 103)(64, 88)(65, 110)(66, 83)(70, 126)(72, 125)(75, 107)(77, 98)(78, 94)(82, 113)(84, 114)(87, 111)(89, 102)(95, 118)(96, 117)(100, 123)(104, 127)(108, 115)(112, 119)(116, 124)(120, 128)(129, 130)(131, 161)(132, 159)(133, 134)(135, 165)(136, 147)(137, 138)(139, 169)(140, 151)(141, 142)(143, 173)(144, 155)(145, 163)(146, 170)(148, 185)(149, 167)(150, 174)(152, 189)(153, 171)(154, 162)(156, 177)(157, 175)(158, 166)(160, 181)(164, 186)(168, 190)(172, 178)(176, 182)(179, 188)(180, 187)(183, 192)(184, 191)(193, 194)(195, 225)(196, 223)(197, 198)(199, 229)(200, 211)(201, 202)(203, 233)(204, 215)(205, 206)(207, 237)(208, 219)(209, 227)(210, 234)(212, 249)(213, 231)(214, 238)(216, 253)(217, 235)(218, 226)(220, 241)(221, 239)(222, 230)(224, 245)(228, 250)(232, 254)(236, 242)(240, 246)(243, 252)(244, 251)(247, 256)(248, 255)
e6: (2, 5)(3, 7)(4, 6)(8, 44)(9, 48)(10, 47)(11, 41)(12, 46)(13, 45)(14, 38)(15, 43)(16, 42)(17, 35)(18, 40)(19, 39)(20, 32)(21, 37)(22, 36)(23, 29)(24, 34)(25, 33)(27, 31)(28, 30)(49, 79)(50, 74)(51, 107)(52, 76)(53, 71)(54, 106)(55, 73)(56, 68)(57, 105)(58, 70)(59, 65)(60, 104)(61, 67)(63, 103)(66, 102)(69, 101)(72, 100)(75, 99)(77, 94)(78, 98)(80, 91)(81, 97)(82, 95)(83, 89)(84, 112)(85, 92)(87, 111)(90, 110)(93, 109)(96, 108)(113, 118)(114, 119)(115, 117)(120, 128)(121, 127)(122, 126)(123, 125)(129, 130)(131, 144)(132, 143)(133, 142)(134, 141)(135, 140)(136, 139)(137, 138)(145, 171)(146, 170)(147, 169)(148, 168)(149, 167)(150, 166)(151, 165)(152, 164)(153, 163)(154, 162)(155, 161)(156, 176)(157, 175)(158, 174)(159, 173)(160, 172)(177, 182)(178, 181)(179, 180)(183, 192)(184, 191)(185, 190)(186, 189)(187, 188)(193, 194)(195, 208)(196, 207)(197, 206)(198, 205)(199, 204)(200, 203)(201, 202)(209, 235)(210, 234)(211, 233)(212, 232)(213, 231)(214, 230)(215, 229)(216, 228)(217, 227)(218, 226)(219, 225)(220, 240)(221, 239)(222, 238)(223, 237)(224, 236)(241, 246)(242, 245)(243, 244)(247, 256)(248, 255)(249, 254)(250, 253)(251, 252)
f6: (1, 2, 44, 41, 38, 35, 32, 29, 26, 23, 20, 17, 14, 11, 8, 5)(3, 47, 45, 42, 39, 36, 33, 30, 27, 24, 21, 18, 15, 12, 9, 6)(4, 48, 46, 43, 40, 37, 34, 31, 28, 25, 22, 19, 16, 13, 10, 7)(49, 95, 92, 88, 85, 82, 79, 76, 73, 70, 67, 64, 61, 58, 55, 52)(50, 94, 91, 89, 86, 83, 80, 77, 74, 71, 68, 65, 62, 59, 56, 53)(51, 96, 93, 90, 87, 84, 81, 78, 75, 72, 69, 66, 63, 60, 57, 54)(97, 112, 111, 110, 109, 108, 107, 106, 105, 104, 103, 102, 101, 100, 99, 98)(113, 114, 128, 127, 126, 125, 124, 123, 122, 121, 120, 119, 118, 117, 116, 115)(129, 144, 143, 142, 141, 140, 139, 138, 137, 136, 135, 134, 133, 132, 131, 130)(145, 160, 159, 158, 157, 156, 155, 154, 153, 152, 151, 150, 149, 148, 147, 146)(161, 176, 175, 174, 173, 172, 171, 170, 169, 168, 167, 166, 165, 164, 163, 162)(177, 192, 191, 190, 189, 188, 187, 186, 185, 184, 183, 182, 181, 180, 179, 178)(193, 208, 207, 206, 205, 204, 203, 202, 201, 200, 199, 198, 197, 196, 195, 194)(209, 224, 223, 222, 221, 220, 219, 218, 217, 216, 215, 214, 213, 212, 211, 210)(225, 240, 239, 238, 237, 236, 235, 234, 233, 232, 231, 230, 229, 228, 227, 226)(241, 256, 255, 254, 253, 252, 251, 250, 249, 248, 247, 246, 245, 244, 243, 242)

(III) Last is Groups&Graphs. Copy everything between (not including) the lines of asterisks into a plain text file and save it as "graph.txt". Then launch G&G (Groups&Graphs) and select Read Text from the File menu.

**************

&Graph
C4[ 256, 132 ]
256
-1 193 194 129 130
-2 144 193 129 208
-3 154 193 129 218
-4 225 193 161 129
-5 194 195 130 131
-6 155 194 130 219
-7 226 194 162 130
-8 132 195 196 131
-9 220 156 195 131
-10 227 195 163 131
-11 132 133 196 197
-12 132 221 157 196
-13 132 228 196 164
-14 198 133 134 197
-15 133 222 158 197
-16 165 133 229 197
-17 198 199 134 135
-18 198 134 223 159
-19 198 166 134 230
-20 199 200 135 136
-21 199 135 224 160
-22 231 199 167 135
-23 200 201 136 137
-24 209 145 200 136
-25 232 200 168 136
-26 201 202 137 138
-27 210 146 201 137
-28 233 201 169 137
-29 202 203 138 139
-30 211 147 202 138
-31 234 202 170 138
-32 203 204 139 140
-33 212 148 203 139
-34 235 203 171 139
-35 204 205 140 141
-36 213 149 204 140
-37 236 204 172 140
-38 205 206 141 142
-39 214 150 205 141
-40 237 205 173 141
-41 143 206 207 142
-42 215 151 206 142
-43 238 206 174 142
-44 143 144 207 208
-45 143 216 152 207
-46 143 239 207 175
-47 144 217 153 208
-48 176 144 240 208
-49 209 145 225 161
-50 209 145 227 163
-51 209 188 145 252
-52 210 146 226 162
-53 210 146 228 164
-54 253 210 189 146
-55 211 147 227 163
-56 165 211 147 229
-57 254 211 190 147
-58 212 148 228 164
-59 166 212 148 230
-60 255 212 191 148
-61 165 213 149 229
-62 231 167 213 149
-63 256 213 192 149
-64 166 214 150 230
-65 232 168 214 150
-66 177 214 150 241
-67 231 167 215 151
-68 233 169 215 151
-69 242 178 215 151
-70 232 168 216 152
-71 234 170 216 152
-72 243 179 216 152
-73 233 169 217 153
-74 235 171 217 153
-75 244 180 217 153
-76 154 234 170 218
-77 154 236 172 218
-78 154 245 181 218
-79 155 235 171 219
-80 155 237 173 219
-81 155 246 182 219
-82 220 156 236 172
-83 220 156 238 174
-84 220 156 247 183
-85 221 157 237 173
-86 221 157 239 175
-87 221 157 248 184
-88 222 158 238 174
-89 176 222 158 240
-90 222 158 249 185
-91 223 159 225 161
-92 223 159 239 175
-93 223 159 250 186
-94 224 160 226 162
-95 176 224 160 240
-96 187 224 160 251
-97 177 225 161 241
-98 242 178 226 162
-99 243 179 227 163
-100 244 180 228 164
-101 165 245 181 229
-102 166 246 182 230
-103 231 167 247 183
-104 232 168 248 184
-105 233 169 249 185
-106 234 170 250 186
-107 187 235 171 251
-108 188 236 172 252
-109 253 189 237 173
-110 254 190 238 174
-111 255 191 239 175
-112 176 256 192 240
-113 242 177 178 241
-114 177 256 192 241
-115 242 243 178 179
-116 243 244 179 180
-117 244 245 180 181
-118 245 246 181 182
-119 246 247 182 183
-120 247 248 183 184
-121 248 249 184 185
-122 249 250 185 186
-123 187 250 251 186
-124 187 188 251 252
-125 253 188 189 252
-126 253 254 189 190
-127 254 255 190 191
-128 255 256 191 192
-129 1 2 3 4
-130 1 5 6 7
-131 5 8 9 10
-132 11 12 13 8
-133 11 14 15 16
-134 14 17 18 19
-135 22 17 20 21
-136 23 24 25 20
-137 23 26 27 28
-138 26 29 30 31
-139 33 34 29 32
-140 35 36 37 32
-141 35 38 39 40
-142 38 41 42 43
-143 44 45 46 41
-144 44 2 47 48
-145 24 49 50 51
-146 27 52 53 54
-147 55 56 57 30
-148 33 58 59 60
-149 36 61 62 63
-150 66 39 64 65
-151 67 68 69 42
-152 45 70 71 72
-153 47 73 74 75
-154 77 78 3 76
-155 79 80 81 6
-156 82 83 84 9
-157 12 85 86 87
-158 88 89 90 15
-159 91 92 93 18
-160 94 95 96 21
-161 91 4 49 97
-162 94 7 52 98
-163 55 99 50 10
-164 100 13 58 53
-165 56 101 16 61
-166 102 59 19 64
-167 22 67 103 62
-168 25 70 104 65
-169 68 28 105 73
-170 71 106 31 76
-171 34 79 74 107
-172 77 37 82 108
-173 80 40 85 109
-174 88 110 83 43
-175 111 46 92 86
-176 89 112 48 95
-177 66 113 114 97
-178 69 113 115 98
-179 99 115 72 116
-180 100 116 117 75
-181 78 101 117 118
-182 102 81 118 119
-183 103 84 119 120
-184 121 104 87 120
-185 121 122 90 105
-186 122 123 93 106
-187 123 124 96 107
-188 124 125 51 108
-189 125 126 54 109
-190 110 57 126 127
-191 111 60 127 128
-192 112 114 128 63
-193 1 2 3 4
-194 1 5 6 7
-195 5 8 9 10
-196 11 12 13 8
-197 11 14 15 16
-198 14 17 18 19
-199 22 17 20 21
-200 23 24 25 20
-201 23 26 27 28
-202 26 29 30 31
-203 33 34 29 32
-204 35 36 37 32
-205 35 38 39 40
-206 38 41 42 43
-207 44 45 46 41
-208 44 2 47 48
-209 24 49 50 51
-210 27 52 53 54
-211 55 56 57 30
-212 33 58 59 60
-213 36 61 62 63
-214 66 39 64 65
-215 67 68 69 42
-216 45 70 71 72
-217 47 73 74 75
-218 77 78 3 76
-219 79 80 81 6
-220 82 83 84 9
-221 12 85 86 87
-222 88 89 90 15
-223 91 92 93 18
-224 94 95 96 21
-225 91 4 49 97
-226 94 7 52 98
-227 55 99 50 10
-228 100 13 58 53
-229 56 101 16 61
-230 102 59 19 64
-231 22 67 103 62
-232 25 70 104 65
-233 68 28 105 73
-234 71 106 31 76
-235 34 79 74 107
-236 77 37 82 108
-237 80 40 85 109
-238 88 110 83 43
-239 111 46 92 86
-240 89 112 48 95
-241 66 113 114 97
-242 69 113 115 98
-243 99 115 72 116
-244 100 116 117 75
-245 78 101 117 118
-246 102 81 118 119
-247 103 84 119 120
-248 121 104 87 120
-249 121 122 90 105
-250 122 123 93 106
-251 123 124 96 107
-252 124 125 51 108
-253 125 126 54 109
-254 110 57 126 127
-255 111 60 127 128
-256 112 114 128 63
0

**************