[Home] [Table] [Glossary]
[Families]
On this page are computer-accessible forms for the graph C4[ 256, 134 ] =
BGCG({4,4}_8,8;K1;{7,8,10,12}).
(I) Following is a form readable by MAGMA:
g:=Graph<256|{ {128, 134}, {128, 143}, {128, 175}, {128, 196}, {3, 131}, {98,
226}, {60, 188}, {21, 149}, {79, 207}, {2, 131}, {109, 236}, {99, 226}, {61,
188}, {45, 172}, {20, 149}, {3, 130}, {89, 216}, {18, 144}, {114, 240}, {110,
236}, {46, 172}, {25, 155}, {76, 206}, {17, 146}, {57, 186}, {19, 144}, {11,
143}, {77, 201}, {75, 206}, {119, 242}, {80, 213}, {83, 214}, {20, 146}, {116,
242}, {87, 209}, {8, 143}, {40, 175}, {35, 171}, {54, 190}, {45, 165}, {39,
175}, {33, 168}, {114, 251}, {19, 153}, {113, 251}, {53, 190}, {90, 209}, {67,
200}, {36, 168}, {107, 231}, {92, 208}, {56, 180}, {54, 186}, {68, 200}, {73,
197}, {22, 155}, {93, 208}, {52, 185}, {48, 189}, {66, 207}, {72, 197}, {22,
152}, {55, 185}, {86, 216}, {22, 153}, {127, 240}, {104, 231}, {59, 180}, {42,
165}, {36, 171}, {23, 152}, {12, 156}, {122, 234}, {95, 207}, {90, 202}, {86,
198}, {14, 159}, {123, 234}, {122, 235}, {87, 198}, {16, 130}, {98, 240}, {95,
205}, {1, 146}, {89, 202}, {38, 178}, {93, 201}, {4, 146}, {125, 235}, {71,
209}, {11, 156}, {104, 255}, {37, 178}, {19, 132}, {69, 221}, {103, 255}, {49,
168}, {80, 201}, {3, 153}, {102, 252}, {56, 162}, {37, 191}, {29, 135}, {77,
215}, {79, 213}, {28, 135}, {103, 252}, {98, 249}, {57, 162}, {70, 221}, {74,
209}, {11, 151}, {101, 249}, {52, 168}, {33, 189}, {10, 151}, {40, 181}, {34,
191}, {74, 215}, {82, 207}, {1, 159}, {55, 169}, {43, 181}, {69, 219}, {6, 153},
{111, 240}, {54, 169}, {68, 219}, {44, 140}, {69, 229}, {74, 234}, {18, 179},
{72, 233}, {75, 234}, {51, 145}, {99, 193}, {32, 132}, {41, 140}, {112, 214},
{10, 173}, {102, 193}, {54, 145}, {35, 132}, {66, 229}, {34, 138}, {100, 204},
{91, 243}, {76, 228}, {86, 254}, {18, 187}, {109, 196}, {96, 201}, {51, 154},
{35, 138}, {33, 136}, {7, 173}, {95, 245}, {60, 150}, {34, 136}, {21, 191}, {17,
187}, {8, 162}, {9, 162}, {117, 222}, {94, 245}, {82, 249}, {26, 182}, {114,
222}, {59, 151}, {50, 158}, {31, 179}, {63, 147}, {85, 249}, {18, 191}, {97,
204}, {96, 205}, {59, 150}, {58, 151}, {24, 181}, {73, 228}, {83, 254}, {7,
169}, {117, 219}, {27, 181}, {71, 233}, {6, 169}, {116, 219}, {92, 243}, {49,
158}, {25, 182}, {64, 239}, {12, 188}, {93, 237}, {60, 140}, {51, 131}, {30,
174}, {2, 179}, {105, 216}, {50, 131}, {13, 188}, {35, 145}, {115, 193}, {51,
129}, {41, 155}, {29, 174}, {115, 192}, {94, 237}, {48, 132}, {116, 192}, {112,
196}, {87, 227}, {52, 129}, {126, 203}, {119, 194}, {99, 214}, {57, 140}, {43,
157}, {105, 223}, {96, 214}, {65, 247}, {26, 173}, {118, 193}, {104, 223}, {42,
157}, {38, 145}, {25, 161}, {116, 204}, {106, 210}, {92, 228}, {29, 165}, {70,
254}, {76, 244}, {86, 238}, {89, 225}, {24, 161}, {125, 196}, {78, 247}, {88,
225}, {23, 173}, {120, 194}, {113, 203}, {64, 250}, {79, 244}, {105, 210}, {85,
238}, {88, 227}, {4, 184}, {121, 197}, {91, 231}, {15, 179}, {84, 232}, {10,
183}, {120, 197}, {113, 204}, {89, 228}, {38, 155}, {67, 254}, {85, 232}, {9,
183}, {102, 216}, {7, 184}, {26, 165}, {88, 231}, {20, 212}, {97, 161}, {103,
166}, {9, 203}, {100, 166}, {17, 211}, {23, 212}, {50, 241}, {24, 220}, {124,
184}, {8, 205}, {32, 230}, {97, 167}, {91, 157}, {49, 247}, {62, 248}, {39,
224}, {127, 184}, {90, 157}, {56, 255}, {61, 250}, {63, 248}, {65, 134}, {2,
202}, {107, 163}, {60, 244}, {55, 255}, {41, 225}, {21, 221}, {70, 142}, {84,
156}, {21, 220}, {110, 167}, {40, 225}, {62, 247}, {71, 142}, {7, 205}, {48,
250}, {42, 224}, {31, 213}, {80, 154}, {1, 202}, {22, 221}, {63, 244}, {36,
232}, {126, 178}, {6, 203}, {110, 163}, {37, 232}, {30, 211}, {17, 223}, {63,
241}, {83, 156}, {125, 178}, {53, 229}, {127, 175}, {123, 171}, {42, 251}, {112,
161}, {61, 236}, {28, 206}, {41, 251}, {62, 236}, {13, 222}, {34, 241}, {64,
147}, {8, 220}, {10, 222}, {27, 206}, {92, 137}, {80, 134}, {114, 164}, {95,
137}, {45, 250}, {124, 171}, {115, 164}, {55, 224}, {50, 229}, {82, 138}, {123,
163}, {102, 190}, {5, 220}, {117, 172}, {67, 154}, {83, 138}, {47, 245}, {118,
172}, {58, 224}, {64, 154}, {78, 148}, {19, 200}, {106, 177}, {101, 190}, {46,
245}, {79, 148}, {20, 200}, {109, 177}, {31, 195}, {96, 189}, {126, 163}, {4,
218}, {49, 239}, {47, 241}, {5, 218}, {28, 195}, {14, 238}, {101, 133}, {38,
198}, {78, 174}, {28, 253}, {108, 141}, {106, 139}, {39, 198}, {65, 160}, {75,
170}, {30, 252}, {101, 135}, {99, 129}, {59, 217}, {37, 199}, {13, 238}, {112,
147}, {100, 135}, {31, 252}, {77, 174}, {25, 253}, {105, 141}, {68, 160}, {78,
170}, {82, 183}, {108, 137}, {100, 129}, {85, 176}, {66, 164}, {121, 159}, {111,
137}, {81, 183}, {62, 217}, {67, 164}, {5, 237}, {58, 210}, {30, 246}, {88,
176}, {2, 235}, {118, 159}, {61, 215}, {126, 148}, {6, 237}, {127, 148}, {90,
177}, {57, 210}, {43, 192}, {13, 230}, {15, 227}, {103, 139}, {93, 177}, {47,
195}, {44, 192}, {81, 189}, {27, 246}, {104, 133}, {58, 215}, {47, 194}, {1,
239}, {52, 218}, {5, 235}, {40, 199}, {53, 218}, {44, 195}, {3, 243}, {117,
133}, {36, 212}, {12, 253}, {124, 141}, {122, 139}, {121, 136}, {91, 170}, {24,
233}, {81, 160}, {87, 166}, {33, 211}, {122, 136}, {53, 199}, {48, 194}, {43,
217}, {84, 166}, {16, 227}, {39, 212}, {73, 186}, {9, 253}, {121, 141}, {94,
170}, {84, 160}, {32, 213}, {69, 176}, {14, 248}, {110, 152}, {16, 230}, {81,
167}, {4, 243}, {113, 134}, {111, 152}, {46, 217}, {15, 248}, {14, 246}, {118,
142}, {109, 149}, {26, 226}, {72, 176}, {27, 226}, {123, 130}, {119, 142}, {108,
149}, {94, 167}, {66, 187}, {65, 187}, {120, 130}, {108, 150}, {106, 144}, {29,
230}, {107, 144}, {44, 208}, {119, 139}, {115, 143}, {111, 147}, {98, 158}, {70,
186}, {72, 180}, {74, 182}, {11, 246}, {120, 133}, {107, 150}, {46, 211}, {45,
208}, {15, 242}, {68, 185}, {12, 242}, {23, 233}, {71, 185}, {16, 239}, {97,
158}, {56, 199}, {32, 223}, {73, 182}, {75, 180}, {76, 256}, {77, 256}, {124,
256}, {125, 256} }>;
(II) A more general form is to represent the graph as the orbit of {128, 134}
under the group generated by the following permutations:
a: (1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16)(17, 122, 19, 124, 21,
126, 23, 128, 25, 114, 27, 116, 29, 118, 31, 120)(18, 123, 20, 125, 22, 127, 24,
113, 26, 115, 28, 117, 30, 119, 32, 121)(33, 106, 35, 108, 37, 110, 39, 112, 41,
98, 43, 100, 45, 102, 47, 104)(34, 107, 36, 109, 38, 111, 40, 97, 42, 99, 44,
101, 46, 103, 48, 105)(49, 90, 51, 92, 53, 94, 55, 96, 57, 82, 59, 84, 61, 86,
63, 88)(50, 91, 52, 93, 54, 95, 56, 81, 58, 83, 60, 85, 62, 87, 64, 89)(65, 74,
67, 76, 69, 78, 71, 80, 73, 66, 75, 68, 77, 70, 79, 72)(129, 208, 190, 245, 255,
189, 210, 138, 150, 232, 236, 198, 147, 225, 158, 157)(130, 146, 235, 153, 184,
220, 203, 173, 143, 253, 222, 246, 242, 230, 159, 179)(131, 243, 218, 237, 169,
205, 162, 183, 151, 156, 188, 238, 248, 227, 239, 202)(132, 141, 191, 163, 212,
196, 155, 240, 181, 204, 165, 193, 195, 133, 211, 139)(134, 182, 164, 206, 219,
174, 142, 213, 197, 187, 234, 200, 256, 221, 148, 233)(135, 172, 252, 194, 223,
136, 144, 171, 149, 178, 152, 175, 161, 251, 226, 192)(137, 199, 167, 224, 214,
140, 249, 217, 166, 250, 216, 241, 231, 168, 177, 145)(154, 228, 229, 170, 185,
201, 186, 207, 180, 160, 215, 254, 244, 176, 247, 209) (III) Last is Groups&Graphs. Copy everything between (not including)
the lines of asterisks into a plain text file and save it as "graph.txt". Then
launch G&G (Groups&Graphs) and select Read Text from the File menu.
**************
&Graph **************
b: (2, 121, 16, 17)(3, 105, 15, 33)(4, 89, 14, 49)(5, 73, 13, 65)(6, 57, 12,
81)(7, 41, 11, 97)(8, 25, 10, 113)(18, 122, 120, 32)(19, 106, 119, 48)(20, 90,
118, 64)(21, 74, 117, 80)(22, 58, 116, 96)(23, 42, 115, 112)(24, 26, 114,
128)(27, 98, 127, 40)(28, 82, 126, 56)(29, 66, 125, 72)(30, 50, 124, 88)(31, 34,
123, 104)(35, 107, 103, 47)(36, 91, 102, 63)(37, 75, 101, 79)(38, 59, 100,
95)(39, 43, 99, 111)(44, 83, 110, 55)(45, 67, 109, 71)(46, 51, 108, 87)(52, 92,
86, 62)(53, 76, 85, 78)(54, 60, 84, 94)(61, 68, 93, 70)(69, 77)(129, 137, 198,
217)(130, 223, 179, 136)(131, 141, 227, 211)(132, 144, 139, 194)(133, 213, 191,
234)(134, 220, 182, 222)(135, 207, 178, 180)(138, 163, 255, 195)(140, 156, 167,
169)(142, 250, 200, 177)(143, 161, 173, 251)(145, 150, 166, 245)(146, 202, 159,
239)(147, 212, 157, 193)(148, 199, 206, 249)(149, 209, 172, 154)(151, 204, 205,
155)(152, 224, 192, 214)(153, 210, 242, 189)(158, 184, 225, 246)(160, 237, 186,
188)(162, 253, 183, 203)(164, 196, 233, 165)(168, 243, 216, 248)(170, 190, 244,
232)(171, 231, 252, 241)(174, 229, 256, 176)(175, 181, 226, 240)(185, 208, 254,
236)(187, 235, 197, 230)(201, 221, 215, 219)(218, 228, 238, 247)
C4[ 256, 134 ]
256
-1 146 202 159 239
-2 179 202 235 131
-3 243 130 131 153
-4 243 146 184 218
-5 220 235 237 218
-6 169 203 237 153
-7 169 205 173 184
-8 143 220 205 162
-9 253 203 183 162
-10 222 183 151 173
-11 143 156 246 151
-12 242 253 188 156
-13 188 222 238 230
-14 246 159 248 238
-15 242 179 248 227
-16 227 239 130 230
-17 187 211 146 223
-18 187 144 179 191
-19 132 144 200 153
-20 200 146 212 149
-21 220 221 191 149
-22 155 221 152 153
-23 233 212 173 152
-24 220 233 181 161
-25 253 155 182 161
-26 165 182 226 173
-27 246 181 226 206
-28 253 135 195 206
-29 165 135 174 230
-30 211 246 174 252
-31 179 213 195 252
-32 132 223 213 230
-33 189 211 168 136
-34 136 191 138 241
-35 132 145 138 171
-36 232 168 212 171
-37 199 232 178 191
-38 198 155 145 178
-39 198 212 224 175
-40 199 181 225 175
-41 155 225 140 251
-42 165 157 224 251
-43 157 181 192 217
-44 192 140 195 208
-45 165 172 250 208
-46 211 245 172 217
-47 245 194 195 241
-48 132 189 194 250
-49 168 158 247 239
-50 158 229 131 241
-51 154 145 129 131
-52 168 129 185 218
-53 199 190 218 229
-54 145 190 169 186
-55 255 169 224 185
-56 199 255 180 162
-57 210 140 162 186
-58 210 224 215 151
-59 180 150 151 217
-60 188 244 150 140
-61 188 236 215 250
-62 236 247 248 217
-63 244 147 248 241
-64 154 147 239 250
-65 187 134 247 160
-66 187 207 229 164
-67 154 254 200 164
-68 200 160 185 219
-69 176 221 229 219
-70 221 254 142 186
-71 209 233 185 142
-72 176 233 180 197
-73 182 228 186 197
-74 209 234 182 215
-75 234 180 170 206
-76 244 256 206 228
-77 201 256 215 174
-78 148 170 247 174
-79 244 213 148 207
-80 154 134 201 213
-81 167 189 160 183
-82 138 183 249 207
-83 254 156 214 138
-84 166 232 156 160
-85 176 232 238 249
-86 198 254 216 238
-87 198 209 166 227
-88 176 231 225 227
-89 202 225 216 228
-90 209 177 157 202
-91 231 243 157 170
-92 243 137 228 208
-93 177 201 237 208
-94 167 245 170 237
-95 245 137 205 207
-96 189 201 214 205
-97 167 158 204 161
-98 158 226 249 240
-99 214 193 226 129
-100 166 135 204 129
-101 133 135 190 249
-102 190 193 216 252
-103 166 255 139 252
-104 231 133 255 223
-105 210 223 216 141
-106 144 177 210 139
-107 231 144 150 163
-108 137 149 150 141
-109 177 236 149 196
-110 167 236 152 163
-111 147 137 152 240
-112 147 214 161 196
-113 134 203 204 251
-114 222 240 251 164
-115 143 192 193 164
-116 242 192 204 219
-117 133 222 172 219
-118 159 193 172 142
-119 242 139 194 142
-120 133 194 130 197
-121 136 159 141 197
-122 234 136 235 139
-123 234 171 130 163
-124 256 171 184 141
-125 178 256 235 196
-126 178 148 203 163
-127 148 184 240 175
-128 143 134 196 175
-129 99 100 51 52
-130 123 3 16 120
-131 2 3 50 51
-132 35 48 19 32
-133 101 104 117 120
-134 80 113 128 65
-135 100 101 28 29
-136 33 121 34 122
-137 111 92 95 108
-138 34 35 82 83
-139 122 103 106 119
-140 44 57 60 41
-141 121 124 105 108
-142 70 71 118 119
-143 11 115 128 8
-144 18 106 19 107
-145 35 38 51 54
-146 1 4 17 20
-147 111 112 63 64
-148 78 79 126 127
-149 20 108 21 109
-150 59 60 107 108
-151 11 58 59 10
-152 22 110 23 111
-153 22 3 6 19
-154 67 80 51 64
-155 22 25 38 41
-156 11 12 83 84
-157 90 91 42 43
-158 49 50 97 98
-159 121 1 14 118
-160 68 81 84 65
-161 24 112 25 97
-162 56 57 8 9
-163 110 123 126 107
-164 66 67 114 115
-165 45 26 29 42
-166 100 103 84 87
-167 110 81 94 97
-168 33 36 49 52
-169 55 6 7 54
-170 78 91 94 75
-171 35 123 36 124
-172 45 46 117 118
-173 23 26 7 10
-174 77 78 29 30
-175 39 127 40 128
-176 88 69 72 85
-177 90 93 106 109
-178 37 125 38 126
-179 2 15 18 31
-180 56 59 72 75
-181 24 27 40 43
-182 25 26 73 74
-183 81 82 9 10
-184 124 4 127 7
-185 55 68 71 52
-186 57 70 73 54
-187 66 17 18 65
-188 12 13 60 61
-189 33 48 81 96
-190 101 102 53 54
-191 34 37 18 21
-192 44 115 116 43
-193 99 102 115 118
-194 47 48 119 120
-195 44 47 28 31
-196 112 125 128 109
-197 121 72 73 120
-198 38 39 86 87
-199 56 37 40 53
-200 67 68 19 20
-201 77 80 93 96
-202 1 89 2 90
-203 113 126 6 9
-204 100 113 116 97
-205 7 95 8 96
-206 27 28 75 76
-207 66 79 82 95
-208 44 45 92 93
-209 90 71 74 87
-210 57 58 105 106
-211 33 46 17 30
-212 23 36 39 20
-213 79 80 31 32
-214 99 112 83 96
-215 77 58 61 74
-216 89 102 105 86
-217 46 59 62 43
-218 4 5 52 53
-219 68 69 116 117
-220 24 5 8 21
-221 22 69 70 21
-222 13 114 117 10
-223 104 17 105 32
-224 55 58 39 42
-225 88 89 40 41
-226 99 26 27 98
-227 88 15 16 87
-228 89 92 73 76
-229 66 69 50 53
-230 13 16 29 32
-231 88 91 104 107
-232 36 37 84 85
-233 23 24 71 72
-234 122 123 74 75
-235 122 2 125 5
-236 110 61 62 109
-237 5 93 6 94
-238 13 14 85 86
-239 1 16 49 64
-240 111 114 127 98
-241 34 47 50 63
-242 12 15 116 119
-243 3 91 4 92
-244 79 60 63 76
-245 46 47 94 95
-246 11 14 27 30
-247 78 49 62 65
-248 14 15 62 63
-249 101 82 85 98
-250 45 48 61 64
-251 113 114 41 42
-252 102 103 30 31
-253 12 25 28 9
-254 67 70 83 86
-255 55 56 103 104
-256 77 124 125 76
0