C4graphGraph forms for C4 [ 256, 135 ] = BGCG({4,4}_8,8;K1;{15,16,18,20})

[Home] [Table] [Glossary] [Families]

On this page are computer-accessible forms for the graph C4[ 256, 135 ] = BGCG({4,4}_8,8;K1;{15,16,18,20}).

(I) Following is a form readable by MAGMA:

g:=Graph<256|{ {128, 133}, {128, 165}, {128, 172}, {128, 198}, {52, 180}, {98, 226}, {67, 195}, {76, 204}, {86, 214}, {7, 134}, {99, 226}, {49, 176}, {18, 144}, {125, 255}, {20, 150}, {19, 144}, {124, 255}, {39, 164}, {21, 150}, {80, 211}, {15, 139}, {53, 177}, {45, 169}, {40, 172}, {29, 152}, {120, 253}, {110, 235}, {108, 233}, {49, 180}, {2, 132}, {123, 253}, {111, 233}, {109, 235}, {3, 132}, {46, 169}, {68, 195}, {75, 204}, {19, 155}, {114, 250}, {104, 224}, {37, 173}, {70, 206}, {73, 193}, {2, 139}, {125, 244}, {105, 224}, {92, 213}, {56, 177}, {72, 193}, {88, 209}, {22, 156}, {95, 213}, {91, 209}, {61, 183}, {48, 186}, {29, 151}, {16, 155}, {113, 250}, {60, 183}, {39, 172}, {38, 173}, {35, 168}, {23, 156}, {10, 134}, {52, 184}, {36, 168}, {26, 151}, {54, 187}, {48, 189}, {67, 206}, {83, 222}, {42, 164}, {122, 244}, {62, 176}, {53, 187}, {80, 222}, {55, 184}, {89, 214}, {10, 154}, {103, 247}, {54, 166}, {44, 188}, {70, 214}, {11, 154}, {55, 166}, {33, 176}, {12, 157}, {89, 200}, {31, 141}, {93, 207}, {47, 189}, {78, 220}, {92, 207}, {94, 205}, {28, 136}, {92, 200}, {86, 194}, {29, 136}, {124, 233}, {104, 253}, {95, 202}, {87, 194}, {11, 157}, {127, 233}, {107, 253}, {104, 254}, {91, 205}, {21, 131}, {43, 188}, {75, 220}, {3, 155}, {57, 161}, {43, 179}, {56, 161}, {109, 244}, {103, 254}, {72, 209}, {76, 213}, {13, 151}, {102, 252}, {75, 209}, {79, 213}, {24, 131}, {103, 252}, {33, 186}, {36, 184}, {122, 230}, {69, 217}, {79, 211}, {10, 151}, {123, 230}, {106, 247}, {46, 179}, {67, 222}, {68, 217}, {70, 219}, {89, 196}, {46, 176}, {106, 244}, {90, 196}, {69, 219}, {18, 141}, {39, 184}, {73, 214}, {6, 166}, {58, 154}, {71, 231}, {87, 247}, {7, 166}, {105, 200}, {59, 154}, {82, 243}, {47, 141}, {59, 153}, {74, 232}, {79, 236}, {110, 205}, {18, 182}, {108, 200}, {60, 153}, {113, 212}, {37, 131}, {107, 205}, {85, 243}, {17, 182}, {120, 223}, {9, 161}, {90, 242}, {48, 152}, {34, 138}, {27, 179}, {26, 178}, {11, 163}, {6, 175}, {8, 161}, {96, 202}, {126, 212}, {117, 223}, {25, 178}, {121, 210}, {40, 131}, {33, 138}, {63, 148}, {3, 175}, {117, 217}, {74, 230}, {14, 163}, {116, 217}, {90, 247}, {50, 159}, {30, 179}, {75, 230}, {34, 140}, {124, 210}, {95, 241}, {49, 159}, {64, 238}, {66, 236}, {34, 141}, {94, 241}, {93, 242}, {35, 140}, {71, 232}, {72, 231}, {64, 240}, {85, 229}, {51, 130}, {66, 243}, {84, 229}, {12, 190}, {77, 255}, {23, 164}, {92, 239}, {76, 255}, {30, 170}, {94, 234}, {91, 239}, {42, 158}, {87, 227}, {43, 158}, {97, 212}, {45, 152}, {50, 132}, {52, 130}, {69, 243}, {9, 190}, {93, 234}, {51, 132}, {29, 170}, {24, 160}, {121, 193}, {32, 152}, {74, 242}, {85, 237}, {89, 225}, {25, 160}, {120, 193}, {105, 208}, {88, 225}, {13, 183}, {110, 212}, {106, 208}, {12, 183}, {125, 198}, {60, 135}, {32, 155}, {86, 237}, {88, 227}, {9, 181}, {61, 129}, {26, 164}, {96, 222}, {57, 135}, {10, 181}, {77, 242}, {5, 197}, {48, 240}, {37, 229}, {32, 224}, {9, 201}, {36, 229}, {111, 174}, {102, 167}, {97, 160}, {37, 228}, {64, 129}, {8, 202}, {5, 198}, {51, 240}, {65, 133}, {85, 145}, {90, 158}, {1, 196}, {120, 189}, {91, 158}, {87, 146}, {2, 196}, {99, 165}, {56, 254}, {34, 228}, {84, 146}, {2, 197}, {15, 199}, {116, 188}, {62, 246}, {41, 225}, {70, 142}, {20, 221}, {60, 245}, {55, 254}, {40, 225}, {63, 246}, {71, 142}, {84, 157}, {88, 145}, {23, 221}, {119, 189}, {117, 191}, {116, 190}, {63, 245}, {12, 199}, {76, 135}, {31, 211}, {103, 171}, {98, 174}, {77, 129}, {7, 202}, {114, 191}, {22, 219}, {8, 198}, {105, 167}, {93, 147}, {21, 219}, {73, 135}, {83, 157}, {6, 201}, {115, 188}, {113, 190}, {100, 171}, {16, 223}, {19, 195}, {125, 173}, {115, 163}, {114, 162}, {112, 160}, {42, 250}, {28, 204}, {25, 201}, {21, 197}, {53, 228}, {126, 175}, {118, 167}, {115, 162}, {80, 129}, {13, 223}, {58, 232}, {1, 210}, {127, 172}, {126, 173}, {123, 168}, {41, 250}, {35, 240}, {63, 236}, {64, 148}, {124, 168}, {123, 175}, {62, 235}, {118, 163}, {112, 165}, {71, 146}, {80, 133}, {4, 210}, {115, 165}, {61, 235}, {50, 228}, {68, 146}, {18, 197}, {27, 204}, {20, 195}, {19, 203}, {33, 249}, {31, 199}, {4, 221}, {44, 245}, {25, 192}, {7, 221}, {101, 191}, {96, 186}, {47, 245}, {79, 149}, {83, 137}, {28, 199}, {78, 149}, {84, 143}, {4, 216}, {119, 171}, {117, 169}, {28, 192}, {5, 216}, {102, 187}, {98, 191}, {36, 249}, {22, 203}, {47, 241}, {121, 167}, {101, 187}, {50, 236}, {81, 143}, {82, 140}, {22, 201}, {118, 169}, {116, 171}, {55, 232}, {49, 238}, {46, 241}, {83, 140}, {86, 137}, {13, 237}, {27, 251}, {66, 162}, {67, 162}, {99, 130}, {30, 252}, {62, 220}, {45, 207}, {14, 237}, {112, 147}, {57, 218}, {44, 207}, {31, 252}, {24, 251}, {38, 194}, {112, 148}, {78, 170}, {81, 181}, {39, 194}, {30, 248}, {100, 130}, {59, 220}, {94, 185}, {77, 170}, {82, 181}, {17, 249}, {35, 203}, {81, 185}, {17, 248}, {57, 208}, {41, 192}, {58, 208}, {127, 149}, {99, 137}, {61, 215}, {4, 239}, {126, 149}, {100, 143}, {81, 186}, {3, 239}, {100, 136}, {54, 218}, {52, 216}, {44, 192}, {15, 227}, {6, 234}, {20, 249}, {101, 136}, {58, 215}, {53, 216}, {38, 203}, {97, 143}, {1, 238}, {102, 137}, {5, 234}, {11, 251}, {122, 138}, {23, 231}, {68, 180}, {17, 224}, {122, 139}, {95, 174}, {107, 153}, {110, 156}, {8, 251}, {121, 138}, {111, 156}, {96, 147}, {41, 218}, {32, 211}, {16, 227}, {66, 182}, {114, 134}, {113, 133}, {101, 145}, {69, 177}, {65, 180}, {108, 153}, {14, 248}, {65, 182}, {78, 185}, {14, 246}, {118, 142}, {54, 206}, {26, 226}, {65, 185}, {74, 178}, {1, 248}, {127, 134}, {119, 142}, {104, 145}, {27, 226}, {15, 246}, {72, 177}, {45, 215}, {108, 150}, {106, 144}, {73, 178}, {111, 148}, {109, 150}, {107, 144}, {38, 218}, {119, 139}, {82, 174}, {42, 215}, {98, 159}, {51, 206}, {16, 238}, {109, 147}, {97, 159}, {24, 231}, {40, 256}, {43, 256}, {56, 256}, {59, 256} }>;

(II) A more general form is to represent the graph as the orbit of {128, 133} under the group generated by the following permutations:

a: (2, 121)(3, 105)(4, 89)(5, 73)(6, 57)(7, 41)(8, 25)(10, 113)(11, 97)(12, 81)(13, 65)(14, 49)(15, 33)(16, 17)(18, 120)(19, 104)(20, 88)(21, 72)(22, 56)(23, 40)(26, 128)(27, 112)(28, 96)(29, 80)(30, 64)(31, 48)(34, 119)(35, 103)(36, 87)(37, 71)(38, 55)(42, 127)(43, 111)(44, 95)(45, 79)(46, 63)(50, 118)(51, 102)(52, 86)(53, 70)(58, 126)(59, 110)(60, 94)(61, 78)(66, 117)(67, 101)(68, 85)(74, 125)(75, 109)(76, 93)(82, 116)(83, 100)(90, 124)(91, 108)(98, 115)(106, 123)(129, 170)(130, 137)(131, 231)(132, 167)(133, 151)(134, 250)(135, 234)(136, 222)(138, 139)(140, 171)(141, 189)(142, 228)(143, 157)(144, 253)(145, 195)(146, 229)(147, 204)(148, 179)(149, 215)(150, 209)(152, 211)(153, 205)(154, 212)(155, 224)(156, 256)(158, 233)(159, 163)(160, 251)(161, 201)(162, 191)(164, 172)(165, 226)(166, 218)(168, 247)(169, 236)(173, 232)(174, 188)(175, 208)(176, 246)(177, 219)(178, 198)(180, 237)(181, 190)(182, 223)(183, 185)(184, 194)(186, 199)(187, 206)(192, 202)(193, 197)(196, 210)(200, 239)(203, 254)(207, 213)(214, 216)(217, 243)(220, 235)(221, 225)(227, 249)(230, 244)(238, 248)(240, 252)(241, 245)(242, 255)
b: (2, 16)(3, 15)(4, 14)(5, 13)(6, 12)(7, 11)(8, 10)(17, 121)(18, 120)(19, 119)(20, 118)(21, 117)(22, 116)(23, 115)(24, 114)(25, 113)(26, 128)(27, 127)(28, 126)(29, 125)(30, 124)(31, 123)(32, 122)(33, 105)(34, 104)(35, 103)(36, 102)(37, 101)(38, 100)(39, 99)(40, 98)(41, 97)(42, 112)(43, 111)(44, 110)(45, 109)(46, 108)(47, 107)(48, 106)(49, 89)(50, 88)(51, 87)(52, 86)(53, 85)(54, 84)(55, 83)(56, 82)(57, 81)(58, 96)(59, 95)(60, 94)(61, 93)(62, 92)(63, 91)(64, 90)(65, 73)(66, 72)(67, 71)(68, 70)(74, 80)(75, 79)(76, 78)(129, 242)(130, 194)(131, 191)(132, 227)(133, 178)(134, 251)(135, 185)(136, 173)(137, 184)(138, 224)(139, 155)(140, 254)(141, 253)(142, 195)(143, 218)(144, 189)(145, 228)(146, 206)(147, 215)(148, 158)(149, 204)(150, 169)(151, 198)(152, 244)(153, 241)(154, 202)(156, 188)(157, 166)(159, 225)(160, 250)(161, 181)(162, 231)(163, 221)(164, 165)(167, 249)(168, 252)(170, 255)(171, 203)(172, 226)(174, 256)(175, 199)(176, 200)(177, 243)(179, 233)(180, 214)(182, 193)(183, 234)(186, 208)(187, 229)(190, 201)(192, 212)(196, 238)(197, 223)(205, 245)(207, 235)(209, 236)(210, 248)(211, 230)(213, 220)(216, 237)(217, 219)(222, 232)(239, 246)(240, 247)
c: (1, 2)(3, 16)(4, 15)(5, 14)(6, 13)(7, 12)(8, 11)(9, 10)(17, 18)(19, 32)(20, 31)(21, 30)(22, 29)(23, 28)(24, 27)(25, 26)(33, 34)(35, 48)(36, 47)(37, 46)(38, 45)(39, 44)(40, 43)(41, 42)(49, 50)(51, 64)(52, 63)(53, 62)(54, 61)(55, 60)(56, 59)(57, 58)(65, 66)(67, 80)(68, 79)(69, 78)(70, 77)(71, 76)(72, 75)(73, 74)(81, 82)(83, 96)(84, 95)(85, 94)(86, 93)(87, 92)(88, 91)(89, 90)(97, 98)(99, 112)(100, 111)(101, 110)(102, 109)(103, 108)(104, 107)(105, 106)(113, 114)(115, 128)(116, 127)(117, 126)(118, 125)(119, 124)(120, 123)(121, 122)(129, 206)(130, 148)(131, 179)(132, 238)(133, 162)(134, 190)(135, 232)(136, 156)(137, 147)(139, 210)(140, 186)(141, 249)(142, 255)(143, 174)(144, 224)(145, 205)(146, 213)(149, 217)(150, 252)(151, 201)(152, 203)(153, 254)(154, 161)(157, 202)(158, 225)(160, 226)(163, 198)(164, 192)(166, 183)(167, 244)(168, 189)(169, 173)(170, 219)(171, 233)(172, 188)(175, 223)(176, 228)(177, 220)(180, 236)(184, 245)(185, 243)(187, 235)(191, 212)(193, 230)(194, 207)(195, 211)(197, 248)(199, 221)(200, 247)(204, 231)(214, 242)(215, 218)(216, 246)(227, 239)(229, 241)(234, 237)

(III) Last is Groups&Graphs. Copy everything between (not including) the lines of asterisks into a plain text file and save it as "graph.txt". Then launch G&G (Groups&Graphs) and select Read Text from the File menu.

**************

&Graph
C4[ 256, 135 ]
256
-1 210 248 238 196
-2 132 139 196 197
-3 132 155 239 175
-4 210 221 216 239
-5 198 234 216 197
-6 166 201 234 175
-7 166 221 134 202
-8 198 202 161 251
-9 190 201 181 161
-10 154 134 181 151
-11 154 157 163 251
-12 199 157 190 183
-13 223 237 183 151
-14 246 237 248 163
-15 199 246 139 227
-16 155 223 227 238
-17 224 182 248 249
-18 144 182 141 197
-19 144 155 203 195
-20 221 150 249 195
-21 150 131 197 219
-22 156 201 203 219
-23 231 221 156 164
-24 231 160 251 131
-25 178 201 192 160
-26 178 226 151 164
-27 179 204 226 251
-28 199 136 192 204
-29 136 170 151 152
-30 179 170 248 252
-31 199 211 141 252
-32 155 211 224 152
-33 176 138 249 186
-34 138 140 228 141
-35 168 203 140 240
-36 168 249 184 229
-37 173 228 229 131
-38 203 194 173 218
-39 172 194 184 164
-40 256 225 172 131
-41 192 225 250 218
-42 158 215 250 164
-43 188 179 256 158
-44 188 245 192 207
-45 169 215 152 207
-46 176 179 169 241
-47 189 245 141 241
-48 189 152 240 186
-49 176 180 159 238
-50 132 159 236 228
-51 132 206 130 240
-52 180 216 184 130
-53 187 177 216 228
-54 187 166 206 218
-55 166 232 254 184
-56 177 254 256 161
-57 135 161 218 208
-58 154 232 215 208
-59 154 220 256 153
-60 135 245 183 153
-61 235 215 183 129
-62 176 220 235 246
-63 245 246 148 236
-64 148 238 129 240
-65 133 180 182 185
-66 243 236 182 162
-67 222 162 195 206
-68 146 180 195 217
-69 177 243 217 219
-70 214 206 142 219
-71 231 232 146 142
-72 209 231 177 193
-73 178 135 214 193
-74 242 232 178 230
-75 209 220 204 230
-76 255 135 213 204
-77 242 255 170 129
-78 220 170 149 185
-79 211 213 236 149
-80 133 211 222 129
-81 143 181 185 186
-82 243 181 140 174
-83 222 157 137 140
-84 143 146 157 229
-85 243 145 237 229
-86 137 214 237 194
-87 146 247 194 227
-88 209 145 225 227
-89 200 214 225 196
-90 242 158 247 196
-91 209 158 205 239
-92 200 213 239 207
-93 242 234 147 207
-94 234 205 185 241
-95 202 213 174 241
-96 222 147 202 186
-97 143 212 159 160
-98 191 159 226 174
-99 165 137 226 130
-100 143 136 171 130
-101 187 145 136 191
-102 187 167 137 252
-103 254 247 171 252
-104 253 254 145 224
-105 167 200 224 208
-106 144 244 247 208
-107 253 144 205 153
-108 200 233 150 153
-109 244 147 235 150
-110 156 212 235 205
-111 156 233 148 174
-112 165 147 148 160
-113 133 190 212 250
-114 134 191 162 250
-115 165 188 162 163
-116 188 190 171 217
-117 223 169 191 217
-118 167 169 163 142
-119 189 171 139 142
-120 253 189 223 193
-121 210 167 138 193
-122 244 138 139 230
-123 253 168 175 230
-124 210 233 255 168
-125 198 244 255 173
-126 212 149 173 175
-127 134 233 149 172
-128 165 198 133 172
-129 77 80 61 64
-130 99 100 51 52
-131 24 37 40 21
-132 2 3 50 51
-133 80 113 128 65
-134 114 127 7 10
-135 57 60 73 76
-136 100 101 28 29
-137 99 102 83 86
-138 33 121 34 122
-139 122 2 15 119
-140 34 35 82 83
-141 34 47 18 31
-142 70 71 118 119
-143 100 81 84 97
-144 18 106 19 107
-145 88 101 104 85
-146 68 71 84 87
-147 112 93 96 109
-148 111 112 63 64
-149 78 79 126 127
-150 20 108 21 109
-151 13 26 29 10
-152 45 48 29 32
-153 59 60 107 108
-154 11 58 59 10
-155 3 16 19 32
-156 22 110 23 111
-157 11 12 83 84
-158 90 91 42 43
-159 49 50 97 98
-160 24 112 25 97
-161 56 57 8 9
-162 66 67 114 115
-163 11 14 115 118
-164 23 26 39 42
-165 99 112 115 128
-166 55 6 7 54
-167 121 102 105 118
-168 35 123 36 124
-169 45 46 117 118
-170 77 78 29 30
-171 100 103 116 119
-172 39 127 40 128
-173 37 125 38 126
-174 111 82 95 98
-175 123 3 126 6
-176 33 46 49 62
-177 56 69 72 53
-178 25 26 73 74
-179 46 27 30 43
-180 68 49 52 65
-181 81 82 9 10
-182 66 17 18 65
-183 12 13 60 61
-184 55 36 39 52
-185 78 81 94 65
-186 33 48 81 96
-187 101 102 53 54
-188 44 115 116 43
-189 47 48 119 120
-190 12 113 116 9
-191 101 114 117 98
-192 44 25 28 41
-193 121 72 73 120
-194 38 39 86 87
-195 67 68 19 20
-196 1 89 2 90
-197 2 5 18 21
-198 125 5 128 8
-199 12 15 28 31
-200 89 92 105 108
-201 22 25 6 9
-202 7 95 8 96
-203 22 35 38 19
-204 27 28 75 76
-205 110 91 94 107
-206 67 70 51 54
-207 44 45 92 93
-208 57 58 105 106
-209 88 91 72 75
-210 121 1 124 4
-211 79 80 31 32
-212 110 113 126 97
-213 79 92 95 76
-214 89 70 73 86
-215 45 58 61 42
-216 4 5 52 53
-217 68 69 116 117
-218 57 38 41 54
-219 22 69 70 21
-220 78 59 62 75
-221 23 4 7 20
-222 67 80 83 96
-223 13 16 117 120
-224 104 17 105 32
-225 88 89 40 41
-226 99 26 27 98
-227 88 15 16 87
-228 34 37 50 53
-229 36 37 84 85
-230 122 123 74 75
-231 23 24 71 72
-232 55 58 71 74
-233 111 124 127 108
-234 5 93 6 94
-235 110 61 62 109
-236 66 79 50 63
-237 13 14 85 86
-238 1 16 49 64
-239 3 91 4 92
-240 35 48 51 64
-241 46 47 94 95
-242 77 90 93 74
-243 66 69 82 85
-244 122 125 106 109
-245 44 47 60 63
-246 14 15 62 63
-247 90 103 106 87
-248 1 14 17 30
-249 33 36 17 20
-250 113 114 41 42
-251 11 24 27 8
-252 102 103 30 31
-253 123 104 107 120
-254 55 56 103 104
-255 77 124 125 76
-256 56 59 40 43
0

**************