[Home] [Table] [Glossary]
[Families]
On this page are computer-accessible forms for the graph C4[ 256, 137 ] =
BGCG(PX(8,4);K1;{5,14}).
(I) Following is a form readable by MAGMA:
g:=Graph<256|{ {128, 144}, {128, 225}, {128, 233}, {128, 234}, {39, 166}, {55,
182}, {76, 205}, {10, 136}, {104, 234}, {19, 145}, {63, 189}, {68, 198}, {9,
138}, {107, 232}, {45, 174}, {43, 168}, {125, 249}, {1, 132}, {10, 143}, {17,
151}, {119, 241}, {115, 245}, {36, 162}, {34, 164}, {33, 167}, {28, 154}, {24,
158}, {65, 199}, {36, 172}, {45, 165}, {50, 187}, {51, 185}, {120, 242}, {92,
214}, {64, 202}, {68, 206}, {9, 130}, {100, 239}, {89, 210}, {25, 146}, {23,
155}, {107, 231}, {71, 203}, {4, 137}, {115, 254}, {107, 230}, {46, 163}, {32,
173}, {20, 153}, {14, 131}, {62, 179}, {85, 216}, {26, 148}, {99, 237}, {59,
181}, {57, 183}, {60, 178}, {85, 219}, {87, 217}, {8, 135}, {121, 246}, {28,
147}, {81, 222}, {83, 220}, {27, 139}, {114, 226}, {80, 193}, {12, 158}, {14,
156}, {75, 216}, {78, 221}, {38, 178}, {56, 172}, {42, 190}, {39, 179}, {61,
169}, {64, 212}, {84, 192}, {17, 132}, {94, 203}, {55, 162}, {40, 189}, {62,
171}, {115, 229}, {27, 131}, {116, 236}, {59, 163}, {56, 160}, {51, 170}, {73,
208}, {45, 183}, {98, 248}, {87, 205}, {19, 136}, {88, 195}, {22, 141}, {20,
143}, {65, 218}, {35, 191}, {124, 224}, {98, 254}, {11, 150}, {117, 232}, {102,
251}, {72, 213}, {1, 159}, {88, 198}, {54, 168}, {46, 176}, {9, 151}, {6, 152},
{4, 155}, {58, 165}, {48, 175}, {43, 180}, {87, 200}, {54, 150}, {93, 253}, {91,
251}, {1, 160}, {126, 223}, {99, 194}, {96, 193}, {8, 169}, {69, 228}, {26,
184}, {55, 149}, {50, 144}, {18, 177}, {106, 201}, {105, 202}, {47, 140}, {63,
156}, {66, 225}, {37, 129}, {115, 215}, {112, 212}, {104, 204}, {79, 235}, {8,
173}, {118, 211}, {117, 208}, {109, 200}, {26, 191}, {73, 236}, {28, 186}, {119,
209}, {43, 141}, {35, 133}, {62, 152}, {80, 246}, {81, 247}, {85, 243}, {86,
240}, {12, 171}, {122, 221}, {103, 192}, {23, 176}, {73, 238}, {72, 224}, {109,
197}, {84, 252}, {21, 188}, {81, 248}, {83, 250}, {11, 161}, {30, 180}, {21,
190}, {127, 212}, {113, 218}, {34, 142}, {99, 207}, {83, 255}, {38, 139}, {105,
196}, {49, 159}, {51, 157}, {75, 229}, {77, 227}, {5, 170}, {91, 244}, {41,
134}, {77, 226}, {1, 177}, {111, 223}, {98, 210}, {53, 133}, {36, 148}, {34,
146}, {67, 243}, {69, 245}, {86, 230}, {40, 153}, {127, 206}, {106, 219}, {61,
140}, {72, 249}, {11, 185}, {20, 166}, {64, 242}, {67, 241}, {58, 137}, {127,
204}, {112, 195}, {67, 240}, {14, 186}, {13, 184}, {113, 196}, {100, 209}, {96,
213}, {90, 239}, {17, 164}, {74, 255}, {17, 167}, {93, 235}, {52, 130}, {64,
246}, {65, 247}, {74, 252}, {22, 161}, {117, 194}, {110, 217}, {90, 237}, {49,
134}, {42, 157}, {38, 145}, {24, 175}, {3, 187}, {114, 202}, {107, 211}, {66,
250}, {12, 181}, {118, 207}, {94, 231}, {44, 149}, {41, 144}, {23, 174}, {80,
233}, {71, 253}, {102, 220}, {89, 227}, {78, 244}, {13, 182}, {58, 129}, {40,
147}, {60, 135}, {82, 238}, {39, 154}, {116, 201}, {106, 215}, {51, 142}, {79,
242}, {90, 228}, {104, 214}, {3, 188}, {122, 197}, {120, 199}, {97, 222}, {53,
138}, {14, 206}, {111, 175}, {108, 172}, {71, 135}, {74, 138}, {79, 143}, {46,
239}, {122, 187}, {89, 155}, {37, 230}, {50, 241}, {61, 254}, {15, 203}, {90,
158}, {16, 213}, {102, 163}, {97, 164}, {92, 153}, {60, 249}, {70, 131}, {71,
130}, {82, 151}, {24, 222}, {110, 168}, {31, 217}, {29, 219}, {27, 220}, {101,
162}, {9, 193}, {111, 167}, {15, 199}, {4, 205}, {127, 182}, {123, 178}, {108,
165}, {36, 237}, {12, 198}, {91, 145}, {31, 213}, {66, 136}, {67, 137}, {29,
214}, {126, 181}, {95, 148}, {44, 231}, {35, 232}, {72, 132}, {113, 189}, {99,
174}, {122, 183}, {22, 216}, {125, 179}, {93, 147}, {59, 245}, {32, 238}, {84,
154}, {96, 175}, {118, 185}, {105, 166}, {23, 198}, {123, 170}, {113, 160}, {94,
143}, {56, 233}, {77, 156}, {101, 183}, {18, 193}, {54, 229}, {77, 158}, {52,
224}, {124, 168}, {76, 152}, {21, 192}, {124, 169}, {94, 139}, {55, 226}, {24,
205}, {63, 234}, {29, 203}, {65, 151}, {44, 251}, {105, 190}, {2, 218}, {108,
180}, {57, 225}, {4, 221}, {53, 236}, {39, 254}, {33, 248}, {10, 208}, {48,
234}, {18, 200}, {76, 150}, {3, 216}, {121, 162}, {119, 172}, {100, 191}, {95,
132}, {84, 136}, {111, 179}, {110, 178}, {97, 189}, {66, 159}, {120, 165}, {118,
171}, {109, 176}, {54, 232}, {69, 155}, {83, 141}, {92, 131}, {124, 163}, {5,
229}, {112, 144}, {88, 184}, {75, 171}, {81, 177}, {3, 226}, {25, 248}, {16,
242}, {112, 146}, {48, 210}, {30, 252}, {63, 221}, {86, 180}, {32, 195}, {123,
152}, {102, 133}, {93, 190}, {57, 218}, {52, 215}, {74, 169}, {38, 194}, {43,
207}, {21, 240}, {33, 196}, {30, 251}, {5, 227}, {121, 159}, {47, 201}, {15,
233}, {7, 224}, {108, 139}, {97, 134}, {91, 188}, {29, 250}, {27, 243}, {126,
150}, {101, 141}, {57, 209}, {31, 247}, {28, 244}, {13, 228}, {116, 157}, {103,
142}, {44, 197}, {41, 192}, {7, 236}, {119, 156}, {103, 140}, {52, 223}, {35,
200}, {20, 255}, {7, 235}, {109, 129}, {47, 195}, {70, 170}, {86, 186}, {33,
204}, {120, 149}, {61, 208}, {82, 191}, {19, 253}, {60, 211}, {95, 176}, {78,
161}, {79, 160}, {31, 239}, {16, 225}, {100, 149}, {47, 222}, {22, 231}, {75,
186}, {6, 244}, {126, 140}, {104, 154}, {96, 146}, {95, 173}, {41, 219}, {32,
210}, {6, 245}, {125, 142}, {116, 135}, {15, 252}, {10, 249}, {70, 181}, {85,
166}, {2, 246}, {114, 134}, {101, 145}, {58, 206}, {45, 217}, {37, 209}, {76,
184}, {6, 243}, {42, 223}, {34, 215}, {30, 235}, {19, 230}, {49, 199}, {50,
196}, {62, 201}, {125, 138}, {117, 130}, {73, 177}, {121, 129}, {78, 182}, {26,
227}, {106, 147}, {59, 194}, {37, 220}, {48, 202}, {110, 148}, {53, 207}, {70,
188}, {11, 240}, {114, 137}, {13, 241}, {42, 214}, {40, 212}, {69, 185}, {82,
174}, {2, 255}, {92, 161}, {89, 164}, {56, 197}, {49, 204}, {46, 211}, {25,
228}, {7, 250}, {80, 173}, {16, 238}, {123, 133}, {103, 153}, {2, 253}, {98,
157}, {18, 237}, {8, 247}, {68, 187}, {88, 167}, {5, 256}, {25, 256}, {68, 256},
{87, 256} }>;
(II) A more general form is to represent the graph as the orbit of {128, 144}
under the group generated by the following permutations:
a: (6, 11)(7, 10)(19, 83)(20, 93)(21, 85)(22, 91)(27, 86)(28, 92)(29, 84)(30,
94)(38, 43)(39, 42)(51, 115)(52, 125)(53, 117)(54, 123)(59, 118)(60, 124)(61,
116)(62, 126)(70, 75)(71, 74)(102, 107)(103, 106)(130, 138)(131, 186)(133,
232)(135, 169)(136, 250)(139, 180)(140, 201)(141, 145)(142, 215)(143, 235)(147,
153)(150, 152)(154, 214)(157, 254)(161, 244)(163, 211)(166, 190)(168, 178)(170,
229)(171, 181)(179, 223)(185, 245)(188, 216)(192, 219)(194, 207)(203, 252)(208,
236)(220, 230)(224, 249)(231, 251)(240, 243)(253, 255) (III) Last is Groups&Graphs. Copy everything between (not including)
the lines of asterisks into a plain text file and save it as "graph.txt". Then
launch G&G (Groups&Graphs) and select Read Text from the File menu.
**************
&Graph **************
b: (2, 15)(4, 13)(5, 12)(7, 10)(17, 18)(19, 29)(20, 30)(21, 22)(23, 25)(24,
26)(27, 28)(31, 32)(33, 109)(34, 99)(35, 111)(36, 97)(37, 104)(38, 106)(39,
102)(40, 108)(41, 101)(42, 107)(43, 103)(44, 105)(45, 112)(46, 98)(47, 110)(48,
100)(49, 121)(50, 122)(51, 118)(52, 117)(53, 125)(54, 126)(55, 114)(56, 113)(57,
128)(58, 127)(59, 115)(60, 116)(61, 124)(62, 123)(63, 119)(64, 120)(65, 80)(67,
78)(70, 75)(72, 73)(81, 95)(82, 96)(83, 84)(85, 91)(86, 92)(87, 88)(89, 90)(93,
94)(129, 204)(131, 186)(132, 177)(133, 179)(134, 162)(136, 250)(137, 182)(139,
147)(140, 168)(141, 192)(142, 207)(143, 235)(144, 183)(145, 219)(146, 174)(148,
222)(149, 202)(151, 193)(153, 180)(154, 220)(155, 228)(157, 211)(158, 227)(161,
240)(163, 254)(164, 237)(165, 212)(166, 251)(167, 200)(170, 171)(172, 189)(173,
247)(175, 191)(176, 248)(178, 201)(181, 229)(184, 205)(188, 216)(190, 231)(194,
215)(195, 217)(196, 197)(198, 256)(199, 246)(203, 253)(208, 224)(209, 234)(210,
239)(213, 238)(214, 230)(218, 233)(221, 241)(223, 232)(236, 249)(243, 244)(252,
255)
c: (2, 32)(3, 54)(4, 102)(5, 22)(7, 97)(8, 64)(9, 128)(10, 33)(11, 70)(12,
86)(13, 38)(14, 118)(15, 96)(16, 65)(17, 66)(18, 56)(19, 88)(20, 98)(21,
126)(23, 37)(24, 30)(25, 94)(26, 101)(27, 69)(28, 62)(29, 34)(31, 120)(35,
122)(40, 116)(41, 52)(42, 103)(43, 77)(44, 87)(45, 100)(46, 58)(47, 93)(48,
74)(49, 72)(50, 117)(51, 92)(53, 63)(55, 110)(57, 82)(59, 67)(60, 127)(61,
105)(68, 107)(71, 112)(73, 113)(76, 91)(78, 123)(79, 81)(83, 89)(84, 111)(85,
115)(90, 108)(95, 121)(99, 119)(104, 125)(114, 124)(129, 176)(130, 144)(131,
185)(132, 159)(133, 221)(134, 224)(135, 212)(136, 167)(137, 163)(138, 234)(139,
228)(140, 190)(141, 227)(142, 214)(143, 248)(145, 184)(146, 203)(147, 201)(148,
162)(149, 217)(150, 188)(151, 225)(152, 244)(153, 157)(154, 179)(155, 220)(156,
207)(158, 180)(160, 177)(161, 170)(164, 250)(165, 239)(166, 254)(168, 226)(169,
202)(171, 186)(172, 237)(173, 246)(174, 209)(175, 252)(178, 182)(181, 240)(183,
191)(187, 232)(189, 236)(192, 223)(193, 233)(194, 241)(195, 253)(196, 208)(197,
200)(198, 230)(199, 213)(204, 249)(205, 251)(206, 211)(210, 255)(215, 219)(216,
229)(218, 238)(222, 235)(231, 256)(242, 247)(243, 245)
d: (6, 11)(7, 10)(17, 18)(19, 93)(20, 83)(21, 91)(22, 85)(23, 24)(25, 26)(27,
92)(28, 86)(29, 94)(30, 84)(31, 32)(33, 36)(34, 35)(37, 40)(38, 42)(39, 43)(41,
44)(45, 48)(46, 47)(49, 56)(50, 55)(51, 123)(52, 117)(53, 125)(54, 115)(57,
64)(58, 63)(59, 126)(60, 116)(61, 124)(62, 118)(65, 80)(66, 79)(67, 78)(68,
77)(69, 76)(72, 73)(81, 95)(82, 96)(87, 89)(88, 90)(97, 109)(98, 110)(99,
111)(100, 112)(101, 105)(102, 103)(104, 108)(106, 107)(113, 121)(114, 122)(119,
127)(120, 128)(129, 189)(132, 177)(133, 142)(134, 197)(136, 235)(137, 221)(139,
214)(140, 163)(141, 166)(143, 250)(144, 149)(145, 190)(146, 191)(147, 230)(148,
248)(150, 245)(151, 193)(152, 185)(153, 220)(154, 180)(155, 205)(156, 206)(157,
178)(158, 198)(159, 160)(161, 243)(162, 196)(164, 200)(165, 234)(167, 237)(168,
254)(172, 204)(173, 247)(174, 175)(176, 222)(179, 207)(182, 241)(183, 202)(184,
228)(187, 226)(192, 251)(194, 223)(195, 239)(199, 233)(201, 211)(208, 224)(209,
212)(210, 217)(213, 238)(215, 232)(218, 246)(219, 231)(225, 242)(227, 256)(236,
249)(240, 244)
e: (5, 12)(8, 9)(17, 81)(18, 95)(23, 87)(24, 89)(25, 88)(26, 90)(31, 82)(32,
96)(34, 47)(35, 46)(51, 126)(52, 116)(53, 124)(54, 118)(59, 123)(60, 117)(61,
125)(62, 115)(69, 76)(72, 73)(98, 111)(99, 110)(130, 135)(132, 177)(133,
163)(138, 169)(140, 142)(146, 195)(148, 237)(150, 185)(151, 247)(152, 245)(155,
205)(157, 223)(158, 227)(164, 222)(167, 248)(168, 207)(170, 181)(171, 229)(173,
193)(174, 217)(175, 210)(176, 200)(178, 194)(179, 254)(184, 228)(191, 239)(198,
256)(201, 215)(208, 249)(211, 232)(213, 238)(224, 236)
f: (1, 2, 7, 8, 16, 15, 10, 9)(3, 6, 5, 13, 14, 11, 12, 4)(17, 121, 93, 124, 32,
120, 84, 117)(18, 113, 83, 116, 31, 128, 94, 125)(19, 52, 95, 64, 30, 61, 82,
49)(20, 53, 81, 57, 29, 60, 96, 56)(21, 59, 89, 55, 28, 54, 88, 58)(22, 62, 87,
50, 27, 51, 90, 63)(23, 114, 91, 115, 26, 127, 86, 126)(24, 122, 85, 123, 25,
119, 92, 118)(33, 37, 42, 46, 48, 44, 39, 35)(34, 36, 40, 43, 47, 45, 41,
38)(65, 66, 71, 72, 80, 79, 74, 73)(67, 70, 69, 77, 78, 75, 76, 68)(97, 101,
106, 110, 112, 108, 103, 99)(98, 100, 104, 107, 111, 109, 105, 102)(129, 190,
163, 210, 149, 154, 232, 167)(130, 132, 246, 235, 169, 238, 199, 136)(131, 185,
158, 221, 216, 152, 256, 241)(133, 248, 209, 214, 211, 175, 197, 166)(134, 145,
215, 148, 212, 180, 140, 174)(135, 213, 233, 143, 138, 177, 218, 250)(137, 188,
245, 227, 182, 186, 150, 198)(139, 142, 237, 189, 141, 201, 217, 144)(146, 172,
153, 207, 222, 183, 219, 178)(147, 168, 195, 165, 192, 194, 164, 162)(151, 159,
253, 224, 173, 242, 252, 208)(155, 226, 244, 229, 184, 206, 240, 181)(156, 161,
171, 205, 187, 243, 170, 228)(157, 239, 234, 231, 179, 200, 196, 220)(160, 255,
236, 247, 225, 203, 249, 193)(176, 202, 251, 254, 191, 204, 230, 223)
g: (3, 67)(4, 77)(5, 69)(6, 75)(11, 70)(12, 76)(13, 68)(14, 78)(22, 27)(23,
26)(35, 99)(36, 109)(37, 101)(38, 107)(43, 102)(44, 108)(45, 100)(46, 110)(54,
59)(55, 58)(86, 91)(87, 90)(118, 123)(119, 122)(129, 162)(131, 161)(133,
207)(137, 226)(139, 231)(141, 220)(145, 230)(148, 176)(149, 165)(150, 181)(152,
171)(155, 227)(156, 221)(158, 205)(163, 168)(170, 185)(172, 197)(174, 191)(178,
211)(180, 251)(182, 206)(183, 209)(184, 198)(186, 244)(187, 241)(188, 240)(194,
232)(200, 237)(216, 243)(217, 239)(228, 256)(229, 245)
C4[ 256, 137 ]
256
-1 132 177 159 160
-2 253 255 246 218
-3 187 188 226 216
-4 155 221 137 205
-5 256 170 227 229
-6 243 244 245 152
-7 224 235 236 250
-8 135 169 247 173
-9 138 193 151 130
-10 143 136 249 208
-11 150 161 185 240
-12 198 158 181 171
-13 182 184 228 241
-14 156 206 131 186
-15 199 233 203 252
-16 242 213 225 238
-17 132 167 151 164
-18 177 200 193 237
-19 253 145 136 230
-20 143 166 255 153
-21 188 190 192 240
-22 231 161 216 141
-23 176 198 155 174
-24 222 158 205 175
-25 146 256 248 228
-26 191 148 227 184
-27 220 243 139 131
-28 154 244 147 186
-29 203 214 250 219
-30 180 235 251 252
-31 213 247 217 239
-32 210 238 173 195
-33 167 204 248 196
-34 146 215 142 164
-35 133 232 200 191
-36 148 237 172 162
-37 209 220 129 230
-38 145 178 139 194
-39 154 166 254 179
-40 189 212 147 153
-41 144 134 192 219
-42 157 190 223 214
-43 168 180 141 207
-44 231 149 251 197
-45 165 183 217 174
-46 176 211 239 163
-47 222 201 140 195
-48 210 234 202 175
-49 199 134 159 204
-50 187 144 196 241
-51 157 170 185 142
-52 223 224 215 130
-53 133 236 138 207
-54 232 168 150 229
-55 149 182 226 162
-56 233 160 172 197
-57 209 225 183 218
-58 165 137 129 206
-59 245 181 194 163
-60 178 211 135 249
-61 254 169 140 208
-62 179 201 171 152
-63 221 156 189 234
-64 242 212 202 246
-65 199 247 151 218
-66 136 159 225 250
-67 243 137 240 241
-68 187 198 256 206
-69 155 245 228 185
-70 188 170 181 131
-71 253 135 203 130
-72 132 213 224 249
-73 177 236 238 208
-74 255 169 138 252
-75 171 216 229 186
-76 150 205 184 152
-77 156 158 226 227
-78 221 244 182 161
-79 143 242 235 160
-80 233 246 193 173
-81 177 222 247 248
-82 191 238 151 174
-83 220 255 250 141
-84 154 136 192 252
-85 166 243 216 219
-86 180 240 186 230
-87 200 256 205 217
-88 198 167 184 195
-89 155 210 227 164
-90 158 237 228 239
-91 188 145 244 251
-92 214 161 131 153
-93 253 190 147 235
-94 143 231 203 139
-95 132 176 148 173
-96 146 213 193 175
-97 134 189 222 164
-98 210 254 157 248
-99 237 194 174 207
-100 209 191 149 239
-101 145 183 162 141
-102 220 133 163 251
-103 192 140 142 153
-104 154 234 214 204
-105 166 190 202 196
-106 201 147 215 219
-107 231 232 211 230
-108 165 180 139 172
-109 176 200 129 197
-110 178 168 148 217
-111 167 179 223 175
-112 144 146 212 195
-113 189 160 196 218
-114 134 202 137 226
-115 254 245 215 229
-116 135 157 201 236
-117 232 194 130 208
-118 211 171 185 207
-119 209 156 172 241
-120 165 242 199 149
-121 246 159 129 162
-122 187 221 183 197
-123 133 178 170 152
-124 168 169 224 163
-125 179 138 249 142
-126 223 181 150 140
-127 212 182 204 206
-128 144 233 234 225
-129 121 58 37 109
-130 71 117 52 9
-131 14 70 92 27
-132 1 17 72 95
-133 35 123 102 53
-134 114 49 41 97
-135 60 71 116 8
-136 66 84 19 10
-137 67 58 4 114
-138 125 74 9 53
-139 27 38 94 108
-140 47 103 126 61
-141 22 101 83 43
-142 34 103 125 51
-143 79 94 20 10
-144 112 50 128 41
-145 101 91 38 19
-146 34 112 25 96
-147 93 28 40 106
-148 110 36 26 95
-149 44 55 100 120
-150 11 126 54 76
-151 82 17 9 65
-152 123 6 62 76
-153 92 103 40 20
-154 104 28 39 84
-155 23 89 69 4
-156 77 14 63 119
-157 116 51 42 98
-158 77 12 24 90
-159 66 121 1 49
-160 1 56 79 113
-161 11 22 78 92
-162 55 121 101 36
-163 46 102 124 59
-164 34 89 17 97
-165 45 58 108 120
-166 39 105 85 20
-167 33 88 111 17
-168 110 124 43 54
-169 124 61 8 74
-170 123 70 5 51
-171 12 62 118 75
-172 56 36 108 119
-173 80 95 8 32
-174 99 23 45 82
-175 111 24 48 96
-176 23 46 95 109
-177 1 81 18 73
-178 110 123 38 60
-179 111 125 39 62
-180 30 86 108 43
-181 12 59 70 126
-182 55 78 13 127
-183 45 122 57 101
-184 88 13 26 76
-185 11 69 51 118
-186 14 28 75 86
-187 122 68 3 50
-188 3 91 70 21
-189 113 40 63 97
-190 93 105 42 21
-191 100 35 26 82
-192 103 84 41 21
-193 80 18 96 9
-194 99 59 38 117
-195 88 112 47 32
-196 33 113 50 105
-197 44 56 122 109
-198 88 12 23 68
-199 15 49 65 120
-200 35 18 87 109
-201 47 116 62 106
-202 48 114 105 64
-203 15 71 94 29
-204 33 49 104 127
-205 24 4 76 87
-206 68 14 58 127
-207 99 118 53 43
-208 61 73 117 10
-209 100 57 37 119
-210 89 48 32 98
-211 46 60 107 118
-212 112 127 40 64
-213 16 72 96 31
-214 92 104 29 42
-215 34 115 106 52
-216 22 3 85 75
-217 110 45 31 87
-218 2 57 113 65
-219 29 106 41 85
-220 102 37 27 83
-221 78 122 4 63
-222 24 47 81 97
-223 111 126 52 42
-224 124 72 7 52
-225 66 57 16 128
-226 55 77 3 114
-227 77 89 26 5
-228 13 90 25 69
-229 5 115 75 54
-230 37 19 107 86
-231 22 44 94 107
-232 35 117 107 54
-233 56 80 15 128
-234 48 104 128 63
-235 79 93 7 30
-236 116 7 73 53
-237 99 90 36 18
-238 16 82 73 32
-239 100 46 90 31
-240 11 67 86 21
-241 67 13 50 119
-242 79 16 64 120
-243 67 27 6 85
-244 78 91 6 28
-245 69 59 115 6
-246 121 2 80 64
-247 81 8 31 65
-248 33 25 81 98
-249 125 60 72 10
-250 66 83 7 29
-251 44 91 102 30
-252 15 84 30 74
-253 2 71 93 19
-254 115 39 61 98
-255 2 83 74 20
-256 68 25 5 87
0