C4graphGraph forms for C4 [ 256, 138 ] = BGCG(KE_32(1,15,2,19,1);K1;{1,3})

[Home] [Table] [Glossary] [Families]

On this page are computer-accessible forms for the graph C4[ 256, 138 ] = BGCG(KE_32(1,15,2,19,1);K1;{1,3}).

(I) Following is a form readable by MAGMA:

g:=Graph<256|{ {128, 147}, {128, 164}, {128, 180}, {128, 232}, {29, 157}, {124, 252}, {119, 247}, {58, 186}, {54, 182}, {35, 163}, {22, 151}, {28, 157}, {74, 203}, {77, 204}, {78, 207}, {1, 131}, {99, 225}, {58, 184}, {57, 187}, {44, 174}, {35, 161}, {27, 153}, {19, 145}, {11, 137}, {60, 190}, {26, 153}, {98, 225}, {11, 143}, {100, 224}, {31, 155}, {10, 143}, {101, 224}, {34, 167}, {71, 194}, {80, 213}, {42, 172}, {96, 230}, {89, 223}, {46, 168}, {24, 159}, {44, 171}, {81, 214}, {120, 240}, {81, 216}, {87, 222}, {93, 215}, {99, 233}, {34, 169}, {127, 244}, {56, 179}, {55, 188}, {41, 162}, {64, 203}, {57, 181}, {68, 200}, {74, 198}, {71, 202}, {114, 255}, {100, 233}, {77, 192}, {36, 170}, {113, 255}, {49, 191}, {85, 219}, {72, 199}, {120, 247}, {4, 148}, {54, 166}, {15, 159}, {8, 152}, {9, 152}, {114, 227}, {52, 165}, {33, 176}, {20, 133}, {77, 220}, {38, 180}, {54, 164}, {8, 155}, {124, 239}, {32, 179}, {52, 160}, {123, 239}, {121, 237}, {56, 173}, {111, 250}, {81, 196}, {70, 208}, {107, 253}, {104, 254}, {91, 205}, {79, 217}, {85, 195}, {87, 193}, {88, 206}, {3, 148}, {38, 177}, {9, 158}, {29, 133}, {123, 227}, {93, 197}, {42, 178}, {73, 209}, {75, 210}, {103, 254}, {101, 252}, {6, 156}, {39, 189}, {13, 151}, {64, 218}, {7, 156}, {52, 175}, {10, 145}, {82, 201}, {37, 185}, {112, 236}, {106, 246}, {104, 244}, {102, 250}, {43, 183}, {72, 212}, {20, 137}, {113, 236}, {112, 237}, {78, 211}, {120, 230}, {123, 229}, {98, 253}, {122, 229}, {121, 230}, {119, 232}, {111, 240}, {105, 246}, {16, 176}, {92, 252}, {50, 146}, {42, 138}, {37, 133}, {18, 178}, {106, 203}, {118, 215}, {30, 188}, {122, 216}, {117, 215}, {31, 189}, {69, 231}, {75, 233}, {5, 166}, {32, 131}, {31, 188}, {17, 178}, {63, 156}, {71, 228}, {21, 177}, {64, 229}, {126, 219}, {113, 212}, {103, 194}, {80, 245}, {36, 130}, {121, 223}, {89, 255}, {51, 149}, {66, 229}, {81, 246}, {14, 166}, {103, 207}, {95, 247}, {53, 157}, {30, 182}, {60, 148}, {66, 234}, {70, 238}, {25, 176}, {113, 216}, {102, 207}, {101, 204}, {62, 151}, {63, 150}, {51, 153}, {102, 204}, {58, 144}, {59, 145}, {22, 189}, {95, 244}, {48, 155}, {29, 182}, {74, 225}, {82, 249}, {31, 179}, {94, 242}, {35, 143}, {67, 239}, {76, 224}, {26, 183}, {110, 195}, {41, 132}, {85, 248}, {2, 172}, {126, 208}, {117, 219}, {112, 222}, {109, 195}, {6, 168}, {4, 171}, {127, 208}, {97, 206}, {49, 158}, {34, 141}, {33, 142}, {30, 177}, {27, 171}, {97, 209}, {91, 235}, {79, 254}, {111, 222}, {82, 227}, {16, 162}, {112, 194}, {80, 226}, {17, 162}, {98, 209}, {26, 169}, {3, 183}, {13, 185}, {88, 236}, {12, 185}, {29, 168}, {25, 172}, {60, 137}, {28, 170}, {120, 206}, {44, 154}, {37, 147}, {48, 135}, {59, 140}, {49, 134}, {17, 169}, {115, 203}, {48, 136}, {1, 184}, {33, 152}, {28, 165}, {19, 170}, {2, 184}, {96, 218}, {57, 131}, {20, 174}, {65, 251}, {75, 241}, {55, 139}, {105, 213}, {104, 212}, {70, 250}, {79, 243}, {19, 174}, {104, 213}, {98, 223}, {96, 221}, {80, 237}, {27, 165}, {32, 158}, {63, 129}, {66, 253}, {79, 240}, {87, 232}, {5, 197}, {111, 175}, {41, 233}, {18, 210}, {9, 201}, {65, 129}, {4, 197}, {110, 175}, {53, 244}, {19, 210}, {86, 151}, {51, 241}, {83, 145}, {11, 200}, {95, 156}, {12, 200}, {123, 191}, {96, 164}, {55, 243}, {14, 202}, {15, 202}, {56, 253}, {45, 232}, {22, 211}, {61, 248}, {75, 142}, {21, 211}, {60, 250}, {84, 146}, {1, 198}, {103, 160}, {88, 159}, {15, 199}, {118, 190}, {115, 187}, {93, 149}, {92, 148}, {55, 255}, {38, 238}, {35, 235}, {34, 234}, {85, 157}, {40, 225}, {119, 190}, {68, 141}, {69, 140}, {23, 221}, {45, 231}, {42, 224}, {61, 247}, {65, 139}, {83, 153}, {38, 237}, {108, 167}, {50, 249}, {47, 228}, {40, 227}, {8, 196}, {109, 161}, {92, 144}, {10, 198}, {62, 242}, {67, 143}, {78, 130}, {86, 154}, {56, 245}, {105, 164}, {3, 205}, {50, 252}, {33, 239}, {24, 214}, {23, 217}, {2, 205}, {116, 187}, {25, 214}, {22, 217}, {14, 193}, {13, 220}, {8, 218}, {117, 167}, {48, 226}, {41, 251}, {45, 254}, {72, 155}, {20, 192}, {71, 147}, {17, 196}, {97, 180}, {37, 240}, {21, 192}, {83, 134}, {23, 193}, {99, 181}, {16, 199}, {118, 161}, {109, 186}, {73, 158}, {83, 132}, {4, 220}, {93, 133}, {62, 230}, {47, 246}, {108, 181}, {65, 152}, {54, 236}, {89, 131}, {82, 136}, {18, 201}, {100, 191}, {7, 218}, {126, 163}, {90, 135}, {84, 137}, {84, 138}, {126, 160}, {125, 163}, {115, 173}, {100, 186}, {64, 159}, {114, 173}, {73, 150}, {10, 234}, {94, 190}, {91, 187}, {46, 206}, {25, 249}, {14, 238}, {86, 182}, {106, 139}, {5, 231}, {110, 140}, {106, 136}, {95, 189}, {90, 184}, {76, 174}, {7, 228}, {107, 136}, {44, 207}, {26, 249}, {24, 251}, {13, 238}, {9, 234}, {91, 191}, {116, 144}, {114, 150}, {99, 135}, {16, 245}, {127, 154}, {117, 144}, {107, 142}, {69, 163}, {43, 204}, {49, 214}, {78, 166}, {125, 149}, {53, 220}, {101, 140}, {89, 176}, {62, 212}, {108, 134}, {97, 139}, {53, 222}, {73, 162}, {76, 167}, {87, 188}, {88, 179}, {36, 200}, {127, 147}, {118, 154}, {110, 130}, {59, 215}, {77, 161}, {21, 248}, {107, 134}, {45, 192}, {39, 202}, {66, 172}, {70, 168}, {40, 199}, {94, 177}, {68, 171}, {27, 235}, {125, 141}, {51, 195}, {47, 223}, {43, 219}, {84, 165}, {124, 141}, {7, 245}, {2, 241}, {102, 149}, {90, 169}, {58, 201}, {6, 242}, {50, 198}, {36, 208}, {12, 248}, {67, 183}, {6, 243}, {119, 130}, {40, 221}, {23, 226}, {39, 209}, {92, 170}, {47, 217}, {59, 205}, {67, 181}, {5, 242}, {125, 138}, {115, 132}, {90, 173}, {61, 197}, {124, 132}, {121, 129}, {74, 178}, {18, 235}, {43, 210}, {86, 175}, {1, 251}, {116, 142}, {30, 228}, {24, 226}, {11, 241}, {28, 231}, {122, 129}, {46, 213}, {15, 243}, {69, 185}, {72, 180}, {32, 221}, {122, 135}, {57, 196}, {46, 211}, {63, 193}, {116, 138}, {108, 146}, {94, 160}, {68, 186}, {39, 216}, {109, 146}, {105, 150}, {61, 194}, {3, 256}, {12, 256}, {52, 256}, {76, 256} }>;

(II) A more general form is to represent the graph as the orbit of {128, 147} under the group generated by the following permutations:

a: (2, 50)(3, 84)(4, 20)(5, 21)(6, 38)(7, 72)(10, 58)(11, 92)(12, 28)(13, 29)(14, 46)(15, 80)(18, 34)(19, 68)(22, 54)(23, 88)(26, 42)(27, 76)(30, 62)(31, 96)(35, 117)(37, 53)(39, 105)(40, 56)(43, 125)(45, 61)(47, 113)(48, 64)(51, 101)(55, 121)(59, 109)(63, 97)(66, 82)(67, 116)(69, 85)(71, 104)(74, 90)(75, 124)(77, 93)(79, 112)(83, 100)(87, 120)(91, 108)(95, 128)(98, 114)(99, 115)(106, 122)(107, 123)(129, 139)(132, 233)(133, 220)(134, 191)(135, 203)(136, 229)(137, 148)(138, 183)(140, 195)(141, 210)(142, 239)(143, 144)(145, 186)(146, 205)(147, 244)(149, 204)(150, 209)(151, 182)(153, 224)(155, 218)(156, 180)(157, 185)(159, 226)(161, 215)(163, 219)(164, 189)(165, 256)(166, 211)(167, 235)(168, 238)(169, 178)(170, 200)(171, 174)(172, 249)(173, 225)(177, 242)(179, 221)(181, 187)(184, 198)(188, 230)(192, 197)(193, 206)(194, 254)(199, 245)(201, 234)(202, 213)(212, 228)(216, 246)(217, 236)(222, 240)(223, 255)(227, 253)(231, 248)(232, 247)(237, 243)(241, 252)
b: (2, 32, 50, 65)(3, 96, 101, 63)(4, 62, 69, 14)(5, 13)(6, 12, 54, 77)(7, 76, 105, 43)(8, 42, 73, 26)(9, 25)(10, 24, 58, 89)(11, 88, 109, 55)(15, 68, 113, 35)(16, 34, 81, 18)(19, 80, 117, 47)(20, 46, 85, 30)(21, 29)(22, 28, 38, 93)(23, 92, 121, 59)(27, 72, 125, 39)(31, 84, 97, 51)(33, 66, 49, 82)(36, 112, 118, 79)(37, 78, 53, 94)(40, 124, 122, 91)(41, 90, 57, 74)(44, 104, 126, 71)(45, 70, 61, 86)(48, 116, 98, 83)(52, 128, 102, 95)(56, 108, 106, 75)(60, 120, 110, 87)(64, 100, 114, 67)(99, 115)(103, 127)(111, 119)(129, 205, 221, 252)(130, 222, 190, 240)(131, 198, 251, 184)(132, 135, 187, 225)(133, 211, 157, 177)(134, 136, 142, 253)(137, 206, 195, 188)(138, 209, 153, 155)(139, 241, 179, 146)(140, 193, 148, 230)(141, 216, 235, 199)(143, 159, 186, 255)(144, 223, 145, 226)(147, 207, 244, 160)(149, 189, 165, 180)(150, 183, 218, 224)(151, 231, 238, 197)(152, 172, 158, 249)(154, 254, 208, 194)(156, 256, 164, 204)(161, 243, 200, 236)(162, 169, 196, 178)(163, 202, 171, 212)(166, 220, 242, 185)(167, 246, 210, 245)(168, 248, 182, 192)(170, 237, 215, 217)(173, 181, 203, 233)(174, 213, 219, 228)(175, 232, 250, 247)(176, 234, 214, 201)(191, 227, 239, 229)
c: (1, 2, 66, 34, 17, 18, 82, 50)(3, 98, 68, 81, 19, 114, 84, 65)(4, 47, 36, 113, 20, 63, 52, 97)(5, 30, 70, 62, 21, 14, 86, 46)(6, 94, 38, 13, 22, 78, 54, 29)(7, 126, 72, 77, 23, 110, 88, 93)(8, 43, 40, 109, 24, 59, 56, 125)(9, 26, 74, 58, 25, 10, 90, 42)(11, 122, 76, 73, 27, 106, 92, 89)(12, 39, 44, 105, 28, 55, 60, 121)(15, 118, 80, 69, 31, 102, 96, 85)(16, 35, 48, 101, 32, 51, 64, 117)(33, 67, 99, 100, 49, 83, 115, 116)(37, 95, 103, 128, 53, 79, 119, 112)(41, 91, 107, 124, 57, 75, 123, 108)(45, 87, 111, 120, 61, 71, 127, 104)(129, 256, 209, 171, 246, 170, 255, 137)(130, 236, 133, 156, 160, 180, 220, 217)(131, 241, 229, 167, 162, 235, 136, 252)(132, 187, 142, 239, 181, 233, 191, 134)(135, 224, 158, 153, 203, 144, 176, 143)(138, 152, 183, 225, 186, 214, 145, 173)(139, 148, 223, 200, 216, 174, 150, 165)(140, 179, 149, 218, 219, 199, 161, 226)(141, 196, 210, 227, 146, 251, 205, 253)(147, 244, 254, 232, 222, 240, 247, 194)(151, 211, 166, 182, 168, 242, 177, 238)(154, 213, 231, 188, 250, 230, 248, 202)(155, 204, 221, 195, 159, 215, 245, 163)(157, 243, 190, 237, 185, 189, 207, 164)(169, 178, 201, 249, 198, 184, 172, 234)(175, 206, 197, 228, 208, 212, 192, 193)

(III) Last is Groups&Graphs. Copy everything between (not including) the lines of asterisks into a plain text file and save it as "graph.txt". Then launch G&G (Groups&Graphs) and select Read Text from the File menu.

**************

&Graph
C4[ 256, 138 ]
256
-1 198 184 251 131
-2 172 205 184 241
-3 256 148 183 205
-4 220 148 171 197
-5 231 242 166 197
-6 242 243 156 168
-7 156 245 228 218
-8 155 152 196 218
-9 201 234 158 152
-10 143 198 145 234
-11 143 200 137 241
-12 200 256 248 185
-13 220 238 151 185
-14 166 202 193 238
-15 199 243 202 159
-16 176 199 245 162
-17 178 169 162 196
-18 210 178 201 235
-19 210 145 170 174
-20 133 137 192 174
-21 177 211 192 248
-22 189 211 151 217
-23 221 193 226 217
-24 159 214 226 251
-25 176 214 172 249
-26 169 183 249 153
-27 165 235 171 153
-28 165 231 157 170
-29 133 157 168 182
-30 177 188 182 228
-31 155 188 189 179
-32 221 179 158 131
-33 176 239 152 142
-34 167 234 169 141
-35 143 235 161 163
-36 200 170 130 208
-37 133 147 185 240
-38 177 180 237 238
-39 209 189 202 216
-40 199 221 225 227
-41 132 233 162 251
-42 178 224 138 172
-43 210 204 183 219
-44 154 171 174 207
-45 231 232 254 192
-46 211 168 213 206
-47 223 246 217 228
-48 155 135 136 226
-49 134 158 191 214
-50 198 146 249 252
-51 149 195 153 241
-52 165 256 160 175
-53 220 222 244 157
-54 166 236 182 164
-55 188 243 255 139
-56 253 179 245 173
-57 187 181 196 131
-58 144 201 184 186
-59 145 215 205 140
-60 190 137 148 250
-61 247 248 194 197
-62 242 212 151 230
-63 156 193 150 129
-64 159 203 218 229
-65 139 129 152 251
-66 253 234 172 229
-67 143 181 183 239
-68 200 171 141 186
-69 231 140 163 185
-70 168 238 250 208
-71 147 202 194 228
-72 155 199 212 180
-73 209 158 150 162
-74 198 178 203 225
-75 210 233 142 241
-76 167 256 224 174
-77 220 192 204 161
-78 166 211 130 207
-79 243 254 217 240
-80 245 213 226 237
-81 246 214 216 196
-82 201 136 227 249
-83 132 134 145 153
-84 165 146 137 138
-85 157 248 195 219
-86 154 182 151 175
-87 188 232 222 193
-88 179 159 236 206
-89 176 255 223 131
-90 135 169 173 184
-91 187 191 235 205
-92 144 148 170 252
-93 133 149 215 197
-94 242 177 190 160
-95 156 189 244 247
-96 221 218 164 230
-97 209 180 139 206
-98 209 253 223 225
-99 233 135 181 225
-100 233 191 224 186
-101 224 204 140 252
-102 149 204 250 207
-103 254 160 194 207
-104 254 244 212 213
-105 213 246 150 164
-106 136 246 203 139
-107 253 134 136 142
-108 134 167 146 181
-109 146 161 195 186
-110 140 195 130 175
-111 222 250 240 175
-112 222 236 237 194
-113 255 212 236 216
-114 255 150 227 173
-115 132 187 203 173
-116 187 144 138 142
-117 144 167 215 219
-118 154 190 215 161
-119 232 190 247 130
-120 247 206 240 230
-121 223 237 129 230
-122 135 216 129 229
-123 191 227 239 229
-124 132 239 141 252
-125 138 149 141 163
-126 160 163 208 219
-127 154 244 147 208
-128 232 147 180 164
-129 121 122 63 65
-130 110 78 36 119
-131 1 89 57 32
-132 124 115 83 41
-133 37 93 29 20
-134 49 83 107 108
-135 99 122 90 48
-136 48 82 106 107
-137 11 60 84 20
-138 125 116 84 42
-139 55 106 97 65
-140 110 101 69 59
-141 34 68 124 125
-142 33 116 107 75
-143 11 67 35 10
-144 58 92 116 117
-145 59 83 19 10
-146 50 84 108 109
-147 37 71 127 128
-148 3 4 92 60
-149 102 125 93 51
-150 114 105 73 63
-151 22 13 62 86
-152 33 8 9 65
-153 26 27 83 51
-154 44 127 118 86
-155 48 72 8 31
-156 6 7 95 63
-157 28 29 85 53
-158 49 73 9 32
-159 88 24 15 64
-160 103 126 94 52
-161 77 35 118 109
-162 16 17 73 41
-163 35 69 125 126
-164 105 128 96 54
-165 27 28 84 52
-166 78 14 5 54
-167 34 117 108 76
-168 46 70 6 29
-169 34 90 26 17
-170 36 92 28 19
-171 44 68 4 27
-172 66 2 25 42
-173 56 90 114 115
-174 44 19 20 76
-175 110 111 52 86
-176 33 89 25 16
-177 38 94 30 21
-178 17 18 74 42
-179 88 56 31 32
-180 38 72 128 97
-181 99 67 57 108
-182 29 30 86 54
-183 67 3 26 43
-184 1 2 90 58
-185 12 13 69 37
-186 100 68 58 109
-187 57 91 115 116
-188 55 30 31 87
-189 22 39 95 31
-190 60 94 118 119
-191 100 123 91 49
-192 77 45 20 21
-193 23 14 63 87
-194 112 103 71 61
-195 110 51 85 109
-196 57 81 17 8
-197 4 5 93 61
-198 1 50 74 10
-199 15 16 72 40
-200 11 12 68 36
-201 58 82 18 9
-202 14 15 71 39
-203 115 106 74 64
-204 77 101 102 43
-205 2 3 91 59
-206 88 46 97 120
-207 44 78 102 103
-208 36 70 126 127
-209 39 73 97 98
-210 18 19 75 43
-211 22 78 46 21
-212 113 104 72 62
-213 46 80 104 105
-214 24 25 81 49
-215 59 93 117 118
-216 122 113 81 39
-217 22 23 79 47
-218 7 8 96 64
-219 126 117 85 43
-220 77 13 4 53
-221 23 40 96 32
-222 111 112 53 87
-223 121 89 47 98
-224 100 101 42 76
-225 99 40 74 98
-226 23 24 80 48
-227 123 114 82 40
-228 47 71 7 30
-229 66 122 123 64
-230 121 62 96 120
-231 45 69 5 28
-232 45 128 119 87
-233 99 100 41 75
-234 66 34 9 10
-235 35 91 27 18
-236 88 112 113 54
-237 121 112 80 38
-238 13 14 70 38
-239 33 67 123 124
-240 111 79 37 120
-241 11 2 51 75
-242 5 6 94 62
-243 55 79 15 6
-244 104 127 95 53
-245 56 80 16 7
-246 47 81 105 106
-247 61 95 119 120
-248 12 61 85 21
-249 25 26 82 50
-250 111 102 70 60
-251 1 24 41 65
-252 101 124 92 50
-253 66 56 107 98
-254 45 79 103 104
-255 55 89 113 114
-256 12 3 52 76
0

**************