C4graphGraph forms for C4 [ 256, 139 ] = BGCG(KE_32(1,15,2,19,1);K1;{5,6,9,10})

[Home] [Table] [Glossary] [Families]

On this page are computer-accessible forms for the graph C4[ 256, 139 ] = BGCG(KE_32(1,15,2,19,1);K1;{5,6,9,10}).

(I) Following is a form readable by MAGMA:

g:=Graph<256|{ {128, 132}, {128, 154}, {128, 209}, {128, 227}, {15, 143}, {126, 254}, {125, 253}, {30, 158}, {49, 176}, {127, 254}, {124, 253}, {15, 141}, {17, 147}, {78, 204}, {87, 213}, {16, 147}, {96, 227}, {59, 184}, {63, 187}, {108, 232}, {74, 206}, {75, 207}, {13, 136}, {111, 234}, {109, 232}, {65, 196}, {34, 164}, {51, 181}, {79, 201}, {14, 137}, {98, 229}, {90, 210}, {115, 251}, {112, 248}, {91, 211}, {33, 168}, {95, 214}, {27, 145}, {118, 252}, {31, 149}, {80, 218}, {27, 144}, {120, 243}, {119, 252}, {82, 217}, {19, 159}, {106, 230}, {43, 167}, {41, 165}, {28, 144}, {18, 159}, {123, 246}, {59, 182}, {52, 185}, {45, 160}, {32, 173}, {64, 205}, {66, 207}, {81, 220}, {39, 169}, {97, 239}, {70, 200}, {79, 193}, {4, 139}, {105, 230}, {33, 174}, {65, 206}, {77, 194}, {19, 131}, {124, 236}, {54, 166}, {28, 140}, {73, 217}, {82, 195}, {100, 245}, {91, 202}, {32, 179}, {57, 170}, {40, 187}, {35, 183}, {110, 250}, {96, 244}, {95, 203}, {86, 194}, {8, 157}, {126, 235}, {98, 247}, {74, 223}, {4, 146}, {116, 226}, {56, 174}, {40, 190}, {34, 180}, {5, 146}, {123, 236}, {109, 250}, {50, 165}, {20, 131}, {68, 211}, {25, 129}, {117, 237}, {91, 195}, {30, 134}, {54, 175}, {3, 153}, {59, 161}, {55, 173}, {48, 170}, {20, 142}, {21, 142}, {26, 129}, {36, 184}, {117, 233}, {101, 249}, {38, 186}, {1, 156}, {57, 164}, {71, 218}, {86, 203}, {28, 130}, {112, 238}, {64, 222}, {26, 133}, {118, 233}, {113, 238}, {95, 192}, {43, 180}, {42, 181}, {88, 199}, {9, 168}, {115, 210}, {93, 252}, {57, 152}, {45, 140}, {76, 237}, {3, 161}, {44, 142}, {38, 132}, {10, 168}, {8, 170}, {51, 144}, {53, 150}, {82, 241}, {1, 165}, {107, 207}, {106, 206}, {104, 204}, {56, 156}, {29, 185}, {68, 224}, {4, 161}, {48, 149}, {28, 185}, {79, 234}, {15, 169}, {116, 210}, {71, 225}, {66, 229}, {36, 140}, {105, 193}, {43, 131}, {83, 251}, {5, 172}, {104, 193}, {20, 189}, {75, 226}, {8, 162}, {113, 219}, {112, 218}, {111, 197}, {62, 148}, {9, 162}, {127, 212}, {114, 217}, {103, 204}, {19, 184}, {23, 187}, {92, 240}, {29, 177}, {70, 234}, {31, 178}, {115, 222}, {96, 205}, {26, 180}, {120, 214}, {60, 146}, {41, 135}, {65, 239}, {66, 236}, {84, 250}, {16, 191}, {121, 214}, {19, 188}, {49, 129}, {109, 221}, {47, 158}, {97, 208}, {74, 251}, {17, 163}, {116, 198}, {39, 149}, {35, 145}, {31, 173}, {36, 151}, {65, 242}, {84, 231}, {14, 186}, {127, 203}, {121, 205}, {118, 194}, {75, 255}, {80, 228}, {87, 227}, {15, 186}, {114, 199}, {92, 233}, {42, 159}, {17, 164}, {62, 136}, {113, 199}, {80, 230}, {84, 226}, {2, 181}, {122, 205}, {100, 211}, {44, 155}, {88, 239}, {30, 166}, {123, 195}, {55, 143}, {50, 138}, {38, 158}, {85, 237}, {16, 169}, {31, 166}, {87, 238}, {12, 183}, {100, 223}, {40, 147}, {69, 254}, {83, 232}, {11, 183}, {99, 223}, {89, 229}, {32, 156}, {39, 154}, {53, 136}, {44, 145}, {16, 174}, {122, 196}, {105, 215}, {21, 171}, {67, 253}, {103, 216}, {123, 196}, {43, 235}, {125, 189}, {124, 188}, {111, 175}, {78, 142}, {48, 241}, {117, 180}, {89, 152}, {61, 252}, {71, 134}, {34, 224}, {116, 182}, {110, 172}, {101, 167}, {59, 249}, {70, 132}, {79, 141}, {85, 150}, {117, 182}, {100, 167}, {12, 200}, {49, 245}, {37, 225}, {24, 220}, {5, 192}, {107, 174}, {13, 200}, {61, 248}, {85, 144}, {6, 192}, {121, 191}, {102, 160}, {90, 156}, {24, 222}, {67, 133}, {77, 139}, {49, 246}, {103, 160}, {69, 130}, {78, 137}, {2, 202}, {125, 181}, {108, 164}, {29, 213}, {27, 211}, {99, 170}, {114, 187}, {46, 228}, {94, 148}, {58, 240}, {62, 244}, {1, 202}, {50, 249}, {30, 213}, {23, 220}, {81, 157}, {94, 146}, {2, 207}, {22, 219}, {63, 242}, {34, 236}, {52, 250}, {73, 135}, {77, 131}, {1, 206}, {58, 245}, {56, 247}, {18, 221}, {13, 194}, {64, 143}, {68, 139}, {4, 212}, {9, 217}, {18, 195}, {20, 197}, {83, 129}, {68, 151}, {96, 179}, {76, 159}, {5, 209}, {12, 216}, {50, 231}, {126, 171}, {60, 233}, {72, 157}, {76, 153}, {88, 141}, {6, 208}, {110, 184}, {48, 230}, {41, 255}, {37, 243}, {32, 246}, {76, 155}, {102, 177}, {47, 247}, {94, 134}, {82, 138}, {14, 215}, {124, 165}, {122, 163}, {55, 238}, {74, 147}, {67, 153}, {106, 176}, {105, 179}, {104, 178}, {37, 254}, {107, 176}, {51, 232}, {21, 201}, {98, 190}, {7, 218}, {46, 243}, {22, 203}, {71, 154}, {35, 253}, {92, 130}, {40, 246}, {38, 248}, {87, 137}, {22, 201}, {112, 175}, {97, 190}, {90, 133}, {52, 235}, {25, 198}, {37, 197}, {104, 136}, {93, 189}, {92, 188}, {53, 213}, {66, 162}, {73, 169}, {12, 237}, {107, 138}, {103, 134}, {54, 215}, {53, 212}, {81, 176}, {46, 204}, {64, 162}, {78, 172}, {119, 148}, {45, 201}, {99, 135}, {33, 196}, {106, 143}, {98, 135}, {61, 216}, {62, 219}, {89, 191}, {109, 139}, {108, 138}, {99, 133}, {33, 198}, {121, 158}, {118, 145}, {101, 130}, {58, 221}, {55, 208}, {54, 209}, {3, 235}, {58, 210}, {25, 241}, {63, 215}, {11, 226}, {126, 151}, {24, 241}, {63, 214}, {69, 172}, {84, 189}, {10, 224}, {125, 151}, {114, 152}, {11, 224}, {115, 152}, {67, 168}, {6, 234}, {120, 148}, {113, 157}, {93, 177}, {52, 216}, {42, 198}, {36, 200}, {13, 225}, {75, 167}, {18, 255}, {95, 178}, {91, 182}, {21, 248}, {77, 160}, {17, 255}, {47, 193}, {29, 243}, {14, 225}, {122, 149}, {80, 191}, {83, 188}, {86, 185}, {7, 247}, {10, 251}, {2, 240}, {22, 228}, {6, 244}, {69, 183}, {72, 186}, {81, 163}, {3, 240}, {57, 202}, {47, 220}, {23, 228}, {10, 249}, {7, 244}, {23, 227}, {89, 173}, {7, 242}, {120, 141}, {108, 153}, {94, 171}, {42, 223}, {72, 190}, {24, 239}, {41, 222}, {70, 177}, {44, 212}, {110, 150}, {60, 197}, {111, 150}, {90, 163}, {86, 175}, {8, 242}, {72, 178}, {73, 179}, {97, 154}, {127, 132}, {119, 140}, {9, 245}, {93, 161}, {45, 209}, {39, 219}, {27, 231}, {25, 229}, {26, 231}, {102, 155}, {61, 192}, {35, 221}, {119, 137}, {101, 155}, {46, 208}, {85, 171}, {88, 166}, {56, 199}, {11, 256}, {51, 256}, {60, 256}, {102, 256} }>;

(II) A more general form is to represent the graph as the orbit of {128, 132} under the group generated by the following permutations:

a: (1, 2, 92, 28, 119, 120, 63, 114, 9, 10, 68, 4, 127, 128, 39, 122, 17, 18, 76, 12, 103, 104, 47, 98, 25, 26, 84, 20, 111, 112, 55, 106)(3, 69, 45, 62, 121, 40, 82, 67, 11, 77, 53, 38, 97, 48, 90, 75, 19, 85, 61, 46, 105, 56, 66, 83, 27, 93, 37, 54, 113, 64, 74, 91)(5, 22, 96, 16, 123, 108, 35, 102, 13, 30, 72, 24, 99, 116, 43, 110, 21, 6, 80, 32, 107, 124, 51, 118, 29, 14, 88, 8, 115, 100, 59, 126)(7, 89, 49, 50, 125, 60, 86, 87, 15, 65, 57, 58, 101, 36, 94, 95, 23, 73, 33, 34, 109, 44, 70, 71, 31, 81, 41, 42, 117, 52, 78, 79)(129, 231, 189, 197, 175, 238, 143, 206, 202, 240, 130, 140, 148, 214, 187, 217, 168, 224, 139, 212, 132, 154, 149, 163, 255, 159, 237, 216, 204, 193, 247, 229)(131, 150, 248, 208, 230, 156, 207, 188, 144, 252, 243, 215, 199, 162, 251, 211, 161, 254, 209, 219, 205, 147, 195, 153, 183, 160, 136, 158, 190, 241, 133, 226)(134, 178, 220, 135, 198, 180, 250, 142, 234, 218, 173, 176, 165, 181, 233, 185, 137, 141, 242, 152, 245, 249, 151, 146, 203, 227, 169, 196, 164, 221, 155, 200)(138, 253, 256, 194, 213, 186, 239, 170, 210, 167, 184, 171, 192, 228, 179, 174, 236, 232, 145, 177, 225, 166, 157, 222, 223, 182, 235, 172, 201, 244, 191, 246)
b: (2, 65)(3, 97)(4, 46)(5, 29)(6, 93)(7, 125)(8, 42)(9, 25)(10, 89)(11, 121)(12, 38)(13, 21)(14, 85)(15, 117)(16, 34)(18, 81)(19, 113)(20, 62)(22, 77)(23, 109)(24, 58)(26, 73)(27, 105)(28, 54)(30, 69)(31, 101)(32, 50)(33, 66)(35, 47)(36, 112)(37, 94)(39, 43)(40, 108)(41, 90)(44, 104)(45, 86)(48, 100)(49, 82)(51, 63)(52, 128)(53, 78)(55, 59)(56, 124)(57, 74)(60, 120)(61, 70)(64, 116)(67, 98)(68, 80)(71, 126)(72, 76)(75, 122)(79, 118)(83, 114)(84, 96)(87, 110)(88, 92)(91, 106)(95, 102)(103, 127)(107, 123)(111, 119)(129, 217)(130, 166)(131, 219)(132, 216)(133, 135)(134, 254)(136, 142)(137, 150)(138, 246)(139, 228)(140, 175)(141, 233)(143, 182)(144, 215)(145, 193)(146, 243)(147, 164)(148, 197)(149, 167)(151, 218)(152, 251)(153, 190)(154, 235)(155, 178)(156, 165)(157, 159)(158, 183)(160, 203)(161, 208)(162, 198)(163, 255)(168, 229)(169, 180)(170, 223)(171, 225)(172, 213)(173, 249)(174, 236)(176, 195)(177, 192)(179, 231)(181, 242)(184, 238)(185, 209)(186, 237)(187, 232)(188, 199)(189, 244)(191, 224)(194, 201)(196, 207)(200, 248)(202, 206)(204, 212)(205, 226)(210, 222)(211, 230)(214, 256)(220, 221)(227, 250)(234, 252)(239, 240)(241, 245)(247, 253)
c: (2, 106, 50, 56)(3, 80, 101, 47)(4, 71, 69, 104)(5, 13)(6, 118, 54, 36)(7, 92, 105, 59)(8, 83, 73, 116)(9, 25)(10, 98, 58, 48)(11, 72, 109, 39)(12, 95, 77, 128)(14, 110, 62, 60)(15, 84, 113, 51)(16, 75, 81, 108)(18, 122, 34, 40)(19, 96, 117, 63)(20, 87, 85, 120)(21, 29)(22, 102, 38, 52)(23, 76, 121, 43)(24, 67, 89, 100)(26, 114, 42, 64)(27, 88, 125, 55)(28, 79, 93, 112)(30, 126, 46, 44)(31, 68, 97, 35)(32, 91, 65, 124)(33, 66, 49, 82)(37, 78, 53, 94)(41, 90, 57, 74)(45, 70, 61, 86)(99, 115)(103, 127)(111, 119)(129, 217, 198, 162)(130, 193, 161, 218)(131, 227, 237, 214)(132, 216, 203, 160)(133, 152, 223, 222)(134, 254, 204, 212)(135, 210, 170, 251)(136, 146, 225, 172)(137, 150, 148, 197)(138, 174, 207, 176)(139, 154, 183, 178)(140, 234, 252, 175)(141, 189, 238, 144)(142, 213, 171, 243)(143, 231, 199, 181)(145, 166, 151, 208)(147, 255, 163, 164)(149, 224, 190, 221)(153, 191, 167, 220)(155, 158, 235, 228)(156, 202, 206, 165)(157, 232, 169, 226)(159, 205, 180, 187)(168, 229, 245, 241)(173, 211, 239, 253)(177, 248, 185, 201)(179, 182, 242, 188)(184, 244, 233, 215)(186, 250, 219, 256)(192, 194, 209, 200)(195, 196, 236, 246)(230, 249, 247, 240)

(III) Last is Groups&Graphs. Copy everything between (not including) the lines of asterisks into a plain text file and save it as "graph.txt". Then launch G&G (Groups&Graphs) and select Read Text from the File menu.

**************

&Graph
C4[ 256, 139 ]
256
-1 165 156 202 206
-2 202 181 207 240
-3 235 161 240 153
-4 146 212 139 161
-5 209 146 192 172
-6 244 234 192 208
-7 242 244 247 218
-8 242 157 170 162
-9 168 245 162 217
-10 168 224 249 251
-11 256 224 226 183
-12 200 237 183 216
-13 200 136 225 194
-14 137 225 215 186
-15 143 169 141 186
-16 147 169 191 174
-17 255 147 163 164
-18 221 255 159 195
-19 188 159 184 131
-20 189 131 142 197
-21 201 171 248 142
-22 201 203 228 219
-23 187 220 227 228
-24 220 222 239 241
-25 198 129 229 241
-26 231 133 180 129
-27 231 144 145 211
-28 144 140 130 185
-29 177 243 213 185
-30 166 134 158 213
-31 166 178 149 173
-32 156 179 246 173
-33 198 168 174 196
-34 180 224 236 164
-35 253 221 145 183
-36 200 140 151 184
-37 243 254 225 197
-38 132 158 248 186
-39 154 169 149 219
-40 187 190 147 246
-41 165 222 255 135
-42 198 223 159 181
-43 167 180 235 131
-44 155 145 212 142
-45 209 201 160 140
-46 243 204 228 208
-47 220 158 247 193
-48 170 149 230 241
-49 176 245 246 129
-50 165 231 138 249
-51 144 232 256 181
-52 235 216 250 185
-53 212 136 213 150
-54 209 166 215 175
-55 143 238 173 208
-56 199 156 247 174
-57 202 170 152 164
-58 210 221 245 240
-59 182 161 249 184
-60 233 146 256 197
-61 192 248 216 252
-62 244 136 148 219
-63 187 242 214 215
-64 143 222 205 162
-65 242 206 239 196
-66 236 162 207 229
-67 253 133 168 153
-68 211 224 139 151
-69 254 172 183 130
-70 132 177 200 234
-71 154 134 225 218
-72 178 157 190 186
-73 135 179 169 217
-74 223 147 206 251
-75 167 255 226 207
-76 155 159 237 153
-77 160 139 194 131
-78 137 204 172 142
-79 201 234 193 141
-80 191 228 218 230
-81 176 220 157 163
-82 138 195 217 241
-83 188 232 129 251
-84 231 189 226 250
-85 144 171 237 150
-86 203 194 185 175
-87 213 137 227 238
-88 166 199 239 141
-89 191 173 152 229
-90 133 210 156 163
-91 211 202 182 195
-92 188 233 130 240
-93 177 189 161 252
-94 134 146 148 171
-95 178 192 203 214
-96 244 179 205 227
-97 154 190 239 208
-98 135 190 247 229
-99 133 135 223 170
-100 167 211 223 245
-101 155 167 249 130
-102 155 177 256 160
-103 134 160 204 216
-104 178 136 193 204
-105 179 193 215 230
-106 143 176 206 230
-107 176 138 174 207
-108 232 138 153 164
-109 221 232 139 250
-110 150 172 184 250
-111 234 150 175 197
-112 248 238 218 175
-113 199 157 238 219
-114 187 199 217 152
-115 210 222 152 251
-116 198 210 182 226
-117 233 180 182 237
-118 145 233 194 252
-119 137 148 140 252
-120 243 148 214 141
-121 158 191 214 205
-122 149 205 163 196
-123 246 236 195 196
-124 165 253 188 236
-125 253 189 181 151
-126 254 235 171 151
-127 132 254 212 203
-128 132 154 209 227
-129 25 26 49 83
-130 101 69 92 28
-131 77 19 20 43
-132 70 38 127 128
-133 99 67 90 26
-134 103 71 94 30
-135 99 73 41 98
-136 13 104 62 53
-137 78 14 119 87
-138 82 50 107 108
-139 77 68 4 109
-140 45 36 28 119
-141 88 79 15 120
-142 44 78 20 21
-143 55 15 106 64
-144 27 28 51 85
-145 44 35 27 118
-146 4 5 60 94
-147 16 17 40 74
-148 94 62 119 120
-149 122 48 39 31
-150 110 111 85 53
-151 68 36 125 126
-152 89 57 114 115
-153 67 3 108 76
-154 71 39 128 97
-155 44 101 102 76
-156 1 56 90 32
-157 113 81 72 8
-158 121 47 38 30
-159 18 19 42 76
-160 77 45 102 103
-161 3 4 59 93
-162 66 8 9 64
-163 122 90 81 17
-164 34 57 17 108
-165 1 124 50 41
-166 88 30 31 54
-167 100 101 75 43
-168 33 67 9 10
-169 15 16 39 73
-170 99 57 48 8
-171 126 94 85 21
-172 110 78 69 5
-173 55 89 31 32
-174 33 56 16 107
-175 111 112 86 54
-176 81 49 106 107
-177 102 70 93 29
-178 104 72 95 31
-179 105 73 96 32
-180 34 26 117 43
-181 2 125 51 42
-182 91 59 116 117
-183 11 12 35 69
-184 110 36 59 19
-185 28 29 52 86
-186 14 15 38 72
-187 23 114 40 63
-188 124 92 83 19
-189 125 93 84 20
-190 72 40 97 98
-191 121 89 80 16
-192 5 6 61 95
-193 79 47 104 105
-194 77 13 118 86
-195 123 91 82 18
-196 33 122 123 65
-197 111 37 60 20
-198 33 25 116 42
-199 88 56 113 114
-200 12 13 36 70
-201 22 45 79 21
-202 1 2 57 91
-203 22 127 95 86
-204 78 46 103 104
-205 121 122 96 64
-206 1 106 74 65
-207 66 2 107 75
-208 55 46 6 97
-209 45 5 128 54
-210 90 58 115 116
-211 100 68 91 27
-212 44 4 127 53
-213 29 30 53 87
-214 121 95 63 120
-215 14 105 63 54
-216 12 103 61 52
-217 114 82 73 9
-218 112 80 71 7
-219 22 113 39 62
-220 23 24 47 81
-221 35 58 18 109
-222 24 115 41 64
-223 99 100 74 42
-224 11 34 68 10
-225 13 14 37 71
-226 11 116 84 75
-227 23 128 96 87
-228 22 23 46 80
-229 66 89 25 98
-230 80 48 105 106
-231 26 27 50 84
-232 83 51 108 109
-233 92 60 117 118
-234 111 79 70 6
-235 3 126 52 43
-236 66 34 123 124
-237 12 117 85 76
-238 55 112 113 87
-239 88 24 97 65
-240 2 3 58 92
-241 24 25 48 82
-242 7 8 63 65
-243 46 37 29 120
-244 6 7 62 96
-245 100 58 49 9
-246 123 49 40 32
-247 56 47 7 98
-248 112 38 61 21
-249 101 59 50 10
-250 110 84 52 109
-251 115 83 74 10
-252 93 61 118 119
-253 67 35 124 125
-254 69 37 126 127
-255 17 18 41 75
-256 11 102 60 51
0

**************