C4graphGraph forms for C4 [ 256, 142 ] = BGCG(UG(ATD[128,44]);K1;{9,10,12,13})

[Home] [Table] [Glossary] [Families]

On this page are computer-accessible forms for the graph C4[ 256, 142 ] = BGCG(UG(ATD[128,44]);K1;{9,10,12,13}).

(I) Following is a form readable by MAGMA:

g:=Graph<256|{ {128, 189}, {128, 192}, {128, 249}, {128, 251}, {7, 135}, {118, 246}, {97, 225}, {49, 177}, {70, 199}, {123, 250}, {122, 251}, {113, 240}, {96, 225}, {82, 211}, {5, 135}, {30, 156}, {75, 201}, {42, 169}, {117, 246}, {47, 172}, {82, 209}, {3, 135}, {82, 214}, {85, 209}, {8, 141}, {107, 238}, {40, 173}, {28, 153}, {26, 159}, {1, 135}, {127, 249}, {54, 176}, {72, 206}, {48, 183}, {119, 240}, {118, 241}, {60, 187}, {19, 155}, {99, 235}, {62, 182}, {83, 218}, {110, 231}, {91, 210}, {14, 132}, {31, 149}, {28, 150}, {63, 181}, {17, 154}, {50, 185}, {27, 144}, {22, 157}, {63, 180}, {86, 221}, {8, 132}, {107, 231}, {94, 210}, {35, 175}, {10, 134}, {65, 205}, {25, 148}, {125, 240}, {119, 250}, {106, 231}, {17, 159}, {46, 160}, {42, 164}, {68, 202}, {84, 218}, {56, 183}, {104, 231}, {91, 212}, {67, 204}, {72, 199}, {87, 216}, {3, 147}, {114, 226}, {109, 253}, {51, 163}, {37, 181}, {29, 141}, {68, 212}, {2, 147}, {117, 228}, {115, 226}, {60, 173}, {21, 132}, {7, 150}, {1, 147}, {107, 249}, {47, 189}, {43, 185}, {29, 143}, {103, 244}, {106, 249}, {16, 132}, {35, 183}, {34, 182}, {14, 155}, {28, 137}, {64, 213}, {7, 145}, {89, 207}, {11, 156}, {109, 250}, {39, 176}, {62, 169}, {74, 221}, {56, 160}, {96, 248}, {91, 195}, {89, 193}, {12, 149}, {120, 225}, {111, 246}, {107, 242}, {31, 134}, {74, 211}, {4, 158}, {120, 226}, {95, 197}, {12, 150}, {10, 144}, {9, 147}, {5, 159}, {80, 202}, {83, 201}, {99, 248}, {74, 214}, {113, 237}, {18, 143}, {124, 225}, {118, 235}, {103, 250}, {94, 195}, {36, 185}, {69, 216}, {20, 138}, {124, 226}, {109, 243}, {92, 194}, {64, 222}, {80, 206}, {105, 246}, {50, 146}, {120, 216}, {79, 239}, {77, 236}, {101, 196}, {80, 241}, {4, 166}, {115, 209}, {102, 196}, {93, 255}, {15, 173}, {41, 138}, {112, 211}, {98, 193}, {97, 194}, {54, 149}, {88, 251}, {78, 234}, {35, 134}, {59, 158}, {29, 187}, {93, 251}, {23, 176}, {1, 169}, {114, 218}, {112, 216}, {18, 186}, {16, 185}, {104, 193}, {94, 247}, {57, 144}, {51, 154}, {26, 179}, {58, 144}, {108, 198}, {62, 148}, {6, 173}, {55, 156}, {54, 157}, {46, 133}, {10, 166}, {108, 192}, {18, 190}, {13, 161}, {65, 237}, {25, 180}, {98, 207}, {55, 154}, {30, 179}, {8, 166}, {53, 155}, {39, 137}, {16, 191}, {110, 193}, {101, 202}, {37, 138}, {10, 186}, {51, 131}, {77, 253}, {14, 191}, {97, 208}, {59, 138}, {57, 139}, {59, 137}, {70, 244}, {21, 166}, {111, 220}, {106, 217}, {49, 130}, {42, 153}, {116, 192}, {123, 207}, {33, 148}, {105, 220}, {89, 236}, {64, 245}, {68, 241}, {73, 252}, {81, 228}, {66, 244}, {1, 182}, {106, 221}, {53, 130}, {13, 186}, {71, 240}, {7, 191}, {119, 207}, {44, 148}, {34, 154}, {52, 141}, {125, 196}, {101, 220}, {70, 255}, {75, 242}, {86, 239}, {5, 191}, {126, 196}, {121, 195}, {102, 220}, {45, 151}, {39, 157}, {77, 247}, {85, 239}, {32, 155}, {52, 143}, {37, 158}, {81, 234}, {15, 179}, {127, 195}, {110, 210}, {58, 134}, {52, 136}, {81, 237}, {111, 210}, {4, 186}, {39, 153}, {15, 177}, {76, 242}, {127, 192}, {40, 232}, {78, 142}, {79, 142}, {117, 180}, {33, 227}, {104, 170}, {61, 255}, {73, 139}, {85, 151}, {20, 215}, {105, 170}, {48, 243}, {24, 219}, {86, 146}, {28, 217}, {57, 252}, {61, 248}, {82, 151}, {24, 222}, {109, 171}, {102, 160}, {79, 137}, {89, 159}, {12, 203}, {122, 189}, {100, 163}, {99, 164}, {44, 235}, {33, 230}, {22, 209}, {76, 139}, {85, 146}, {24, 208}, {116, 188}, {93, 149}, {46, 230}, {63, 247}, {23, 222}, {113, 184}, {91, 146}, {44, 229}, {35, 233}, {116, 190}, {3, 200}, {112, 187}, {45, 230}, {43, 224}, {38, 237}, {20, 223}, {13, 198}, {67, 136}, {71, 140}, {23, 219}, {105, 165}, {103, 171}, {49, 253}, {41, 229}, {38, 234}, {68, 136}, {18, 223}, {108, 161}, {104, 165}, {45, 224}, {40, 229}, {30, 208}, {46, 224}, {37, 234}, {58, 245}, {96, 176}, {114, 162}, {108, 188}, {4, 213}, {115, 162}, {99, 178}, {57, 232}, {11, 218}, {6, 215}, {84, 133}, {13, 223}, {29, 206}, {123, 168}, {36, 247}, {66, 145}, {59, 239}, {122, 174}, {120, 172}, {2, 215}, {43, 254}, {38, 243}, {27, 206}, {12, 217}, {61, 235}, {126, 168}, {100, 178}, {90, 140}, {78, 152}, {83, 133}, {70, 145}, {121, 174}, {112, 167}, {79, 152}, {62, 230}, {118, 174}, {6, 223}, {126, 167}, {90, 131}, {20, 205}, {24, 194}, {121, 163}, {2, 217}, {117, 174}, {16, 204}, {127, 163}, {126, 162}, {123, 167}, {56, 228}, {27, 199}, {44, 241}, {95, 130}, {49, 236}, {9, 215}, {92, 130}, {64, 158}, {71, 153}, {2, 221}, {125, 162}, {60, 227}, {84, 139}, {3, 227}, {97, 129}, {52, 212}, {38, 198}, {31, 255}, {72, 168}, {73, 168}, {96, 129}, {30, 252}, {95, 189}, {69, 167}, {72, 170}, {22, 245}, {102, 133}, {71, 164}, {73, 170}, {76, 175}, {41, 205}, {58, 222}, {47, 203}, {21, 243}, {90, 188}, {50, 212}, {26, 252}, {66, 164}, {9, 238}, {100, 131}, {55, 208}, {50, 213}, {45, 202}, {43, 204}, {42, 205}, {14, 233}, {21, 253}, {92, 180}, {32, 200}, {22, 254}, {65, 169}, {86, 190}, {5, 236}, {33, 200}, {75, 161}, {103, 141}, {32, 203}, {34, 201}, {80, 187}, {83, 184}, {87, 188}, {15, 227}, {100, 136}, {19, 254}, {92, 177}, {76, 161}, {6, 232}, {115, 157}, {114, 156}, {34, 204}, {23, 248}, {60, 211}, {88, 183}, {53, 197}, {124, 140}, {66, 178}, {36, 213}, {90, 171}, {67, 178}, {81, 160}, {41, 219}, {101, 151}, {19, 224}, {125, 142}, {98, 145}, {95, 172}, {40, 219}, {27, 232}, {75, 184}, {26, 238}, {98, 150}, {69, 177}, {74, 190}, {11, 254}, {48, 197}, {67, 182}, {31, 233}, {110, 152}, {48, 198}, {32, 214}, {69, 179}, {88, 175}, {111, 152}, {77, 181}, {121, 129}, {93, 165}, {47, 214}, {119, 142}, {65, 184}, {19, 233}, {51, 201}, {61, 199}, {9, 242}, {122, 129}, {116, 143}, {78, 181}, {84, 175}, {87, 172}, {8, 244}, {25, 229}, {87, 171}, {25, 228}, {113, 140}, {56, 197}, {54, 203}, {53, 200}, {63, 194}, {88, 165}, {11, 245}, {17, 238}, {124, 131}, {17, 256}, {36, 256}, {55, 256}, {94, 256} }>;

(II) A more general form is to represent the graph as the orbit of {128, 189} under the group generated by the following permutations:

a: (2, 5)(6, 14)(7, 9)(8, 13)(11, 23)(12, 26)(15, 32)(16, 20)(17, 28)(18, 21)(19, 40)(22, 24)(25, 45)(27, 35)(29, 48)(30, 54)(31, 57)(34, 42)(36, 59)(37, 50)(38, 52)(39, 55)(41, 43)(44, 46)(47, 69)(49, 74)(51, 71)(53, 60)(56, 80)(61, 84)(63, 85)(65, 67)(66, 75)(68, 81)(70, 76)(72, 88)(73, 93)(77, 86)(78, 91)(79, 94)(82, 92)(83, 99)(89, 106)(95, 112)(96, 114)(97, 115)(98, 107)(100, 113)(101, 117)(102, 118)(103, 108)(109, 116)(119, 127)(121, 125)(122, 126)(123, 128)(129, 162)(130, 211)(131, 140)(132, 223)(133, 235)(134, 144)(135, 147)(136, 237)(137, 256)(138, 185)(139, 255)(141, 198)(142, 195)(143, 243)(145, 242)(146, 181)(148, 230)(149, 252)(150, 238)(151, 180)(152, 210)(153, 154)(155, 173)(156, 176)(157, 208)(158, 213)(159, 217)(160, 241)(161, 244)(163, 240)(164, 201)(165, 170)(166, 186)(167, 189)(168, 251)(169, 182)(171, 188)(172, 216)(174, 196)(175, 199)(177, 214)(178, 184)(179, 203)(183, 206)(187, 197)(190, 253)(191, 215)(192, 250)(193, 231)(194, 209)(200, 227)(202, 228)(204, 205)(207, 249)(212, 234)(218, 248)(219, 254)(220, 246)(221, 236)(222, 245)(224, 229)(225, 226)(232, 233)(239, 247)
b: (2, 65)(3, 62)(5, 67)(6, 41)(7, 34)(8, 36)(9, 42)(10, 64)(11, 31)(12, 83)(13, 59)(14, 43)(15, 44)(17, 66)(18, 37)(21, 50)(22, 35)(23, 57)(24, 27)(25, 60)(26, 99)(28, 75)(29, 63)(30, 61)(32, 46)(38, 86)(39, 76)(45, 53)(47, 102)(48, 85)(49, 68)(51, 98)(52, 77)(54, 84)(55, 70)(56, 82)(69, 118)(71, 107)(72, 97)(73, 96)(74, 81)(78, 116)(79, 108)(80, 92)(87, 111)(88, 115)(89, 100)(90, 110)(91, 109)(93, 114)(94, 103)(95, 101)(104, 124)(105, 120)(106, 113)(112, 117)(119, 127)(121, 123)(122, 126)(125, 128)(129, 168)(130, 202)(131, 193)(132, 185)(133, 203)(134, 245)(135, 182)(136, 236)(137, 161)(138, 223)(139, 176)(140, 231)(141, 247)(142, 192)(143, 181)(144, 222)(145, 154)(146, 243)(147, 169)(148, 227)(149, 218)(150, 201)(151, 197)(152, 188)(153, 242)(155, 224)(156, 255)(157, 175)(158, 186)(159, 178)(160, 214)(162, 251)(163, 207)(164, 238)(165, 226)(166, 213)(167, 174)(170, 225)(171, 210)(172, 220)(173, 229)(177, 241)(179, 235)(180, 187)(183, 209)(184, 217)(189, 196)(190, 234)(191, 204)(194, 206)(195, 250)(198, 239)(199, 208)(200, 230)(205, 215)(211, 228)(212, 253)(216, 246)(219, 232)(221, 237)(233, 254)(240, 249)(244, 256)(248, 252)
c: (1, 2)(3, 9)(4, 8)(5, 6)(7, 20)(10, 21)(11, 87)(12, 65)(13, 14)(15, 26)(16, 18)(17, 60)(19, 108)(22, 90)(23, 119)(24, 123)(25, 104)(27, 77)(28, 42)(29, 36)(30, 69)(31, 38)(32, 75)(33, 107)(34, 74)(35, 48)(37, 70)(39, 71)(40, 89)(41, 98)(43, 116)(44, 110)(45, 127)(46, 128)(47, 83)(49, 57)(50, 52)(51, 82)(53, 76)(54, 113)(55, 112)(56, 88)(58, 109)(59, 66)(61, 78)(62, 106)(63, 72)(64, 103)(67, 86)(68, 91)(73, 92)(79, 99)(80, 94)(81, 93)(84, 95)(85, 100)(96, 125)(97, 126)(101, 121)(102, 122)(105, 117)(111, 118)(114, 120)(115, 124)(129, 196)(130, 139)(131, 209)(132, 186)(133, 189)(134, 243)(135, 215)(136, 146)(137, 164)(138, 145)(140, 157)(141, 213)(142, 248)(143, 185)(144, 253)(148, 231)(149, 237)(150, 205)(151, 163)(152, 235)(154, 211)(155, 161)(156, 216)(158, 244)(159, 173)(160, 251)(162, 225)(165, 228)(167, 208)(168, 194)(169, 217)(170, 180)(171, 245)(172, 218)(174, 220)(175, 197)(176, 240)(177, 252)(178, 239)(181, 199)(182, 221)(184, 203)(187, 256)(188, 254)(190, 204)(191, 223)(192, 224)(193, 229)(195, 202)(198, 233)(200, 242)(201, 214)(206, 247)(207, 219)(210, 241)(222, 250)(227, 238)(230, 249)(232, 236)(234, 255)

(III) Last is Groups&Graphs. Copy everything between (not including) the lines of asterisks into a plain text file and save it as "graph.txt". Then launch G&G (Groups&Graphs) and select Read Text from the File menu.

**************

&Graph
C4[ 256, 142 ]
256
-1 135 147 169 182
-2 221 147 215 217
-3 200 135 147 227
-4 166 158 213 186
-5 135 191 159 236
-6 232 223 215 173
-7 145 135 191 150
-8 132 166 244 141
-9 242 147 215 238
-10 144 166 134 186
-11 254 156 245 218
-12 203 149 150 217
-13 198 223 161 186
-14 132 155 233 191
-15 177 179 227 173
-16 132 191 204 185
-17 154 256 159 238
-18 143 190 223 186
-19 155 254 233 224
-20 223 138 215 205
-21 132 253 166 243
-22 209 254 157 245
-23 176 222 248 219
-24 222 194 208 219
-25 180 148 228 229
-26 179 159 238 252
-27 144 199 232 206
-28 137 150 217 153
-29 143 187 206 141
-30 156 179 208 252
-31 134 233 255 149
-32 155 200 203 214
-33 200 148 227 230
-34 154 201 182 204
-35 134 233 183 175
-36 256 213 247 185
-37 234 158 181 138
-38 198 243 234 237
-39 176 157 137 153
-40 232 173 229 219
-41 138 205 229 219
-42 169 205 153 164
-43 254 224 204 185
-44 235 148 229 241
-45 202 224 151 230
-46 133 224 160 230
-47 189 203 214 172
-48 198 243 183 197
-49 253 177 236 130
-50 146 212 213 185
-51 154 201 163 131
-52 143 212 136 141
-53 155 200 130 197
-54 176 157 203 149
-55 154 156 256 208
-56 160 183 228 197
-57 144 232 139 252
-58 144 134 222 245
-59 158 137 138 239
-60 187 211 227 173
-61 199 255 235 248
-62 169 148 182 230
-63 180 181 247 194
-64 222 245 158 213
-65 169 237 205 184
-66 145 178 244 164
-67 178 136 182 204
-68 212 136 202 241
-69 177 167 179 216
-70 199 145 244 255
-71 140 240 153 164
-72 199 168 170 206
-73 168 170 139 252
-74 221 211 190 214
-75 242 201 161 184
-76 242 139 161 175
-77 253 181 236 247
-78 234 181 152 142
-79 137 239 152 142
-80 187 202 206 241
-81 234 160 237 228
-82 209 211 214 151
-83 133 201 184 218
-84 133 139 218 175
-85 209 146 151 239
-86 221 146 190 239
-87 188 171 172 216
-88 165 183 251 175
-89 159 236 193 207
-90 188 171 140 131
-91 210 146 212 195
-92 177 180 194 130
-93 165 255 149 251
-94 210 256 247 195
-95 189 172 130 197
-96 176 225 248 129
-97 225 194 129 208
-98 145 193 150 207
-99 178 235 248 164
-100 178 136 163 131
-101 220 202 151 196
-102 220 133 160 196
-103 244 171 250 141
-104 165 231 170 193
-105 165 220 246 170
-106 231 221 249 217
-107 231 242 238 249
-108 198 188 192 161
-109 253 243 171 250
-110 231 210 193 152
-111 220 210 246 152
-112 187 167 211 216
-113 237 140 184 240
-114 156 226 162 218
-115 209 157 226 162
-116 143 188 190 192
-117 180 246 228 174
-118 235 246 174 241
-119 250 207 240 142
-120 225 226 172 216
-121 129 195 163 174
-122 189 129 174 251
-123 167 168 250 207
-124 225 226 140 131
-125 162 196 240 142
-126 167 168 162 196
-127 192 249 195 163
-128 189 192 249 251
-129 121 122 96 97
-130 92 49 95 53
-131 100 90 124 51
-132 14 16 8 21
-133 46 102 83 84
-134 35 58 31 10
-135 1 3 5 7
-136 67 100 68 52
-137 79 59 28 39
-138 37 59 41 20
-139 57 73 84 76
-140 90 113 124 71
-141 103 29 8 52
-142 78 79 125 119
-143 116 18 29 52
-144 57 58 27 10
-145 66 70 7 98
-146 91 50 85 86
-147 1 2 3 9
-148 33 44 25 62
-149 12 93 31 54
-150 12 28 7 98
-151 45 101 82 85
-152 110 78 111 79
-153 71 28 39 42
-154 55 34 17 51
-155 14 19 53 32
-156 11 55 114 30
-157 22 115 39 54
-158 4 37 59 64
-159 89 26 5 17
-160 56 46 102 81
-161 13 75 108 76
-162 114 125 115 126
-163 121 100 127 51
-164 66 99 71 42
-165 88 93 104 105
-166 4 8 10 21
-167 112 123 69 126
-168 123 126 72 73
-169 1 62 42 65
-170 104 72 105 73
-171 90 103 87 109
-172 47 95 87 120
-173 15 60 6 40
-174 121 122 117 118
-175 88 35 84 76
-176 23 39 96 54
-177 69 15 92 49
-178 66 99 67 100
-179 69 15 26 30
-180 25 92 117 63
-181 77 78 37 63
-182 1 34 67 62
-183 88 56 35 48
-184 113 83 75 65
-185 36 16 50 43
-186 13 4 18 10
-187 112 80 60 29
-188 90 116 108 87
-189 122 47 95 128
-190 116 18 74 86
-191 14 5 16 7
-192 116 127 128 108
-193 110 89 104 98
-194 24 92 63 97
-195 121 91 94 127
-196 101 102 125 126
-197 56 48 95 53
-198 13 48 38 108
-199 70 27 61 72
-200 33 3 53 32
-201 34 83 51 75
-202 45 68 101 80
-203 12 47 32 54
-204 34 67 16 43
-205 41 20 42 65
-206 80 27 72 29
-207 89 123 119 98
-208 55 24 30 97
-209 22 82 115 85
-210 110 111 91 94
-211 112 60 82 74
-212 68 91 50 52
-213 36 4 50 64
-214 47 82 74 32
-215 2 6 9 20
-216 112 69 87 120
-217 12 2 28 106
-218 11 114 83 84
-219 23 24 40 41
-220 111 101 102 105
-221 2 106 74 86
-222 23 24 58 64
-223 13 6 18 20
-224 45 46 19 43
-225 124 96 97 120
-226 124 114 115 120
-227 33 3 15 60
-228 56 25 81 117
-229 44 25 40 41
-230 33 45 46 62
-231 110 104 106 107
-232 57 27 6 40
-233 35 14 19 31
-234 78 37 81 38
-235 44 99 61 118
-236 77 89 5 49
-237 113 81 38 65
-238 26 17 107 9
-239 79 59 85 86
-240 113 125 71 119
-241 44 68 80 118
-242 107 9 75 76
-243 48 38 21 109
-244 66 70 103 8
-245 11 22 58 64
-246 111 105 117 118
-247 77 36 94 63
-248 99 23 61 96
-249 127 106 128 107
-250 123 103 119 109
-251 88 122 93 128
-252 57 26 73 30
-253 77 49 21 109
-254 11 22 19 43
-255 70 93 61 31
-256 55 36 17 94
0

**************