C4graphGraph forms for C4 [ 256, 143 ] = BGCG(UG(ATD[128,44]);K1;{18,19,20,21})

[Home] [Table] [Glossary] [Families]

On this page are computer-accessible forms for the graph C4[ 256, 143 ] = BGCG(UG(ATD[128,44]);K1;{18,19,20,21}).

(I) Following is a form readable by MAGMA:

g:=Graph<256|{ {128, 171}, {128, 190}, {128, 208}, {128, 247}, {49, 177}, {123, 251}, {60, 188}, {55, 183}, {82, 210}, {5, 132}, {117, 244}, {113, 240}, {104, 233}, {95, 222}, {56, 185}, {42, 171}, {29, 156}, {7, 134}, {72, 201}, {75, 202}, {18, 144}, {118, 244}, {111, 237}, {109, 239}, {107, 233}, {96, 226}, {31, 157}, {30, 156}, {77, 207}, {8, 139}, {106, 233}, {97, 226}, {52, 183}, {43, 168}, {34, 161}, {16, 148}, {93, 217}, {70, 194}, {72, 204}, {82, 214}, {14, 139}, {25, 158}, {110, 233}, {99, 228}, {50, 181}, {39, 160}, {24, 144}, {127, 247}, {98, 234}, {91, 211}, {5, 140}, {48, 185}, {63, 182}, {42, 160}, {109, 231}, {47, 165}, {7, 140}, {90, 209}, {35, 175}, {119, 251}, {118, 250}, {102, 234}, {1, 140}, {42, 167}, {10, 135}, {73, 199}, {83, 221}, {3, 140}, {95, 208}, {70, 201}, {9, 153}, {115, 227}, {69, 213}, {12, 157}, {114, 227}, {107, 250}, {19, 130}, {28, 142}, {51, 161}, {37, 182}, {8, 156}, {115, 231}, {113, 229}, {89, 205}, {14, 154}, {86, 195}, {3, 149}, {110, 248}, {109, 251}, {55, 161}, {4, 146}, {84, 194}, {11, 156}, {31, 136}, {68, 211}, {1, 153}, {31, 135}, {74, 210}, {76, 212}, {1, 152}, {124, 229}, {99, 250}, {89, 192}, {58, 163}, {83, 202}, {3, 153}, {120, 226}, {95, 197}, {35, 185}, {28, 134}, {85, 207}, {2, 153}, {120, 227}, {119, 236}, {111, 244}, {49, 170}, {19, 136}, {16, 139}, {7, 155}, {115, 239}, {107, 247}, {103, 251}, {44, 176}, {74, 214}, {80, 204}, {105, 244}, {113, 236}, {106, 247}, {17, 143}, {124, 226}, {59, 165}, {26, 132}, {21, 139}, {64, 222}, {64, 223}, {124, 227}, {66, 221}, {41, 137}, {62, 158}, {4, 165}, {101, 196}, {94, 255}, {29, 188}, {17, 176}, {8, 169}, {81, 240}, {6, 164}, {112, 210}, {108, 206}, {102, 196}, {98, 192}, {97, 195}, {1, 162}, {93, 254}, {10, 169}, {86, 242}, {18, 183}, {103, 194}, {100, 193}, {50, 151}, {29, 184}, {78, 235}, {30, 184}, {120, 222}, {50, 148}, {85, 242}, {18, 186}, {104, 192}, {94, 246}, {57, 145}, {46, 134}, {62, 150}, {66, 234}, {26, 179}, {60, 149}, {45, 132}, {39, 142}, {30, 180}, {32, 138}, {77, 231}, {15, 164}, {126, 213}, {54, 157}, {40, 131}, {33, 138}, {4, 169}, {26, 180}, {114, 220}, {110, 192}, {96, 206}, {49, 159}, {16, 191}, {98, 205}, {60, 147}, {24, 183}, {75, 228}, {86, 249}, {10, 186}, {114, 194}, {105, 217}, {53, 133}, {51, 131}, {17, 161}, {14, 191}, {28, 173}, {65, 240}, {75, 250}, {44, 158}, {85, 231}, {94, 237}, {105, 218}, {34, 150}, {96, 212}, {49, 133}, {46, 155}, {111, 218}, {59, 142}, {64, 245}, {73, 252}, {36, 146}, {123, 205}, {78, 248}, {13, 186}, {116, 195}, {53, 130}, {7, 191}, {108, 212}, {27, 163}, {70, 254}, {9, 176}, {125, 196}, {98, 219}, {52, 141}, {83, 234}, {5, 191}, {126, 196}, {119, 205}, {57, 131}, {32, 154}, {81, 235}, {15, 180}, {103, 220}, {40, 147}, {77, 246}, {21, 169}, {123, 199}, {122, 198}, {102, 218}, {28, 160}, {22, 170}, {79, 242}, {102, 219}, {4, 186}, {127, 193}, {15, 177}, {20, 171}, {101, 218}, {33, 158}, {21, 170}, {76, 243}, {24, 216}, {93, 157}, {71, 135}, {48, 241}, {127, 190}, {109, 172}, {79, 142}, {86, 151}, {85, 151}, {20, 215}, {61, 254}, {20, 208}, {99, 167}, {45, 232}, {118, 179}, {112, 181}, {57, 252}, {79, 138}, {84, 145}, {87, 146}, {35, 229}, {89, 159}, {46, 232}, {63, 249}, {6, 193}, {106, 173}, {100, 163}, {54, 241}, {24, 223}, {12, 203}, {23, 223}, {91, 147}, {55, 255}, {65, 137}, {33, 232}, {116, 189}, {59, 242}, {63, 246}, {68, 141}, {5, 207}, {116, 190}, {113, 187}, {104, 162}, {44, 230}, {43, 225}, {68, 143}, {103, 172}, {33, 237}, {116, 184}, {112, 188}, {92, 144}, {91, 151}, {45, 225}, {78, 130}, {38, 235}, {120, 181}, {53, 248}, {82, 159}, {37, 235}, {91, 149}, {40, 230}, {61, 243}, {67, 141}, {23, 216}, {58, 245}, {46, 225}, {41, 230}, {35, 236}, {71, 136}, {84, 155}, {72, 152}, {6, 215}, {108, 189}, {99, 178}, {29, 204}, {88, 137}, {27, 201}, {108, 190}, {36, 246}, {80, 132}, {122, 174}, {114, 166}, {2, 215}, {115, 166}, {8, 221}, {79, 154}, {11, 221}, {126, 168}, {100, 178}, {56, 238}, {43, 253}, {38, 240}, {62, 232}, {89, 143}, {12, 219}, {121, 174}, {27, 204}, {16, 199}, {69, 146}, {81, 134}, {73, 145}, {126, 166}, {118, 174}, {117, 173}, {107, 179}, {54, 239}, {97, 184}, {92, 133}, {27, 193}, {95, 133}, {74, 144}, {10, 209}, {127, 164}, {125, 166}, {117, 174}, {36, 255}, {67, 152}, {21, 200}, {90, 135}, {70, 155}, {76, 145}, {9, 215}, {22, 200}, {44, 243}, {124, 163}, {58, 229}, {48, 239}, {73, 150}, {25, 249}, {97, 129}, {71, 167}, {72, 168}, {31, 254}, {96, 129}, {50, 211}, {88, 185}, {12, 238}, {51, 209}, {45, 207}, {30, 252}, {15, 237}, {14, 236}, {22, 245}, {56, 219}, {65, 162}, {76, 175}, {80, 179}, {47, 203}, {112, 148}, {34, 199}, {111, 138}, {58, 223}, {66, 167}, {6, 224}, {26, 252}, {23, 241}, {52, 211}, {90, 189}, {62, 217}, {71, 160}, {34, 202}, {57, 209}, {52, 220}, {38, 206}, {83, 187}, {13, 228}, {100, 141}, {47, 198}, {39, 206}, {61, 212}, {87, 189}, {121, 147}, {101, 143}, {22, 253}, {55, 220}, {32, 203}, {67, 168}, {2, 238}, {80, 188}, {13, 224}, {119, 154}, {92, 177}, {17, 255}, {38, 200}, {19, 253}, {60, 210}, {39, 200}, {123, 148}, {41, 198}, {40, 216}, {104, 152}, {53, 197}, {66, 178}, {75, 187}, {36, 213}, {41, 216}, {67, 178}, {69, 180}, {18, 224}, {19, 225}, {87, 165}, {23, 228}, {122, 137}, {42, 217}, {20, 224}, {61, 201}, {68, 176}, {69, 177}, {37, 208}, {125, 136}, {48, 197}, {64, 181}, {11, 253}, {93, 171}, {90, 172}, {32, 214}, {25, 238}, {88, 175}, {78, 182}, {121, 129}, {82, 170}, {47, 214}, {51, 202}, {9, 243}, {121, 131}, {101, 159}, {94, 164}, {65, 187}, {88, 162}, {2, 249}, {122, 129}, {110, 149}, {37, 222}, {3, 248}, {77, 182}, {84, 175}, {87, 172}, {13, 241}, {63, 195}, {81, 173}, {54, 203}, {59, 198}, {56, 197}, {11, 245}, {43, 213}, {25, 230}, {125, 130}, {105, 150}, {74, 256}, {92, 256}, {106, 256}, {117, 256} }>;

(II) A more general form is to represent the graph as the orbit of {128, 171} under the group generated by the following permutations:

a: (2, 67, 5, 65)(3, 104)(6, 43, 14, 41)(7, 88, 9, 72)(8, 59, 13, 36)(10, 87)(11, 79, 23, 94)(12, 52, 26, 38)(15, 22, 32, 24)(16, 122, 20, 126)(17, 29, 28, 48)(18, 69, 21, 47)(19, 119, 40, 127)(25, 100, 45, 113)(27, 46, 35, 44)(30, 39, 54, 55)(31, 103, 57, 108)(33, 58)(34, 97, 42, 115)(37, 102, 50, 118)(49, 82, 74, 92)(51, 116, 71, 109)(53, 89, 60, 106)(56, 68, 80, 81)(61, 70, 84, 76)(62, 124)(63, 66, 85, 75)(64, 111)(73, 96, 93, 114)(77, 83, 86, 99)(78, 98, 91, 107)(95, 101, 112, 117)(105, 120)(121, 128, 125, 123)(129, 171, 166, 199)(130, 205, 147, 247)(131, 190, 136, 251)(132, 240, 238, 141)(133, 159, 210, 256)(134, 185, 176, 204)(135, 172, 209, 189)(137, 215, 168, 191)(138, 223, 237, 245)(139, 198, 224, 213)(140, 162, 153, 152)(142, 241, 255, 156)(143, 188, 173, 197)(144, 177, 170, 214)(145, 212, 254, 194)(146, 169, 165, 186)(148, 174, 208, 196)(149, 233, 248, 192)(150, 226, 217, 227)(151, 250, 182, 234)(154, 216, 164, 253)(155, 175, 243, 201)(157, 220, 252, 206)(158, 163, 232, 229)(160, 239, 161, 184)(167, 231, 202, 195)(178, 207, 187, 249)(179, 235, 219, 211)(180, 200, 203, 183)(181, 244, 222, 218)(193, 225, 236, 230)(221, 242, 228, 246)
b: (2, 5)(6, 14)(7, 9)(8, 13)(11, 23)(12, 26)(15, 32)(16, 20)(17, 28)(18, 21)(19, 40)(22, 24)(25, 45)(27, 35)(29, 48)(30, 54)(31, 57)(34, 42)(36, 59)(37, 50)(38, 52)(39, 55)(41, 43)(44, 46)(47, 69)(49, 74)(51, 71)(53, 60)(56, 80)(61, 84)(63, 85)(65, 67)(66, 75)(68, 81)(70, 76)(72, 88)(73, 93)(77, 86)(78, 91)(79, 94)(82, 92)(83, 99)(89, 106)(95, 112)(96, 114)(97, 115)(98, 107)(100, 113)(101, 117)(102, 118)(103, 108)(109, 116)(119, 127)(121, 125)(122, 126)(123, 128)(129, 166)(130, 147)(131, 136)(132, 238)(133, 210)(134, 176)(135, 209)(137, 168)(138, 237)(139, 224)(140, 153)(141, 240)(142, 255)(143, 173)(144, 170)(145, 254)(146, 165)(148, 208)(149, 248)(150, 217)(151, 182)(152, 162)(154, 164)(155, 243)(156, 241)(157, 252)(158, 232)(159, 256)(160, 161)(163, 229)(167, 202)(169, 186)(171, 199)(172, 189)(174, 196)(175, 201)(177, 214)(178, 187)(179, 219)(180, 203)(181, 222)(183, 200)(184, 239)(185, 204)(188, 197)(190, 251)(191, 215)(192, 233)(193, 236)(194, 212)(195, 231)(198, 213)(205, 247)(206, 220)(207, 249)(211, 235)(216, 253)(218, 244)(221, 228)(223, 245)(225, 230)(226, 227)(234, 250)(242, 246)
c: (1, 2, 6, 13, 4, 8, 14, 5)(3, 9, 20, 18, 10, 21, 16, 7)(11, 119, 45, 104, 25, 127, 23, 87)(12, 15, 75, 59, 29, 35, 77, 67)(17, 42, 74, 57, 38, 50, 70, 53)(19, 89, 62, 106, 40, 108, 64, 103)(22, 123, 46, 110, 44, 128, 24, 90)(26, 65, 86, 27, 48, 36, 66, 32)(28, 60, 76, 37, 52, 31, 49, 34)(30, 113, 85, 72, 56, 94, 99, 47)(33, 107, 41, 116, 58, 109, 43, 98)(39, 112, 84, 78, 68, 93, 92, 51)(54, 69, 83, 79, 80, 88, 63, 100)(55, 71, 82, 73, 81, 91, 61, 95)(96, 120, 114, 125, 101, 105, 117, 121)(97, 124, 115, 126, 102, 111, 118, 122)(129, 226, 227, 166, 196, 218, 244, 174)(130, 143, 217, 256, 131, 206, 181, 194)(132, 162, 249, 193, 241, 146, 221, 154)(133, 161, 160, 210, 145, 235, 211, 254)(134, 149, 243, 208, 183, 135, 170, 199)(136, 159, 150, 173, 147, 212, 222, 220)(137, 195, 163, 239, 213, 234, 138, 179)(139, 191, 140, 153, 215, 224, 186, 169)(141, 157, 177, 202, 142, 188, 175, 182)(144, 209, 200, 148, 155, 248, 176, 171)(151, 201, 197, 255, 167, 214, 252, 240)(152, 238, 164, 228, 165, 156, 236, 207)(158, 247, 216, 189, 245, 251, 225, 192)(168, 219, 237, 250, 198, 184, 229, 231)(172, 253, 205, 232, 233, 230, 190, 223)(178, 203, 180, 187, 242, 204, 185, 246)

(III) Last is Groups&Graphs. Copy everything between (not including) the lines of asterisks into a plain text file and save it as "graph.txt". Then launch G&G (Groups&Graphs) and select Read Text from the File menu.

**************

&Graph
C4[ 256, 143 ]
256
-1 140 162 152 153
-2 215 238 249 153
-3 149 248 140 153
-4 165 146 169 186
-5 132 191 140 207
-6 224 193 215 164
-7 155 134 191 140
-8 221 156 169 139
-9 176 243 215 153
-10 209 135 169 186
-11 253 221 156 245
-12 157 203 238 219
-13 224 228 186 241
-14 154 191 236 139
-15 177 180 237 164
-16 199 191 148 139
-17 143 176 255 161
-18 144 224 183 186
-19 253 136 225 130
-20 224 171 215 208
-21 200 169 170 139
-22 253 200 245 170
-23 223 216 228 241
-24 144 223 183 216
-25 158 238 249 230
-26 132 179 180 252
-27 201 193 204 163
-28 134 160 173 142
-29 188 156 204 184
-30 156 180 184 252
-31 254 135 157 136
-32 154 203 214 138
-33 232 158 138 237
-34 199 202 150 161
-35 236 185 229 175
-36 255 146 213 246
-37 222 235 182 208
-38 200 235 206 240
-39 200 160 206 142
-40 147 216 131 230
-41 198 137 216 230
-42 167 160 171 217
-43 253 168 213 225
-44 176 243 158 230
-45 132 232 225 207
-46 155 232 134 225
-47 165 198 203 214
-48 239 185 197 241
-49 133 177 159 170
-50 211 148 181 151
-51 209 202 161 131
-52 220 211 183 141
-53 133 248 130 197
-54 157 203 239 241
-55 220 255 161 183
-56 238 185 197 219
-57 209 145 131 252
-58 223 245 163 229
-59 165 198 242 142
-60 188 210 147 149
-61 243 254 201 212
-62 232 158 150 217
-63 246 182 249 195
-64 222 223 245 181
-65 187 137 162 240
-66 221 167 178 234
-67 178 168 141 152
-68 143 176 211 141
-69 177 146 180 213
-70 155 254 201 194
-71 167 135 136 160
-72 168 201 204 152
-73 199 145 150 252
-74 144 210 256 214
-75 187 202 228 250
-76 243 145 212 175
-77 231 246 182 207
-78 235 182 248 130
-79 154 242 138 142
-80 132 188 179 204
-81 134 235 173 240
-82 210 159 170 214
-83 187 221 234 202
-84 155 145 194 175
-85 231 242 151 207
-86 242 249 151 195
-87 165 189 146 172
-88 137 162 185 175
-89 143 159 192 205
-90 209 189 135 172
-91 211 147 149 151
-92 133 144 177 256
-93 254 157 171 217
-94 255 246 237 164
-95 133 222 197 208
-96 212 226 129 206
-97 226 129 184 195
-98 234 192 205 219
-99 167 178 228 250
-100 178 193 141 163
-101 143 159 196 218
-102 234 196 218 219
-103 220 172 194 251
-104 233 192 162 152
-105 244 150 217 218
-106 233 256 247 173
-107 233 179 247 250
-108 189 190 212 206
-109 231 172 239 251
-110 233 192 149 248
-111 244 138 237 218
-112 188 210 148 181
-113 187 236 229 240
-114 220 166 194 227
-115 231 166 227 239
-116 189 190 184 195
-117 244 256 173 174
-118 244 179 250 174
-119 154 236 205 251
-120 222 181 226 227
-121 147 129 174 131
-122 198 137 129 174
-123 199 148 205 251
-124 226 227 163 229
-125 166 136 130 196
-126 166 168 213 196
-127 190 247 193 164
-128 190 247 171 208
-129 121 122 96 97
-130 78 125 19 53
-131 121 57 40 51
-132 45 80 26 5
-133 92 49 95 53
-134 46 81 28 7
-135 90 71 31 10
-136 125 71 19 31
-137 88 122 41 65
-138 33 111 79 32
-139 14 16 8 21
-140 1 3 5 7
-141 67 100 68 52
-142 79 59 28 39
-143 89 68 101 17
-144 24 92 18 74
-145 57 73 84 76
-146 36 69 4 87
-147 121 91 60 40
-148 112 123 16 50
-149 110 3 91 60
-150 34 105 62 73
-151 91 50 85 86
-152 1 67 104 72
-153 1 2 3 9
-154 79 14 119 32
-155 46 70 7 84
-156 11 29 8 30
-157 12 93 31 54
-158 33 44 25 62
-159 89 101 49 82
-160 71 28 39 42
-161 55 34 17 51
-162 88 1 104 65
-163 100 58 124 27
-164 15 6 94 127
-165 47 4 59 87
-166 114 125 115 126
-167 66 99 71 42
-168 67 126 72 43
-169 4 8 10 21
-170 22 49 82 21
-171 93 128 20 42
-172 90 103 87 109
-173 81 28 106 117
-174 121 122 117 118
-175 88 35 84 76
-176 44 68 17 9
-177 69 15 92 49
-178 66 99 67 100
-179 80 26 107 118
-180 69 15 26 30
-181 112 50 64 120
-182 77 78 37 63
-183 55 24 18 52
-184 116 29 30 97
-185 88 56 35 48
-186 13 4 18 10
-187 113 83 75 65
-188 112 80 60 29
-189 90 116 108 87
-190 116 127 128 108
-191 14 5 16 7
-192 110 89 104 98
-193 100 27 6 127
-194 70 103 114 84
-195 116 63 86 97
-196 101 102 125 126
-197 56 48 95 53
-198 122 47 59 41
-199 34 123 16 73
-200 22 38 39 21
-201 70 27 61 72
-202 34 83 51 75
-203 12 47 32 54
-204 80 27 72 29
-205 89 123 119 98
-206 38 39 96 108
-207 77 45 5 85
-208 37 95 128 20
-209 57 90 51 10
-210 112 60 82 74
-211 68 91 50 52
-212 61 96 108 76
-213 36 69 126 43
-214 47 82 74 32
-215 2 6 9 20
-216 23 24 40 41
-217 93 105 62 42
-218 111 101 102 105
-219 12 56 102 98
-220 55 103 114 52
-221 11 66 83 8
-222 37 95 64 120
-223 23 24 58 64
-224 13 6 18 20
-225 45 46 19 43
-226 124 96 97 120
-227 124 114 115 120
-228 99 23 13 75
-229 35 58 113 124
-230 44 25 40 41
-231 77 115 85 109
-232 33 45 46 62
-233 110 104 106 107
-234 66 102 83 98
-235 78 37 81 38
-236 35 14 113 119
-237 33 111 15 94
-238 12 56 2 25
-239 48 115 54 109
-240 113 81 38 65
-241 23 13 48 54
-242 79 59 85 86
-243 44 61 9 76
-244 111 105 117 118
-245 11 22 58 64
-246 77 36 94 63
-247 127 106 128 107
-248 110 78 3 53
-249 2 25 63 86
-250 99 107 118 75
-251 123 103 119 109
-252 57 26 73 30
-253 11 22 19 43
-254 70 93 61 31
-255 55 36 17 94
-256 92 106 117 74
0

**************