C4graphGraph forms for C4 [ 256, 144 ] = BGCG(UG(ATD[128,54]);K1;{12,13,14,16})

[Home] [Table] [Glossary] [Families]

On this page are computer-accessible forms for the graph C4[ 256, 144 ] = BGCG(UG(ATD[128,54]);K1;{12,13,14,16}).

(I) Following is a form readable by MAGMA:

g:=Graph<256|{ {128, 158}, {128, 167}, {128, 205}, {128, 240}, {24, 152}, {69, 197}, {78, 206}, {46, 175}, {124, 253}, {77, 204}, {11, 137}, {116, 246}, {102, 228}, {42, 168}, {39, 165}, {17, 147}, {77, 207}, {51, 176}, {89, 218}, {65, 197}, {27, 158}, {51, 182}, {44, 169}, {25, 159}, {103, 225}, {99, 229}, {93, 219}, {31, 153}, {87, 209}, {12, 139}, {120, 255}, {54, 177}, {53, 178}, {1, 137}, {2, 138}, {24, 145}, {125, 244}, {111, 230}, {73, 194}, {112, 251}, {97, 234}, {28, 144}, {91, 215}, {46, 162}, {46, 163}, {124, 241}, {107, 230}, {57, 180}, {84, 217}, {88, 213}, {6, 136}, {125, 243}, {50, 188}, {12, 130}, {62, 176}, {69, 203}, {18, 157}, {52, 187}, {44, 163}, {67, 204}, {75, 196}, {87, 216}, {15, 159}, {96, 240}, {59, 171}, {47, 191}, {70, 214}, {43, 186}, {115, 226}, {111, 254}, {58, 171}, {48, 161}, {45, 188}, {66, 211}, {78, 223}, {80, 193}, {87, 198}, {10, 152}, {125, 239}, {119, 229}, {107, 249}, {101, 247}, {42, 184}, {33, 179}, {28, 142}, {13, 159}, {92, 207}, {18, 134}, {121, 237}, {98, 246}, {93, 201}, {90, 206}, {62, 170}, {82, 198}, {53, 160}, {113, 228}, {33, 183}, {59, 173}, {81, 199}, {4, 147}, {121, 238}, {96, 247}, {85, 194}, {32, 184}, {118, 238}, {99, 251}, {58, 162}, {21, 140}, {114, 235}, {35, 186}, {122, 224}, {29, 134}, {44, 183}, {6, 154}, {113, 237}, {55, 171}, {34, 190}, {73, 213}, {13, 144}, {24, 133}, {26, 132}, {111, 241}, {20, 139}, {112, 239}, {94, 193}, {50, 173}, {38, 134}, {102, 198}, {100, 196}, {69, 229}, {105, 200}, {121, 216}, {110, 207}, {71, 229}, {123, 217}, {83, 241}, {41, 138}, {48, 147}, {27, 191}, {50, 150}, {83, 247}, {63, 154}, {116, 209}, {67, 230}, {70, 227}, {93, 251}, {3, 164}, {88, 255}, {4, 163}, {26, 178}, {51, 154}, {59, 146}, {20, 190}, {106, 192}, {45, 135}, {22, 188}, {15, 164}, {94, 245}, {23, 187}, {111, 195}, {39, 139}, {61, 145}, {71, 235}, {34, 143}, {126, 211}, {89, 244}, {56, 149}, {77, 224}, {27, 181}, {64, 238}, {8, 167}, {98, 205}, {55, 152}, {10, 186}, {106, 218}, {2, 179}, {99, 210}, {15, 190}, {14, 191}, {5, 180}, {67, 242}, {7, 181}, {109, 223}, {60, 142}, {30, 172}, {65, 243}, {36, 151}, {127, 204}, {101, 214}, {47, 156}, {30, 170}, {68, 240}, {73, 253}, {1, 180}, {104, 221}, {56, 141}, {95, 233}, {117, 195}, {10, 189}, {34, 149}, {79, 248}, {81, 233}, {97, 217}, {91, 227}, {15, 182}, {119, 206}, {108, 213}, {89, 224}, {74, 243}, {76, 245}, {7, 189}, {2, 185}, {124, 199}, {118, 205}, {61, 134}, {22, 170}, {105, 213}, {104, 212}, {100, 216}, {39, 155}, {69, 249}, {76, 240}, {18, 175}, {103, 218}, {45, 144}, {40, 149}, {5, 187}, {40, 150}, {37, 155}, {16, 174}, {68, 250}, {81, 239}, {18, 173}, {41, 150}, {39, 231}, {119, 183}, {102, 166}, {89, 153}, {26, 219}, {117, 180}, {92, 157}, {90, 155}, {61, 252}, {7, 197}, {108, 174}, {106, 168}, {91, 153}, {21, 215}, {9, 202}, {114, 177}, {1, 197}, {95, 155}, {57, 253}, {48, 244}, {29, 217}, {16, 212}, {5, 192}, {51, 246}, {48, 245}, {25, 220}, {66, 135}, {68, 129}, {14, 200}, {112, 182}, {90, 156}, {58, 252}, {43, 237}, {27, 221}, {74, 140}, {22, 209}, {114, 181}, {67, 132}, {74, 141}, {85, 146}, {4, 204}, {105, 161}, {104, 160}, {52, 252}, {66, 138}, {8, 193}, {127, 182}, {120, 177}, {104, 161}, {94, 151}, {92, 149}, {37, 236}, {65, 136}, {87, 158}, {32, 234}, {90, 144}, {21, 222}, {95, 148}, {36, 239}, {72, 131}, {23, 219}, {119, 187}, {116, 184}, {110, 162}, {72, 132}, {13, 192}, {57, 244}, {55, 250}, {38, 235}, {37, 232}, {64, 141}, {10, 196}, {105, 167}, {98, 172}, {54, 248}, {42, 228}, {35, 236}, {125, 178}, {110, 161}, {107, 164}, {41, 249}, {123, 171}, {91, 139}, {62, 238}, {3, 210}, {6, 215}, {73, 152}, {35, 241}, {126, 172}, {109, 191}, {52, 230}, {44, 254}, {17, 194}, {122, 169}, {118, 165}, {94, 141}, {33, 242}, {80, 131}, {81, 130}, {12, 216}, {43, 255}, {64, 148}, {74, 158}, {86, 130}, {9, 220}, {112, 165}, {100, 177}, {72, 157}, {49, 231}, {115, 165}, {113, 167}, {102, 176}, {53, 227}, {84, 131}, {127, 168}, {12, 212}, {53, 237}, {50, 234}, {71, 159}, {86, 142}, {19, 202}, {108, 181}, {103, 190}, {24, 193}, {79, 150}, {86, 143}, {83, 137}, {86, 140}, {9, 210}, {116, 175}, {97, 186}, {31, 195}, {126, 162}, {85, 137}, {3, 222}, {29, 192}, {23, 202}, {20, 201}, {16, 205}, {65, 156}, {8, 214}, {58, 228}, {52, 234}, {43, 245}, {40, 246}, {25, 199}, {21, 203}, {7, 231}, {124, 156}, {122, 154}, {115, 147}, {97, 129}, {19, 242}, {72, 169}, {83, 178}, {85, 183}, {11, 232}, {103, 132}, {29, 254}, {62, 221}, {63, 220}, {76, 175}, {34, 198}, {117, 145}, {68, 160}, {28, 249}, {96, 133}, {30, 251}, {75, 174}, {6, 225}, {101, 130}, {55, 208}, {20, 243}, {84, 179}, {1, 233}, {16, 248}, {80, 184}, {5, 236}, {120, 145}, {3, 233}, {109, 135}, {8, 226}, {76, 166}, {78, 164}, {35, 200}, {110, 133}, {56, 211}, {47, 196}, {77, 166}, {82, 185}, {88, 179}, {56, 212}, {120, 148}, {113, 157}, {99, 143}, {60, 209}, {108, 129}, {101, 136}, {19, 253}, {37, 203}, {70, 168}, {32, 207}, {60, 211}, {57, 214}, {49, 222}, {70, 169}, {32, 208}, {80, 160}, {11, 250}, {127, 142}, {95, 174}, {59, 202}, {54, 199}, {47, 222}, {42, 219}, {33, 208}, {63, 206}, {17, 227}, {49, 195}, {66, 176}, {75, 185}, {79, 189}, {84, 166}, {4, 247}, {100, 151}, {49, 194}, {36, 215}, {11, 255}, {117, 129}, {46, 218}, {14, 250}, {41, 220}, {122, 143}, {98, 151}, {60, 201}, {61, 200}, {88, 173}, {14, 248}, {92, 170}, {38, 208}, {63, 201}, {9, 254}, {40, 223}, {31, 232}, {23, 224}, {75, 188}, {78, 185}, {26, 226}, {114, 138}, {106, 146}, {36, 221}, {109, 148}, {107, 146}, {96, 153}, {38, 223}, {19, 232}, {121, 133}, {123, 135}, {17, 236}, {126, 131}, {54, 203}, {31, 226}, {28, 225}, {22, 235}, {64, 189}, {2, 252}, {118, 136}, {93, 163}, {25, 231}, {82, 172}, {13, 242}, {115, 140}, {45, 210}, {30, 225}, {71, 256}, {79, 256}, {82, 256}, {123, 256} }>;

(II) A more general form is to represent the graph as the orbit of {128, 158} under the group generated by the following permutations:

a: (3, 11)(4, 12)(5, 7)(6, 8)(9, 14)(10, 13)(15, 43)(16, 44)(17, 39)(18, 40)(19, 47)(20, 48)(21, 31)(22, 32)(23, 27)(24, 28)(25, 35)(26, 36)(29, 79)(30, 80)(33, 75)(34, 76)(37, 49)(38, 50)(41, 61)(42, 62)(45, 55)(46, 56)(51, 113)(52, 114)(53, 112)(54, 111)(57, 65)(58, 66)(59, 109)(60, 110)(63, 105)(64, 106)(67, 100)(68, 99)(69, 117)(70, 118)(71, 97)(72, 98)(73, 90)(74, 89)(77, 87)(78, 88)(81, 83)(82, 84)(85, 95)(86, 96)(91, 115)(92, 116)(93, 104)(94, 103)(107, 120)(108, 119)(121, 127)(122, 128)(129, 229)(130, 247)(131, 172)(132, 151)(133, 142)(134, 150)(135, 171)(136, 214)(137, 233)(138, 252)(139, 147)(140, 153)(141, 218)(143, 240)(144, 152)(145, 249)(146, 148)(149, 175)(154, 167)(155, 194)(156, 253)(157, 246)(158, 224)(159, 186)(160, 251)(161, 201)(162, 211)(163, 212)(164, 255)(165, 227)(166, 198)(168, 238)(169, 205)(170, 184)(173, 223)(174, 183)(176, 228)(177, 230)(178, 239)(179, 185)(180, 197)(181, 187)(182, 237)(188, 208)(189, 192)(190, 245)(191, 202)(193, 225)(195, 203)(196, 242)(199, 241)(200, 220)(204, 216)(206, 213)(207, 209)(210, 250)(215, 226)(217, 256)(219, 221)(222, 232)(231, 236)(234, 235)(243, 244)(248, 254)
b: (1, 3)(2, 4)(5, 9)(6, 10)(7, 21)(8, 22)(11, 15)(12, 16)(13, 19)(14, 20)(17, 41)(18, 42)(23, 29)(24, 30)(25, 37)(26, 38)(27, 74)(28, 73)(31, 71)(32, 72)(33, 67)(34, 68)(35, 63)(36, 64)(39, 54)(40, 53)(43, 51)(44, 52)(45, 57)(46, 58)(47, 65)(48, 66)(49, 69)(50, 70)(55, 103)(56, 104)(59, 106)(60, 105)(61, 93)(62, 94)(75, 101)(76, 102)(77, 84)(78, 83)(79, 91)(80, 92)(81, 95)(82, 96)(85, 107)(86, 108)(87, 128)(88, 127)(89, 123)(90, 124)(97, 122)(98, 121)(99, 117)(100, 118)(109, 125)(110, 126)(111, 119)(112, 120)(113, 116)(114, 115)(129, 143)(130, 174)(131, 207)(132, 208)(133, 172)(134, 219)(135, 244)(136, 196)(137, 164)(138, 147)(139, 248)(140, 181)(141, 221)(142, 213)(144, 253)(145, 251)(148, 239)(149, 160)(150, 227)(151, 238)(152, 225)(153, 256)(154, 186)(155, 199)(157, 184)(159, 232)(161, 211)(163, 252)(165, 177)(167, 209)(168, 173)(169, 234)(170, 193)(171, 218)(175, 228)(176, 245)(178, 223)(179, 204)(180, 210)(182, 255)(183, 230)(185, 247)(187, 254)(188, 214)(189, 215)(190, 250)(191, 243)(192, 202)(194, 249)(195, 229)(197, 222)(198, 240)(200, 201)(203, 231)(205, 216)(206, 241)(217, 224)(220, 236)(226, 235)(237, 246)
c: (1, 2)(3, 75)(4, 76)(5, 61)(6, 62)(7, 41)(8, 42)(9, 10)(11, 33)(12, 34)(13, 14)(15, 16)(17, 18)(19, 55)(20, 56)(21, 22)(23, 24)(25, 79)(26, 80)(27, 28)(29, 35)(30, 36)(31, 32)(37, 38)(39, 40)(43, 44)(45, 47)(46, 48)(49, 50)(51, 118)(52, 117)(53, 72)(54, 71)(57, 58)(59, 73)(60, 74)(63, 64)(65, 66)(67, 68)(69, 114)(70, 113)(77, 96)(78, 95)(81, 82)(83, 84)(85, 88)(86, 87)(89, 110)(90, 109)(91, 92)(93, 94)(97, 111)(98, 112)(99, 100)(101, 102)(103, 104)(105, 106)(107, 108)(115, 116)(119, 120)(121, 122)(123, 124)(125, 126)(127, 128)(129, 230)(130, 198)(131, 178)(132, 160)(133, 224)(134, 236)(135, 156)(136, 176)(137, 179)(138, 197)(139, 149)(140, 209)(141, 201)(142, 158)(143, 216)(144, 191)(145, 187)(146, 213)(147, 175)(148, 206)(150, 231)(151, 251)(152, 202)(153, 207)(154, 238)(155, 223)(157, 227)(159, 248)(161, 218)(162, 244)(163, 245)(164, 174)(165, 246)(166, 247)(167, 168)(169, 237)(170, 215)(171, 253)(172, 239)(173, 194)(177, 229)(180, 252)(181, 249)(182, 205)(183, 255)(184, 226)(185, 233)(186, 254)(188, 222)(189, 220)(190, 212)(192, 200)(193, 219)(195, 234)(196, 210)(199, 256)(203, 235)(204, 240)(208, 232)(211, 243)(214, 228)(217, 241)(221, 225)(242, 250)
d: (3, 5)(4, 6)(7, 11)(8, 12)(9, 13)(10, 14)(15, 23)(16, 24)(17, 21)(18, 22)(19, 25)(20, 26)(27, 43)(28, 44)(29, 45)(30, 46)(31, 39)(32, 40)(33, 41)(34, 42)(35, 47)(36, 48)(37, 49)(38, 50)(51, 77)(52, 78)(53, 74)(54, 73)(55, 79)(56, 80)(57, 81)(58, 82)(59, 71)(60, 72)(61, 75)(62, 76)(63, 67)(64, 68)(65, 83)(66, 84)(69, 85)(70, 86)(87, 113)(88, 114)(89, 112)(90, 111)(91, 115)(92, 116)(93, 103)(94, 104)(95, 117)(96, 118)(97, 109)(98, 110)(99, 106)(100, 105)(107, 119)(108, 120)(121, 128)(122, 127)(129, 148)(130, 214)(131, 211)(132, 201)(133, 205)(134, 188)(135, 217)(136, 247)(137, 197)(138, 179)(139, 226)(140, 227)(141, 160)(142, 169)(143, 168)(144, 254)(145, 174)(146, 229)(147, 215)(149, 184)(150, 208)(151, 161)(152, 248)(153, 165)(154, 204)(155, 195)(156, 241)(157, 209)(158, 237)(159, 202)(162, 172)(163, 225)(164, 187)(166, 176)(167, 216)(170, 175)(171, 256)(173, 235)(177, 213)(178, 243)(180, 233)(181, 255)(182, 224)(183, 249)(185, 252)(186, 191)(189, 250)(190, 219)(192, 210)(193, 212)(194, 203)(196, 200)(198, 228)(199, 253)(206, 230)(207, 246)(218, 251)(220, 242)(221, 245)(222, 236)(223, 234)(231, 232)(238, 240)(239, 244)

(III) Last is Groups&Graphs. Copy everything between (not including) the lines of asterisks into a plain text file and save it as "graph.txt". Then launch G&G (Groups&Graphs) and select Read Text from the File menu.

**************

&Graph
C4[ 256, 144 ]
256
-1 233 180 137 197
-2 179 138 185 252
-3 210 222 233 164
-4 147 247 204 163
-5 187 180 192 236
-6 154 136 225 215
-7 231 189 181 197
-8 167 214 193 226
-9 220 210 254 202
-10 189 152 196 186
-11 232 255 137 250
-12 212 139 216 130
-13 242 144 159 192
-14 200 191 248 250
-15 190 159 182 164
-16 212 248 205 174
-17 147 236 194 227
-18 134 157 173 175
-19 242 253 232 202
-20 243 190 201 139
-21 222 203 215 140
-22 209 188 235 170
-23 187 202 224 219
-24 133 145 193 152
-25 220 231 199 159
-26 132 178 226 219
-27 221 158 191 181
-28 144 225 249 142
-29 254 134 192 217
-30 170 225 172 251
-31 232 226 195 153
-32 234 184 207 208
-33 242 179 183 208
-34 143 198 190 149
-35 200 236 186 241
-36 221 215 151 239
-37 155 232 203 236
-38 134 223 235 208
-39 165 231 155 139
-40 223 246 149 150
-41 220 138 150 249
-42 168 184 228 219
-43 255 245 237 186
-44 254 169 183 163
-45 144 188 210 135
-46 162 163 218 175
-47 156 222 191 196
-48 244 245 147 161
-49 231 222 194 195
-50 188 234 150 173
-51 154 176 246 182
-52 187 234 230 252
-53 178 160 237 227
-54 177 199 203 248
-55 171 250 152 208
-56 211 212 149 141
-57 253 244 180 214
-58 171 162 228 252
-59 146 202 171 173
-60 209 211 201 142
-61 134 145 200 252
-62 176 221 170 238
-63 154 220 201 206
-64 189 148 238 141
-65 243 156 136 197
-66 176 211 135 138
-67 132 242 204 230
-68 160 129 250 240
-69 203 249 229 197
-70 168 169 214 227
-71 256 235 159 229
-72 132 157 169 131
-73 253 213 194 152
-74 243 158 140 141
-75 188 174 185 196
-76 166 245 240 175
-77 166 224 204 207
-78 223 206 185 164
-79 189 256 248 150
-80 160 193 184 131
-81 199 233 239 130
-82 198 256 172 185
-83 178 137 247 241
-84 166 179 217 131
-85 146 137 183 194
-86 143 140 130 142
-87 198 209 158 216
-88 255 179 213 173
-89 244 224 218 153
-90 144 155 156 206
-91 215 139 227 153
-92 157 170 149 207
-93 201 163 251 219
-94 245 193 151 141
-95 155 233 148 174
-96 133 247 240 153
-97 234 129 217 186
-98 246 172 205 151
-99 143 210 229 251
-100 177 216 151 196
-101 136 214 247 130
-102 176 198 166 228
-103 132 190 225 218
-104 221 212 160 161
-105 167 200 213 161
-106 146 168 192 218
-107 146 249 164 230
-108 213 181 129 174
-109 135 223 191 148
-110 133 161 162 207
-111 254 195 230 241
-112 165 182 239 251
-113 167 157 237 228
-114 177 235 181 138
-115 165 147 226 140
-116 209 246 184 175
-117 145 180 129 195
-118 165 136 205 238
-119 187 183 206 229
-120 177 145 255 148
-121 133 237 216 238
-122 143 154 169 224
-123 135 256 171 217
-124 253 199 156 241
-125 243 178 244 239
-126 211 172 162 131
-127 168 182 204 142
-128 167 158 205 240
-129 68 117 97 108
-130 12 101 81 86
-131 80 126 72 84
-132 67 26 103 72
-133 110 121 24 96
-134 38 61 18 29
-135 66 45 123 109
-136 101 6 118 65
-137 11 1 83 85
-138 66 2 114 41
-139 12 91 39 20
-140 115 74 86 21
-141 56 94 74 64
-142 60 28 127 86
-143 99 34 122 86
-144 45 13 90 28
-145 24 61 117 120
-146 59 106 85 107
-147 4 48 115 17
-148 95 64 109 120
-149 34 56 92 40
-150 79 50 40 41
-151 100 36 94 98
-152 55 24 73 10
-153 89 91 96 31
-154 122 6 51 63
-155 90 37 39 95
-156 90 47 124 65
-157 113 92 72 18
-158 27 128 74 87
-159 13 25 15 71
-160 68 80 104 53
-161 110 48 104 105
-162 110 46 58 126
-163 44 46 4 93
-164 78 3 15 107
-165 112 115 39 118
-166 77 102 84 76
-167 113 105 128 8
-168 70 127 106 42
-169 44 122 70 72
-170 22 92 62 30
-171 55 123 58 59
-172 82 126 30 98
-173 88 59 50 18
-174 16 95 75 108
-175 46 116 18 76
-176 66 102 51 62
-177 100 114 54 120
-178 26 125 83 53
-179 33 88 2 84
-180 1 57 5 117
-181 114 27 7 108
-182 112 15 127 51
-183 33 44 85 119
-184 80 116 42 32
-185 78 2 82 75
-186 35 97 10 43
-187 23 5 52 119
-188 22 45 50 75
-189 79 7 64 10
-190 34 15 103 20
-191 14 47 27 109
-192 13 5 29 106
-193 24 80 94 8
-194 49 17 73 85
-195 111 49 117 31
-196 100 47 75 10
-197 1 69 7 65
-198 34 102 82 87
-199 25 124 81 54
-200 35 14 61 105
-201 60 93 63 20
-202 23 59 19 9
-203 69 37 21 54
-204 77 67 4 127
-205 16 128 118 98
-206 78 90 63 119
-207 77 110 92 32
-208 33 55 38 32
-209 22 60 116 87
-210 99 45 3 9
-211 66 56 60 126
-212 12 56 16 104
-213 88 105 73 108
-214 57 101 70 8
-215 36 91 6 21
-216 121 12 100 87
-217 123 29 84 97
-218 89 46 103 106
-219 23 26 93 42
-220 25 41 63 9
-221 36 27 104 62
-222 3 47 49 21
-223 78 38 40 109
-224 77 23 89 122
-225 103 6 28 30
-226 26 115 8 31
-227 91 70 17 53
-228 58 102 113 42
-229 99 69 71 119
-230 67 111 52 107
-231 25 49 39 7
-232 11 37 19 31
-233 1 3 81 95
-234 50 52 97 32
-235 22 114 38 71
-236 35 37 5 17
-237 121 113 53 43
-238 121 62 118 64
-239 112 36 81 125
-240 68 128 96 76
-241 111 35 124 83
-242 33 67 13 19
-243 125 74 20 65
-244 89 57 48 125
-245 48 94 43 76
-246 116 40 51 98
-247 101 4 83 96
-248 79 14 16 54
-249 69 28 41 107
-250 11 55 68 14
-251 99 112 93 30
-252 2 58 61 52
-253 57 124 73 19
-254 44 111 29 9
-255 11 88 43 120
-256 79 123 71 82
0

**************