[Home] [Table] [Glossary]
[Families]
On this page are computer-accessible forms for the graph C4[ 256, 145 ] =
BGCG(UG(ATD[128,54]);K1;{18,19,20,21}).
(I) Following is a form readable by MAGMA:
g:=Graph<256|{ {128, 139}, {128, 144}, {128, 225}, {128, 249}, {27, 155}, {116,
244}, {107, 235}, {54, 182}, {36, 164}, {35, 163}, {5, 132}, {126, 255}, {100,
229}, {96, 225}, {48, 177}, {43, 170}, {78, 204}, {111, 237}, {74, 201}, {99,
224}, {87, 212}, {5, 129}, {126, 250}, {122, 254}, {95, 219}, {38, 162}, {21,
145}, {60, 185}, {92, 217}, {85, 208}, {17, 151}, {105, 239}, {104, 238}, {49,
183}, {82, 212}, {42, 173}, {104, 239}, {64, 199}, {72, 207}, {4, 140}, {100,
236}, {89, 209}, {29, 149}, {22, 158}, {16, 152}, {14, 134}, {59, 179}, {15,
134}, {124, 245}, {54, 191}, {64, 201}, {76, 197}, {79, 198}, {86, 223}, {56,
178}, {24, 147}, {111, 228}, {89, 210}, {49, 186}, {48, 187}, {46, 165}, {78,
197}, {13, 129}, {14, 130}, {59, 183}, {95, 210}, {33, 175}, {81, 223}, {18,
157}, {39, 168}, {62, 174}, {112, 224}, {105, 249}, {65, 209}, {67, 211}, {69,
213}, {81, 193}, {33, 176}, {110, 255}, {56, 169}, {86, 196}, {5, 150}, {52,
167}, {6, 149}, {88, 203}, {65, 213}, {120, 236}, {114, 230}, {66, 214}, {86,
194}, {17, 132}, {125, 232}, {55, 162}, {53, 160}, {10, 156}, {13, 155}, {65,
215}, {1, 150}, {82, 197}, {23, 143}, {124, 228}, {98, 250}, {17, 136}, {29,
132}, {28, 133}, {27, 130}, {19, 137}, {112, 234}, {62, 164}, {6, 154}, {44,
176}, {33, 189}, {18, 142}, {82, 206}, {17, 140}, {28, 129}, {69, 216}, {71,
217}, {125, 227}, {116, 234}, {110, 240}, {95, 193}, {30, 129}, {58, 165}, {84,
203}, {75, 235}, {120, 216}, {11, 170}, {109, 204}, {98, 195}, {92, 253}, {66,
227}, {88, 249}, {11, 169}, {111, 205}, {52, 150}, {38, 132}, {67, 225}, {21,
182}, {102, 197}, {47, 140}, {25, 186}, {23, 180}, {23, 179}, {101, 193}, {92,
248}, {80, 244}, {18, 183}, {50, 151}, {31, 186}, {26, 191}, {63, 154}, {78,
235}, {36, 130}, {44, 138}, {14, 169}, {119, 208}, {103, 192}, {100, 195}, {27,
188}, {20, 179}, {3, 171}, {113, 217}, {91, 243}, {49, 153}, {11, 162}, {126,
215}, {115, 218}, {105, 192}, {20, 189}, {74, 227}, {1, 171}, {24, 178}, {68,
238}, {37, 142}, {40, 131}, {81, 250}, {41, 133}, {125, 209}, {118, 218}, {58,
150}, {2, 175}, {115, 222}, {37, 136}, {35, 142}, {21, 187}, {110, 192}, {52,
154}, {27, 181}, {26, 180}, {61, 147}, {72, 230}, {50, 157}, {107, 196}, {94,
241}, {90, 245}, {13, 189}, {101, 213}, {93, 237}, {57, 137}, {46, 158}, {45,
157}, {84, 228}, {45, 156}, {115, 194}, {101, 212}, {7, 181}, {117, 199}, {111,
221}, {22, 164}, {15, 189}, {8, 186}, {59, 137}, {61, 142}, {125, 206}, {101,
214}, {99, 208}, {74, 249}, {88, 236}, {120, 204}, {103, 211}, {93, 233}, {122,
207}, {36, 146}, {107, 221}, {45, 155}, {58, 141}, {108, 219}, {64, 247}, {3,
187}, {98, 218}, {79, 247}, {16, 169}, {102, 223}, {43, 146}, {32, 153}, {24,
161}, {80, 233}, {81, 232}, {26, 160}, {55, 141}, {42, 144}, {99, 216}, {113,
202}, {2, 190}, {8, 180}, {31, 162}, {117, 200}, {90, 231}, {53, 136}, {49,
140}, {66, 255}, {70, 251}, {76, 241}, {78, 240}, {113, 207}, {112, 206}, {53,
138}, {120, 199}, {93, 226}, {61, 130}, {11, 203}, {56, 248}, {38, 230}, {19,
211}, {44, 237}, {96, 161}, {71, 134}, {57, 251}, {97, 163}, {77, 143}, {10,
201}, {124, 191}, {42, 233}, {20, 215}, {26, 222}, {73, 141}, {4, 193}, {48,
245}, {82, 148}, {127, 185}, {87, 145}, {64, 135}, {103, 160}, {2, 202}, {115,
187}, {109, 165}, {102, 174}, {96, 168}, {47, 231}, {10, 195}, {43, 226}, {63,
246}, {79, 134}, {1, 203}, {122, 176}, {114, 184}, {54, 252}, {47, 229}, {2,
200}, {96, 171}, {102, 173}, {35, 239}, {94, 146}, {57, 245}, {70, 138}, {31,
210}, {51, 254}, {39, 234}, {63, 242}, {69, 136}, {60, 242}, {77, 131}, {19,
220}, {119, 184}, {22, 217}, {68, 139}, {80, 159}, {88, 151}, {6, 214}, {108,
188}, {32, 240}, {30, 206}, {34, 243}, {62, 239}, {76, 157}, {15, 221}, {48,
226}, {45, 255}, {31, 205}, {106, 185}, {127, 172}, {121, 170}, {15, 219}, {22,
194}, {75, 158}, {38, 240}, {72, 159}, {112, 167}, {75, 156}, {3, 219}, {127,
167}, {123, 163}, {118, 174}, {95, 135}, {28, 196}, {12, 212}, {7, 222}, {104,
177}, {55, 238}, {51, 234}, {40, 243}, {122, 161}, {106, 177}, {56, 227}, {74,
145}, {79, 148}, {40, 244}, {100, 184}, {67, 159}, {72, 148}, {8, 213}, {123,
166}, {90, 135}, {53, 232}, {44, 241}, {41, 244}, {36, 250}, {123, 165}, {107,
181}, {41, 247}, {73, 151}, {39, 248}, {114, 173}, {92, 131}, {46, 241}, {12,
236}, {35, 195}, {76, 172}, {19, 242}, {113, 144}, {110, 143}, {71, 166}, {77,
172}, {12, 238}, {85, 183}, {30, 253}, {41, 202}, {43, 207}, {67, 167}, {68,
160}, {4, 225}, {118, 147}, {116, 145}, {51, 214}, {25, 252}, {3, 229}, {32,
198}, {4, 226}, {86, 176}, {20, 243}, {21, 253}, {89, 177}, {68, 172}, {9, 224},
{108, 133}, {98, 139}, {23, 254}, {14, 231}, {84, 190}, {126, 148}, {121, 147},
{116, 158}, {94, 180}, {60, 215}, {87, 188}, {9, 229}, {117, 153}, {94, 178},
{42, 198}, {16, 252}, {83, 191}, {85, 185}, {91, 182}, {119, 154}, {46, 192},
{118, 152}, {109, 131}, {93, 179}, {54, 216}, {51, 221}, {25, 246}, {65, 174},
{66, 173}, {58, 202}, {119, 135}, {69, 181}, {70, 182}, {83, 163}, {7, 246},
{124, 141}, {57, 200}, {34, 211}, {25, 232}, {24, 233}, {13, 252}, {34, 208},
{123, 137}, {103, 149}, {90, 168}, {40, 218}, {84, 166}, {30, 237}, {121, 138},
{97, 146}, {91, 168}, {63, 204}, {77, 190}, {12, 248}, {108, 152}, {50, 198},
{18, 230}, {61, 200}, {73, 188}, {75, 190}, {80, 166}, {121, 143}, {109, 155},
{37, 210}, {114, 133}, {104, 159}, {83, 171}, {97, 153}, {89, 161}, {29, 228},
{97, 152}, {52, 205}, {39, 222}, {37, 220}, {62, 199}, {1, 251}, {106, 144},
{85, 175}, {5, 254}, {28, 231}, {16, 235}, {9, 242}, {6, 253}, {73, 178}, {7,
251}, {32, 220}, {10, 246}, {83, 175}, {29, 224}, {34, 223}, {33, 220}, {87,
170}, {9, 247}, {117, 139}, {55, 201}, {47, 209}, {60, 194}, {50, 205}, {106,
149}, {99, 156}, {91, 164}, {59, 196}, {71, 184}, {8, 256}, {70, 256}, {105,
256}, {127, 256} }>;
(II) A more general form is to represent the graph as the orbit of {128, 139}
under the group generated by the following permutations:
a: (1, 3, 9, 19, 37, 69, 107, 111, 124, 90, 119, 85, 49, 25, 13, 5)(2, 4, 10,
20, 38, 70, 108, 112, 123, 89, 120, 86, 50, 26, 14, 6)(7, 15, 29, 57, 95, 99,
59, 31, 54, 28, 52, 83, 47, 63, 33, 17)(8, 16, 30, 58, 96, 100, 60, 32, 53, 27,
51, 84, 48, 64, 34, 18)(11, 21, 41, 67, 35, 65, 78, 44, 73, 39, 71, 106, 117,
81, 45, 23)(12, 22, 42, 68, 36, 66, 77, 43, 74, 40, 72, 105, 118, 82, 46,
24)(55, 91, 114, 127, 97, 125, 109, 122, 88, 115, 79, 103, 61, 101, 75, 93)(56,
92, 113, 128, 98, 126, 110, 121, 87, 116, 80, 104, 62, 102, 76, 94)(129, 150,
171, 229, 242, 220, 136, 181, 221, 228, 245, 135, 208, 183, 186, 252)(130, 214,
190, 226, 201, 243, 230, 256, 152, 206, 165, 161, 236, 194, 198, 160)(131, 207,
249, 218, 148, 192, 147, 212, 158, 233, 238, 164, 173, 172, 146, 227)(132, 251,
219, 224, 137, 210, 216, 196, 205, 191, 231, 154, 175, 140, 246, 189)(133, 167,
163, 209, 204, 176, 151, 222, 134, 149, 200, 193, 156, 179, 162, 182)(138, 188,
234, 166, 177, 199, 223, 157, 180, 169, 253, 202, 225, 195, 215, 240)(139, 250,
255, 143, 170, 145, 244, 159, 239, 174, 197, 241, 178, 248, 217, 144)(141, 168,
184, 185, 153, 232, 155, 254, 203, 187, 247, 211, 142, 213, 235, 237) (III) Last is Groups&Graphs. Copy everything between (not including)
the lines of asterisks into a plain text file and save it as "graph.txt". Then
launch G&G (Groups&Graphs) and select Read Text from the File menu.
**************
&Graph **************
b: (1, 2)(3, 75)(4, 76)(5, 61)(6, 62)(7, 41)(8, 42)(9, 10)(11, 33)(12, 34)(13,
14)(15, 16)(17, 18)(19, 55)(20, 56)(21, 22)(23, 24)(25, 79)(26, 80)(27, 28)(29,
35)(30, 36)(31, 32)(37, 38)(39, 40)(43, 44)(45, 47)(46, 48)(49, 50)(51, 118)(52,
117)(53, 72)(54, 71)(57, 58)(59, 73)(60, 74)(63, 64)(65, 66)(67, 68)(69,
114)(70, 113)(77, 96)(78, 95)(81, 82)(83, 84)(85, 88)(86, 87)(89, 110)(90,
109)(91, 92)(93, 94)(97, 111)(98, 112)(99, 100)(101, 102)(103, 104)(105,
106)(107, 108)(115, 116)(119, 120)(121, 122)(123, 124)(125, 126)(127, 128)(129,
130)(131, 168)(132, 142)(133, 181)(134, 252)(135, 204)(136, 230)(137, 141)(138,
207)(139, 167)(140, 157)(143, 161)(144, 256)(145, 194)(146, 237)(147, 254)(148,
232)(149, 239)(150, 200)(151, 183)(152, 221)(153, 205)(154, 199)(155, 231)(156,
229)(158, 187)(159, 160)(162, 220)(163, 228)(164, 253)(165, 245)(166, 191)(169,
189)(170, 176)(171, 190)(172, 225)(173, 213)(174, 214)(175, 203)(177, 192)(178,
179)(180, 233)(182, 217)(184, 216)(185, 249)(186, 198)(188, 196)(193, 197)(195,
224)(201, 242)(202, 251)(206, 250)(208, 236)(209, 255)(210, 240)(211, 238)(212,
223)(215, 227)(218, 234)(219, 235)(222, 244)(226, 241)(243, 248)(246, 247)
c: (2, 123)(3, 5, 7, 11)(4, 112, 8, 74)(6, 53, 12, 89)(9, 23, 10, 43)(13, 27,
14, 15)(16, 108, 28, 107)(17, 39, 31, 21)(18, 22, 32, 40)(19, 77, 35, 113)(20,
45, 36, 79)(24, 119, 44, 120)(25, 87, 47, 51)(26, 55, 48, 29)(30, 69, 56,
95)(33, 109, 61, 71)(34, 76, 62, 42)(37, 92)(38, 115)(41, 59, 75, 97)(46, 117,
80, 85)(49, 116)(50, 91)(52, 70, 88, 96)(54, 73, 90, 111)(57, 84, 83, 58)(60,
110, 98, 72)(63, 121, 100, 122)(64, 93, 99, 94)(65, 66, 81, 82)(67, 127, 105,
128)(68, 104, 106, 103)(78, 118, 114, 86)(101, 125)(129, 181, 169, 219)(130,
134, 189, 155)(131, 142, 217, 220)(132, 222, 162, 187)(133, 196, 235, 152)(135,
237, 216, 178)(136, 248, 210, 253)(137, 190, 163, 202)(138, 236, 161, 154)(139,
159, 185, 192)(140, 234, 186, 145)(141, 245, 228, 191)(143, 195, 207, 242)(144,
211, 172, 239)(146, 247, 179, 156)(147, 184, 176, 204)(148, 215, 255, 250)(149,
160, 238, 177)(150, 251, 203, 171)(151, 168, 205, 182)(153, 244, 183, 158)(157,
164, 198, 243)(165, 200, 166, 175)(167, 256, 249, 225)(170, 229, 254, 246)(173,
223, 197, 174)(180, 201, 226, 224)(188, 231, 221, 252)(193, 206, 213, 227)(194,
240, 218, 230)(199, 233, 208, 241)(209, 214, 232, 212)
C4[ 256, 145 ]
256
-1 203 171 150 251
-2 200 190 202 175
-3 187 171 229 219
-4 225 193 226 140
-5 132 254 150 129
-6 154 253 214 149
-7 222 246 181 251
-8 256 180 213 186
-9 242 224 247 229
-10 156 201 246 195
-11 169 170 203 162
-12 212 236 248 238
-13 155 189 129 252
-14 231 134 169 130
-15 221 134 189 219
-16 169 235 152 252
-17 132 136 140 151
-18 157 183 142 230
-19 220 242 211 137
-20 243 189 179 215
-21 187 253 145 182
-22 158 194 217 164
-23 143 254 179 180
-24 178 233 147 161
-25 232 246 186 252
-26 222 180 191 160
-27 155 188 181 130
-28 231 133 129 196
-29 132 224 149 228
-30 253 237 129 206
-31 210 205 162 186
-32 198 220 240 153
-33 176 220 189 175
-34 243 211 223 208
-35 195 239 163 142
-36 146 250 130 164
-37 220 210 136 142
-38 132 162 240 230
-39 222 168 234 248
-40 243 244 218 131
-41 133 244 202 247
-42 198 144 233 173
-43 146 170 226 207
-44 176 138 237 241
-45 155 156 255 157
-46 165 158 192 241
-47 209 231 140 229
-48 187 177 245 226
-49 183 140 153 186
-50 198 157 205 151
-51 221 254 234 214
-52 154 167 150 205
-53 232 136 138 160
-54 191 182 216 252
-55 201 238 162 141
-56 178 169 248 227
-57 200 245 137 251
-58 165 202 150 141
-59 179 137 183 196
-60 242 215 194 185
-61 200 147 130 142
-62 199 239 174 164
-63 154 242 246 204
-64 199 135 201 247
-65 209 213 215 174
-66 255 214 227 173
-67 167 211 159 225
-68 160 139 172 238
-69 136 213 181 216
-70 256 138 182 251
-71 166 134 184 217
-72 148 159 207 230
-73 188 178 151 141
-74 145 201 227 249
-75 156 190 158 235
-76 157 172 197 241
-77 143 190 172 131
-78 235 204 240 197
-79 198 134 148 247
-80 166 233 244 159
-81 232 223 193 250
-82 212 148 206 197
-83 191 171 163 175
-84 166 190 203 228
-85 183 185 175 208
-86 176 223 194 196
-87 188 145 212 170
-88 203 236 249 151
-89 209 177 210 161
-90 231 135 168 245
-91 243 168 182 164
-92 253 248 217 131
-93 233 179 226 237
-94 178 146 180 241
-95 210 135 193 219
-96 168 225 171 161
-97 146 152 163 153
-98 139 195 250 218
-99 156 224 216 208
-100 236 184 195 229
-101 212 213 214 193
-102 223 173 174 197
-103 211 192 149 160
-104 177 159 238 239
-105 256 192 249 239
-106 144 177 149 185
-107 221 235 181 196
-108 133 188 152 219
-109 165 155 204 131
-110 143 255 192 240
-111 221 237 205 228
-112 167 234 224 206
-113 144 202 217 207
-114 133 173 184 230
-115 187 222 194 218
-116 145 244 234 158
-117 199 200 139 153
-118 147 152 174 218
-119 154 135 184 208
-120 199 236 204 216
-121 143 147 170 138
-122 176 254 161 207
-123 165 166 137 163
-124 245 191 228 141
-125 209 232 227 206
-126 255 148 215 250
-127 167 256 172 185
-128 144 225 139 249
-129 13 5 28 30
-130 14 36 27 61
-131 77 92 40 109
-132 5 38 17 29
-133 114 28 41 108
-134 79 14 15 71
-135 90 95 64 119
-136 69 37 17 53
-137 57 123 59 19
-138 44 121 70 53
-139 68 117 128 98
-140 47 4 49 17
-141 55 58 124 73
-142 35 37 61 18
-143 77 110 121 23
-144 113 106 128 42
-145 116 74 21 87
-146 36 94 97 43
-147 121 24 61 118
-148 79 82 126 72
-149 103 6 29 106
-150 1 58 5 52
-151 88 17 50 73
-152 16 118 97 108
-153 49 117 97 32
-154 6 52 63 119
-155 45 13 27 109
-156 99 45 75 10
-157 45 50 18 76
-158 22 46 116 75
-159 67 80 104 72
-160 68 26 103 53
-161 89 122 24 96
-162 11 55 38 31
-163 35 123 83 97
-164 22 36 91 62
-165 46 123 58 109
-166 123 80 71 84
-167 67 112 127 52
-168 90 91 39 96
-169 11 56 14 16
-170 11 121 43 87
-171 1 3 83 96
-172 77 68 127 76
-173 66 102 114 42
-174 102 62 118 65
-175 33 2 83 85
-176 33 44 122 86
-177 89 48 104 106
-178 56 24 94 73
-179 23 59 93 20
-180 23 26 94 8
-181 69 27 7 107
-182 91 70 21 54
-183 59 49 18 85
-184 100 114 71 119
-185 60 127 106 85
-186 25 49 8 31
-187 3 48 115 21
-188 27 73 108 87
-189 33 13 15 20
-190 77 2 84 75
-191 124 26 83 54
-192 110 46 103 105
-193 101 4 81 95
-194 22 60 115 86
-195 100 35 10 98
-196 59 28 107 86
-197 78 102 82 76
-198 79 50 42 32
-199 62 117 64 120
-200 2 57 61 117
-201 55 74 64 10
-202 2 58 113 41
-203 11 88 1 84
-204 78 63 109 120
-205 111 50 52 31
-206 112 125 82 30
-207 122 113 72 43
-208 99 34 85 119
-209 89 47 125 65
-210 89 37 95 31
-211 34 67 103 19
-212 12 101 82 87
-213 101 69 8 65
-214 66 101 6 51
-215 60 126 20 65
-216 99 69 54 120
-217 22 113 92 71
-218 115 40 118 98
-219 3 15 95 108
-220 33 37 19 32
-221 111 15 51 107
-222 26 115 39 7
-223 34 102 81 86
-224 99 112 29 9
-225 67 4 128 96
-226 4 48 93 43
-227 66 56 125 74
-228 111 124 29 84
-229 100 3 47 9
-230 114 38 72 18
-231 90 14 47 28
-232 25 81 125 53
-233 24 80 93 42
-234 112 39 116 51
-235 78 16 107 75
-236 88 12 100 120
-237 44 111 93 30
-238 55 12 68 104
-239 35 104 105 62
-240 110 78 38 32
-241 44 46 94 76
-242 60 19 63 9
-243 34 91 40 20
-244 80 116 40 41
-245 57 90 124 48
-246 25 7 63 10
-247 79 41 9 64
-248 12 56 92 39
-249 88 105 128 74
-250 36 81 126 98
-251 1 57 70 7
-252 13 25 16 54
-253 92 6 30 21
-254 23 122 5 51
-255 66 110 45 126
-256 70 105 127 8
0