[Home] [Table] [Glossary]
[Families]
On this page are computer-accessible forms for the graph C4[ 256, 147 ] =
BGCG(UG(ATD[128,66]);K1;{2,4}).
(I) Following is a form readable by MAGMA:
g:=Graph<256|{ {128, 138}, {128, 157}, {128, 176}, {128, 202}, {47, 175}, {121,
249}, {117, 245}, {59, 186}, {103, 230}, {80, 209}, {21, 151}, {111, 237}, {57,
187}, {46, 172}, {2, 129}, {116, 247}, {105, 234}, {51, 176}, {32, 163}, {29,
158}, {76, 200}, {98, 230}, {92, 216}, {83, 215}, {8, 141}, {122, 255}, {108,
233}, {7, 129}, {24, 158}, {18, 148}, {6, 129}, {120, 255}, {43, 172}, {84,
211}, {86, 209}, {19, 155}, {38, 174}, {30, 150}, {82, 218}, {85, 221}, {4,
141}, {123, 242}, {120, 241}, {112, 249}, {108, 229}, {101, 236}, {48, 185},
{21, 156}, {17, 152}, {71, 206}, {65, 203}, {127, 245}, {113, 251}, {76, 198},
{7, 140}, {20, 159}, {17, 154}, {66, 201}, {70, 205}, {81, 221}, {107, 231},
{21, 152}, {102, 235}, {79, 193}, {126, 240}, {39, 168}, {55, 184}, {59, 180},
{64, 207}, {24, 136}, {112, 224}, {100, 244}, {29, 141}, {87, 198}, {110, 255},
{30, 140}, {125, 239}, {104, 250}, {1, 146}, {99, 240}, {50, 161}, {49, 162},
{32, 179}, {18, 129}, {55, 163}, {104, 252}, {73, 221}, {29, 136}, {89, 204},
{52, 161}, {38, 179}, {17, 135}, {125, 235}, {117, 227}, {106, 252}, {28, 132},
{118, 238}, {113, 233}, {104, 240}, {39, 191}, {32, 184}, {67, 219}, {64, 217},
{121, 224}, {106, 243}, {92, 197}, {12, 150}, {124, 230}, {90, 192}, {36, 190},
{31, 133}, {72, 210}, {14, 149}, {116, 239}, {115, 232}, {90, 193}, {79, 212},
{1, 157}, {46, 178}, {69, 217}, {77, 209}, {10, 151}, {106, 247}, {56, 165},
{24, 133}, {6, 152}, {69, 219}, {2, 157}, {87, 200}, {27, 132}, {26, 133}, {25,
185}, {116, 212}, {96, 192}, {57, 153}, {12, 173}, {118, 215}, {35, 130}, {55,
149}, {107, 201}, {97, 195}, {62, 156}, {13, 174}, {37, 134}, {71, 228}, {27,
191}, {117, 209}, {102, 194}, {95, 251}, {89, 253}, {48, 148}, {30, 186}, {63,
155}, {15, 170}, {111, 202}, {45, 136}, {81, 244}, {53, 147}, {75, 237}, {14,
169}, {19, 180}, {26, 178}, {93, 245}, {54, 158}, {47, 135}, {7, 174}, {98,
203}, {51, 154}, {62, 151}, {77, 228}, {80, 249}, {3, 169}, {95, 245}, {17,
187}, {74, 224}, {51, 152}, {84, 255}, {2, 174}, {122, 214}, {111, 195}, {93,
241}, {70, 234}, {23, 186}, {108, 193}, {68, 233}, {25, 183}, {103, 201}, {58,
148}, {78, 224}, {9, 166}, {127, 208}, {52, 155}, {38, 137}, {36, 139}, {81,
254}, {11, 187}, {119, 199}, {113, 193}, {31, 175}, {3, 178}, {103, 214}, {94,
239}, {9, 187}, {58, 136}, {36, 150}, {35, 145}, {20, 166}, {85, 231}, {4, 183},
{122, 201}, {99, 208}, {64, 243}, {82, 225}, {2, 182}, {35, 151}, {69, 241},
{94, 235}, {12, 186}, {88, 238}, {42, 156}, {78, 248}, {24, 175}, {31, 167},
{109, 213}, {44, 148}, {60, 132}, {79, 247}, {25, 163}, {73, 243}, {38, 154},
{88, 228}, {51, 143}, {83, 239}, {86, 234}, {4, 185}, {45, 144}, {43, 150}, {83,
238}, {13, 179}, {93, 227}, {57, 135}, {53, 139}, {27, 165}, {14, 177}, {124,
195}, {114, 205}, {112, 207}, {101, 218}, {7, 199}, {113, 177}, {40, 232}, {23,
215}, {55, 246}, {124, 189}, {117, 180}, {57, 248}, {61, 252}, {83, 146}, {15,
205}, {114, 176}, {12, 207}, {118, 181}, {108, 175}, {98, 161}, {89, 154}, {16,
211}, {15, 204}, {65, 130}, {3, 199}, {62, 250}, {13, 200}, {125, 184}, {121,
188}, {53, 240}, {44, 233}, {75, 142}, {5, 195}, {99, 165}, {39, 225}, {34,
228}, {22, 208}, {18, 212}, {66, 132}, {61, 250}, {73, 142}, {4, 205}, {39,
238}, {13, 196}, {74, 131}, {1, 203}, {98, 168}, {91, 145}, {56, 242}, {47,
229}, {34, 232}, {22, 220}, {20, 222}, {72, 130}, {1, 202}, {126, 181}, {125,
182}, {29, 214}, {20, 223}, {85, 158}, {97, 173}, {31, 210}, {109, 160}, {88,
149}, {42, 231}, {59, 246}, {78, 131}, {11, 197}, {105, 167}, {28, 210}, {16,
222}, {5, 202}, {109, 162}, {94, 145}, {45, 226}, {42, 229}, {28, 211}, {26,
213}, {19, 220}, {10, 197}, {86, 153}, {89, 137}, {54, 231}, {124, 173}, {11,
216}, {112, 163}, {40, 251}, {22, 197}, {65, 146}, {8, 220}, {93, 137}, {91,
143}, {41, 253}, {77, 153}, {23, 194}, {115, 166}, {101, 176}, {41, 252}, {63,
234}, {69, 144}, {3, 213}, {110, 184}, {99, 181}, {25, 207}, {80, 134}, {59,
236}, {115, 164}, {107, 188}, {105, 190}, {96, 183}, {78, 153}, {58, 226}, {110,
182}, {77, 149}, {30, 199}, {34, 251}, {72, 145}, {5, 223}, {127, 165}, {103,
189}, {56, 226}, {46, 244}, {10, 208}, {63, 229}, {71, 157}, {74, 144}, {5,
222}, {48, 235}, {47, 244}, {40, 243}, {37, 254}, {33, 250}, {61, 230}, {37,
249}, {119, 171}, {45, 241}, {67, 159}, {49, 236}, {127, 162}, {118, 171}, {96,
189}, {91, 134}, {70, 155}, {8, 214}, {119, 169}, {96, 190}, {41, 247}, {35,
253}, {16, 206}, {84, 138}, {102, 185}, {123, 164}, {115, 147}, {9, 232}, {126,
159}, {111, 142}, {23, 246}, {75, 169}, {105, 139}, {87, 181}, {81, 178}, {100,
135}, {28, 248}, {106, 142}, {90, 190}, {49, 213}, {80, 180}, {41, 204}, {67,
166}, {68, 161}, {116, 146}, {33, 198}, {97, 134}, {63, 216}, {11, 227}, {123,
147}, {100, 140}, {52, 220}, {44, 196}, {26, 242}, {16, 248}, {8, 225}, {27,
242}, {73, 160}, {9, 227}, {101, 143}, {74, 160}, {6, 237}, {49, 218}, {21,
254}, {60, 215}, {79, 164}, {34, 206}, {50, 222}, {68, 168}, {70, 170}, {15,
226}, {110, 131}, {102, 139}, {64, 173}, {82, 191}, {58, 212}, {97, 143}, {95,
177}, {60, 210}, {72, 167}, {67, 179}, {88, 168}, {40, 217}, {120, 137}, {91,
170}, {43, 218}, {71, 182}, {76, 189}, {86, 167}, {42, 216}, {126, 140}, {120,
138}, {54, 196}, {50, 192}, {43, 223}, {94, 170}, {56, 204}, {52, 192}, {48,
196}, {85, 160}, {61, 203}, {10, 253}, {107, 156}, {92, 171}, {53, 194}, {22,
225}, {6, 254}, {114, 138}, {37, 221}, {33, 217}, {14, 246}, {62, 198}, {84,
172}, {122, 131}, {33, 219}, {75, 177}, {32, 219}, {121, 130}, {104, 147}, {100,
159}, {36, 223}, {76, 183}, {50, 206}, {87, 171}, {46, 211}, {109, 144}, {95,
162}, {65, 188}, {66, 191}, {54, 200}, {123, 133}, {90, 164}, {60, 194}, {66,
188}, {82, 172}, {18, 237}, {114, 141}, {19, 236}, {44, 256}, {68, 256}, {92,
256}, {119, 256} }>;
(II) A more general form is to represent the graph as the orbit of {128, 138}
under the group generated by the following permutations:
a: (2, 61)(3, 123)(4, 112)(5, 83)(6, 41)(7, 104)(8, 78)(9, 92)(10, 17)(12,
102)(13, 33)(14, 90)(15, 37)(16, 39)(18, 106)(19, 86)(20, 118)(21, 89)(22,
57)(23, 36)(24, 109)(27, 46)(28, 82)(29, 74)(30, 53)(31, 49)(32, 76)(34, 68)(35,
51)(38, 62)(40, 44)(42, 93)(43, 60)(45, 85)(47, 127)(48, 64)(50, 88)(52, 77)(54,
69)(55, 96)(56, 81)(58, 73)(59, 105)(63, 117)(65, 128)(66, 84)(67, 87)(70,
80)(71, 98)(72, 101)(75, 79)(94, 97)(95, 108)(99, 100)(103, 110)(107, 120)(111,
116)(114, 121)(115, 119)(124, 125)(129, 252)(130, 176)(131, 214)(132, 172)(133,
213)(134, 170)(135, 208)(136, 160)(137, 156)(138, 188)(139, 186)(140, 240)(141,
224)(142, 212)(143, 145)(144, 158)(146, 202)(147, 199)(148, 243)(149, 192)(150,
194)(151, 154)(152, 253)(153, 220)(155, 209)(157, 203)(159, 181)(161, 228)(162,
175)(163, 183)(164, 169)(165, 244)(166, 171)(167, 236)(168, 206)(173, 235)(174,
250)(177, 193)(178, 242)(179, 198)(180, 234)(182, 230)(184, 189)(185, 207)(187,
197)(190, 246)(191, 211)(195, 239)(196, 217)(200, 219)(201, 255)(204, 254)(205,
249)(210, 218)(215, 223)(216, 227)(221, 226)(222, 238)(225, 248)(229, 245)(231,
241)(232, 256)(233, 251)(237, 247) (III) Last is Groups&Graphs. Copy everything between (not including)
the lines of asterisks into a plain text file and save it as "graph.txt". Then
launch G&G (Groups&Graphs) and select Read Text from the File menu.
**************
&Graph **************
b: (2, 5)(3, 9)(6, 16)(7, 20)(8, 15)(10, 27)(11, 26)(12, 32)(13, 36)(14, 40)(17,
46)(18, 50)(19, 45)(21, 28)(22, 56)(23, 33)(24, 63)(29, 70)(30, 67)(31, 42)(34,
75)(35, 66)(37, 78)(38, 43)(39, 41)(44, 90)(48, 96)(49, 93)(51, 84)(52, 58)(53,
87)(54, 105)(55, 64)(57, 81)(59, 69)(60, 62)(61, 83)(68, 79)(71, 111)(72,
107)(73, 77)(74, 80)(76, 102)(82, 89)(85, 86)(88, 106)(91, 122)(92, 123)(94,
103)(97, 110)(98, 116)(101, 120)(104, 118)(109, 117)(115, 119)(124, 125)(129,
222)(130, 188)(131, 134)(132, 151)(133, 216)(135, 244)(136, 155)(137, 218)(138,
176)(139, 200)(140, 159)(141, 205)(142, 228)(143, 255)(144, 180)(145, 201)(146,
203)(147, 171)(148, 192)(149, 243)(150, 179)(152, 211)(153, 221)(154, 172)(156,
210)(157, 202)(158, 234)(160, 209)(161, 212)(162, 245)(163, 207)(164, 256)(165,
208)(166, 199)(167, 231)(168, 247)(169, 232)(170, 214)(173, 184)(174, 223)(175,
229)(177, 251)(178, 187)(181, 240)(182, 195)(183, 185)(186, 219)(189, 235)(190,
196)(191, 253)(193, 233)(194, 198)(197, 242)(204, 225)(206, 237)(213, 227)(215,
250)(217, 246)(220, 226)(224, 249)(230, 239)(236, 241)(238, 252)(248, 254)
c: (1, 2, 6, 17, 47, 63, 105, 96, 25, 64, 69, 109, 127, 27, 39, 83)(3, 10, 28,
68, 94, 5, 13, 37, 9, 24, 19, 53, 103, 55, 106, 120)(4, 12, 33, 74, 95, 56, 82,
118, 65, 71, 18, 51, 100, 42, 86, 90)(7, 21, 57, 108, 70, 36, 76, 112, 40, 45,
49, 99, 66, 88, 116, 128)(8, 23, 61, 110, 75, 89, 46, 92, 72, 50, 48, 97, 67,
85, 117, 123)(11, 31, 52, 102, 124, 32, 73, 93, 26, 22, 60, 98, 125, 111, 38,
81)(14, 41, 84, 119, 35, 16, 44, 91, 20, 54, 80, 115, 29, 59, 104, 122)(15, 43,
87, 121, 34, 58, 101, 126, 107, 77, 79, 114, 30, 62, 78, 113)(129, 152, 135,
229, 234, 190, 183, 207, 217, 144, 162, 165, 191, 238, 146, 157)(130, 206, 148,
143, 159, 231, 209, 164, 141, 186, 250, 131, 177, 204, 172, 171)(132, 168, 239,
202, 174, 254, 187, 175, 155, 139, 189, 163, 243, 241, 213, 208)(133, 220, 194,
230, 184, 142, 137, 178, 197, 210, 161, 235, 195, 179, 221, 227)(134, 166, 158,
180, 147, 214, 246, 252, 255, 169, 253, 211, 256, 145, 222, 196)(136, 236, 240,
201, 149, 247, 138, 199, 151, 248, 233, 170, 223, 200, 249, 232)(140, 156, 153,
193, 205, 150, 198, 224, 251, 226, 218, 181, 188, 228, 212, 176)(154, 244, 216,
167, 192, 185, 173, 219, 160, 245, 242, 225, 215, 203, 182, 237)
C4[ 256, 147 ]
256
-1 146 157 202 203
-2 157 182 129 174
-3 199 178 169 213
-4 183 205 141 185
-5 222 223 202 195
-6 254 237 129 152
-7 199 129 140 174
-8 220 214 225 141
-9 187 166 232 227
-10 253 151 197 208
-11 187 216 227 197
-12 150 173 207 186
-13 200 179 174 196
-14 177 169 246 149
-15 170 204 226 205
-16 211 222 248 206
-17 154 187 135 152
-18 212 148 237 129
-19 220 155 180 236
-20 166 222 223 159
-21 254 156 151 152
-22 220 225 197 208
-23 246 215 194 186
-24 133 136 158 175
-25 183 163 185 207
-26 242 133 178 213
-27 132 165 242 191
-28 132 210 211 248
-29 136 158 214 141
-30 199 150 140 186
-31 133 210 167 175
-32 179 184 163 219
-33 198 217 250 219
-34 232 206 228 251
-35 253 145 151 130
-36 190 223 139 150
-37 221 254 134 249
-38 154 179 137 174
-39 168 191 225 238
-40 232 243 217 251
-41 253 247 204 252
-42 231 156 216 229
-43 223 150 172 218
-44 233 256 148 196
-45 144 136 226 241
-46 178 211 244 172
-47 244 135 229 175
-48 235 148 185 196
-49 213 236 162 218
-50 222 192 161 206
-51 143 154 176 152
-52 220 155 192 161
-53 147 139 194 240
-54 231 200 158 196
-55 246 149 184 163
-56 165 242 204 226
-57 187 135 248 153
-58 212 136 148 226
-59 180 246 236 186
-60 132 210 215 194
-61 203 250 230 252
-62 198 156 151 250
-63 155 234 216 229
-64 243 173 217 207
-65 188 146 203 130
-66 132 188 201 191
-67 166 179 159 219
-68 233 168 256 161
-69 144 217 219 241
-70 155 234 170 205
-71 157 182 206 228
-72 210 145 167 130
-73 221 243 160 142
-74 144 224 160 131
-75 177 169 237 142
-76 198 189 200 183
-77 209 149 228 153
-78 224 248 131 153
-79 212 247 193 164
-80 209 134 180 249
-81 221 254 178 244
-82 191 225 172 218
-83 146 215 238 239
-84 211 255 138 172
-85 231 221 158 160
-86 209 167 234 153
-87 198 200 181 171
-88 168 149 238 228
-89 154 253 137 204
-90 190 192 193 164
-91 143 134 145 170
-92 256 171 216 197
-93 245 137 227 241
-94 145 235 170 239
-95 177 245 162 251
-96 189 190 192 183
-97 143 134 173 195
-98 168 203 161 230
-99 165 181 240 208
-100 244 135 159 140
-101 143 176 236 218
-102 235 139 194 185
-103 189 201 214 230
-104 147 250 240 252
-105 167 190 234 139
-106 243 247 142 252
-107 231 188 156 201
-108 233 193 229 175
-109 144 213 160 162
-110 255 182 184 131
-111 202 237 195 142
-112 224 249 163 207
-113 177 233 193 251
-114 176 138 205 141
-115 166 232 147 164
-116 146 212 247 239
-117 209 245 180 227
-118 181 171 215 238
-119 199 256 169 171
-120 255 137 138 241
-121 188 224 249 130
-122 255 201 214 131
-123 242 133 147 164
-124 189 173 195 230
-125 235 182 184 239
-126 159 181 140 240
-127 165 245 162 208
-128 176 157 202 138
-129 2 6 7 18
-130 121 35 72 65
-131 110 78 122 74
-132 66 27 60 28
-133 24 123 26 31
-134 80 91 37 97
-135 100 57 47 17
-136 45 24 58 29
-137 89 38 93 120
-138 114 84 128 120
-139 36 102 105 53
-140 100 126 7 30
-141 4 114 29 8
-142 111 73 106 75
-143 101 91 51 97
-144 45 69 74 109
-145 35 91 72 94
-146 1 83 116 65
-147 123 104 115 53
-148 44 58 48 18
-149 55 77 88 14
-150 12 36 30 43
-151 35 62 10 21
-152 6 17 51 21
-153 77 78 57 86
-154 89 38 17 51
-155 70 19 52 63
-156 62 107 42 21
-157 1 2 71 128
-158 24 29 85 54
-159 67 100 126 20
-160 73 74 85 109
-161 68 50 52 98
-162 49 127 95 109
-163 55 112 25 32
-164 79 90 123 115
-165 99 56 27 127
-166 67 115 9 20
-167 72 105 31 86
-168 88 68 39 98
-169 3 14 75 119
-170 91 15 70 94
-171 92 118 119 87
-172 46 82 84 43
-173 12 124 64 97
-174 2 13 38 7
-175 24 47 31 108
-176 101 114 51 128
-177 14 113 95 75
-178 46 3 26 81
-179 67 13 38 32
-180 80 59 117 19
-181 99 126 118 87
-182 110 2 125 71
-183 25 4 96 76
-184 55 110 125 32
-185 25 102 4 48
-186 12 23 59 30
-187 11 57 17 9
-188 66 121 107 65
-189 124 103 96 76
-190 90 36 105 96
-191 66 27 82 39
-192 90 50 52 96
-193 79 90 113 108
-194 23 102 60 53
-195 111 124 5 97
-196 44 13 48 54
-197 11 22 92 10
-198 33 62 76 87
-199 3 7 30 119
-200 13 54 76 87
-201 66 122 103 107
-202 1 111 5 128
-203 1 61 65 98
-204 56 89 15 41
-205 70 4 114 15
-206 34 16 71 50
-207 12 112 25 64
-208 22 99 127 10
-209 77 80 117 86
-210 60 28 72 31
-211 46 16 28 84
-212 79 58 116 18
-213 3 26 49 109
-214 122 103 29 8
-215 23 60 83 118
-216 11 92 63 42
-217 33 69 40 64
-218 101 49 82 43
-219 33 67 69 32
-220 22 8 19 52
-221 37 81 73 85
-222 5 16 50 20
-223 36 5 20 43
-224 121 78 112 74
-225 22 82 39 8
-226 45 56 58 15
-227 11 93 117 9
-228 77 88 34 71
-229 47 63 42 108
-230 124 103 61 98
-231 85 107 42 54
-232 34 115 40 9
-233 44 68 113 108
-234 70 105 63 86
-235 102 48 125 94
-236 101 59 49 19
-237 111 6 18 75
-238 88 39 83 118
-239 125 83 94 116
-240 99 104 126 53
-241 45 69 93 120
-242 56 123 26 27
-243 40 73 106 64
-244 100 46 47 81
-245 93 127 95 117
-246 55 23 14 59
-247 79 116 106 41
-248 78 57 16 28
-249 121 112 80 37
-250 33 104 61 62
-251 34 113 40 95
-252 104 61 106 41
-253 89 35 41 10
-254 37 81 6 21
-255 110 122 84 120
-256 44 68 92 119
0