[Home] [Table] [Glossary]
[Families]
On this page are computer-accessible forms for the graph C4[ 256, 148 ] =
BGCG(UG(ATD[128,66]);K1;{6,7}).
(I) Following is a form readable by MAGMA:
g:=Graph<256|{ {128, 164}, {128, 171}, {128, 180}, {128, 229}, {10, 138}, {121,
249}, {94, 223}, {111, 238}, {108, 237}, {49, 179}, {123, 249}, {99, 225}, {98,
224}, {77, 207}, {20, 151}, {54, 181}, {50, 177}, {45, 174}, {85, 214}, {86,
213}, {100, 224}, {4, 129}, {103, 226}, {97, 228}, {39, 162}, {30, 155}, {47,
169}, {126, 248}, {124, 250}, {106, 236}, {8, 143}, {114, 245}, {48, 183}, {46,
169}, {33, 166}, {32, 167}, {14, 137}, {67, 196}, {2, 138}, {95, 215}, {41,
161}, {23, 159}, {69, 205}, {31, 150}, {3, 137}, {93, 215}, {49, 187}, {4, 143},
{95, 212}, {49, 186}, {24, 148}, {62, 179}, {15, 129}, {123, 245}, {42, 164},
{40, 166}, {34, 172}, {66, 204}, {67, 205}, {46, 161}, {121, 246}, {103, 232},
{92, 211}, {91, 212}, {62, 177}, {27, 139}, {121, 233}, {32, 176}, {3, 146},
{47, 190}, {7, 150}, {65, 208}, {71, 214}, {25, 139}, {119, 229}, {98, 240},
{35, 177}, {80, 194}, {1, 146}, {117, 230}, {113, 226}, {21, 134}, {64, 211},
{67, 208}, {84, 199}, {101, 241}, {106, 254}, {1, 148}, {120, 237}, {113, 228},
{102, 243}, {53, 160}, {35, 182}, {72, 221}, {2, 148}, {109, 251}, {108, 250},
{59, 173}, {72, 222}, {74, 220}, {122, 237}, {28, 132}, {116, 236}, {42, 178},
{37, 188}, {107, 242}, {102, 255}, {43, 178}, {11, 145}, {60, 166}, {55, 173},
{54, 172}, {42, 176}, {18, 136}, {83, 201}, {56, 163}, {69, 222}, {76, 215},
{77, 214}, {78, 213}, {16, 140}, {125, 225}, {124, 224}, {89, 197}, {72, 212},
{85, 201}, {53, 168}, {126, 227}, {120, 229}, {104, 245}, {93, 192}, {90, 199},
{18, 140}, {53, 171}, {64, 222}, {15, 144}, {103, 248}, {56, 167}, {15, 175},
{127, 223}, {26, 186}, {19, 179}, {66, 226}, {15, 174}, {47, 142}, {38, 135},
{79, 237}, {26, 185}, {115, 208}, {111, 204}, {90, 249}, {74, 233}, {87, 244},
{50, 151}, {106, 207}, {70, 227}, {17, 183}, {96, 198}, {37, 131}, {24, 190},
{20, 178}, {71, 225}, {32, 135}, {127, 216}, {104, 207}, {55, 144}, {63, 152},
{73, 238}, {70, 238}, {114, 218}, {96, 200}, {88, 240}, {70, 239}, {110, 199},
{80, 249}, {54, 156}, {5, 174}, {124, 215}, {31, 180}, {6, 170}, {48, 156}, {14,
163}, {58, 151}, {34, 143}, {25, 183}, {26, 180}, {11, 164}, {100, 203}, {61,
146}, {56, 151}, {82, 253}, {35, 147}, {38, 150}, {7, 182}, {122, 203}, {27,
170}, {63, 142}, {13, 191}, {109, 223}, {52, 134}, {87, 229}, {17, 162}, {59,
136}, {24, 172}, {105, 221}, {66, 246}, {73, 253}, {3, 182}, {92, 233}, {74,
255}, {83, 230}, {28, 170}, {118, 192}, {116, 194}, {113, 199}, {92, 234}, {73,
255}, {21, 173}, {84, 236}, {86, 238}, {31, 166}, {97, 216}, {55, 142}, {41,
144}, {56, 130}, {93, 231}, {62, 132}, {40, 147}, {107, 208}, {48, 140}, {55,
139}, {4, 185}, {94, 227}, {90, 231}, {26, 167}, {9, 183}, {112, 206}, {98,
220}, {16, 174}, {64, 254}, {69, 251}, {68, 251}, {102, 217}, {10, 202}, {117,
181}, {51, 243}, {86, 150}, {38, 231}, {68, 133}, {12, 206}, {53, 247}, {41,
235}, {28, 222}, {62, 252}, {78, 140}, {8, 203}, {51, 240}, {36, 231}, {27,
216}, {7, 195}, {54, 242}, {3, 198}, {44, 233}, {11, 206}, {66, 135}, {51, 245},
{125, 187}, {107, 173}, {91, 157}, {28, 219}, {47, 232}, {43, 236}, {29, 218},
{79, 136}, {89, 158}, {44, 228}, {76, 132}, {81, 153}, {88, 144}, {12, 197},
{105, 160}, {50, 251}, {24, 209}, {13, 196}, {25, 211}, {114, 184}, {59, 241},
{75, 129}, {80, 154}, {29, 214}, {118, 189}, {111, 164}, {100, 175}, {99, 168},
{78, 133}, {61, 241}, {93, 145}, {79, 131}, {83, 159}, {12, 193}, {125, 176},
{109, 160}, {94, 147}, {6, 200}, {118, 184}, {107, 165}, {101, 171}, {33, 239},
{82, 156}, {30, 209}, {121, 182}, {60, 243}, {36, 235}, {32, 239}, {70, 137},
{13, 221}, {33, 241}, {65, 145}, {84, 132}, {18, 195}, {19, 194}, {11, 217},
{122, 168}, {9, 218}, {72, 155}, {75, 152}, {22, 195}, {61, 232}, {40, 253},
{33, 244}, {30, 203}, {63, 234}, {82, 135}, {23, 193}, {42, 252}, {38, 240},
{36, 242}, {51, 228}, {112, 167}, {81, 134}, {22, 206}, {115, 171}, {98, 186},
{10, 211}, {57, 224}, {39, 254}, {68, 157}, {16, 202}, {46, 244}, {65, 155},
{69, 159}, {36, 255}, {104, 179}, {52, 239}, {29, 193}, {108, 176}, {90, 134},
{4, 217}, {102, 187}, {5, 216}, {18, 204}, {19, 205}, {2, 221}, {122, 165}, {99,
188}, {97, 190}, {27, 196}, {25, 198}, {21, 202}, {13, 210}, {74, 149}, {23,
247}, {110, 142}, {57, 217}, {10, 235}, {99, 130}, {58, 219}, {75, 170}, {20,
246}, {113, 147}, {57, 219}, {87, 181}, {39, 196}, {49, 210}, {86, 181}, {16,
244}, {126, 154}, {125, 153}, {110, 138}, {95, 187}, {92, 184}, {29, 248}, {116,
145}, {31, 250}, {88, 189}, {17, 247}, {120, 158}, {35, 197}, {21, 243}, {68,
162}, {78, 168}, {1, 230}, {120, 159}, {91, 188}, {85, 178}, {34, 202}, {61,
213}, {52, 220}, {46, 198}, {81, 185}, {59, 209}, {103, 141}, {1, 234}, {126,
149}, {23, 252}, {22, 253}, {87, 188}, {14, 226}, {119, 155}, {118, 154}, {37,
201}, {67, 175}, {81, 189}, {84, 184}, {37, 200}, {116, 153}, {111, 130}, {96,
141}, {45, 192}, {39, 201}, {43, 197}, {75, 165}, {77, 163}, {79, 161}, {5,
234}, {123, 148}, {48, 223}, {9, 230}, {80, 191}, {60, 204}, {123, 139}, {115,
131}, {6, 247}, {108, 157}, {105, 152}, {45, 220}, {14, 252}, {127, 141}, {119,
133}, {106, 152}, {40, 218}, {63, 205}, {77, 191}, {71, 180}, {112, 131}, {76,
191}, {82, 161}, {73, 189}, {91, 175}, {88, 172}, {30, 235}, {127, 138}, {112,
133}, {76, 185}, {85, 160}, {8, 254}, {119, 129}, {57, 207}, {34, 212}, {12,
250}, {71, 177}, {5, 242}, {105, 158}, {94, 169}, {52, 195}, {44, 219}, {22,
225}, {20, 227}, {58, 194}, {117, 141}, {101, 157}, {17, 232}, {101, 156}, {43,
210}, {50, 200}, {95, 165}, {89, 163}, {83, 169}, {58, 193}, {114, 137}, {110,
149}, {97, 154}, {89, 162}, {65, 186}, {41, 213}, {115, 143}, {60, 192}, {45,
209}, {100, 153}, {117, 136}, {104, 149}, {44, 210}, {124, 130}, {96, 158}, {64,
190}, {7, 248}, {109, 146}, {9, 246}, {2, 256}, {6, 256}, {8, 256}, {19, 256}
}>;
(II) A more general form is to represent the graph as the orbit of {128, 164}
under the group generated by the following permutations:
a: (2, 83)(3, 92)(4, 112)(5, 61)(6, 39)(7, 118)(8, 37)(9, 123)(10, 46)(11,
26)(12, 76)(13, 23)(14, 44)(15, 78)(16, 41)(17, 27)(18, 88)(19, 85)(20, 104)(21,
82)(22, 81)(24, 117)(28, 89)(29, 80)(30, 87)(31, 93)(32, 102)(33, 36)(34,
79)(35, 84)(38, 60)(40, 90)(42, 49)(43, 62)(45, 86)(47, 127)(48, 55)(50,
106)(51, 66)(52, 73)(53, 67)(54, 59)(56, 57)(58, 77)(63, 109)(64, 96)(65,
128)(68, 75)(69, 105)(70, 74)(71, 116)(72, 120)(91, 122)(94, 110)(95, 108)(97,
103)(98, 111)(99, 100)(101, 107)(114, 121)(129, 133)(130, 224)(131, 143)(132,
197)(134, 253)(135, 243)(136, 172)(137, 233)(138, 169)(139, 183)(140, 144)(141,
190)(142, 223)(145, 180)(146, 234)(147, 199)(148, 230)(149, 227)(150, 192)(151,
207)(152, 251)(153, 225)(154, 248)(155, 229)(156, 173)(157, 165)(158, 222)(159,
221)(160, 205)(161, 202)(162, 170)(163, 219)(164, 186)(166, 231)(167, 217)(168,
175)(171, 208)(174, 213)(176, 187)(177, 236)(178, 179)(181, 209)(182, 184)(185,
206)(188, 203)(189, 195)(191, 193)(194, 214)(196, 247)(198, 211)(200, 254)(201,
256)(204, 240)(210, 252)(212, 237)(215, 250)(216, 232)(218, 249)(220, 238)(226,
228)(235, 244)(239, 255)(241, 242)(245, 246) (III) Last is Groups&Graphs. Copy everything between (not including)
the lines of asterisks into a plain text file and save it as "graph.txt". Then
launch G&G (Groups&Graphs) and select Read Text from the File menu.
**************
&Graph **************
b: (2, 61)(3, 123)(4, 112)(5, 83)(6, 41)(7, 104)(8, 78)(9, 92)(10, 17)(12,
102)(13, 33)(14, 90)(15, 37)(16, 39)(18, 106)(19, 86)(20, 118)(21, 89)(22,
57)(23, 36)(24, 109)(27, 46)(28, 82)(29, 74)(30, 53)(31, 49)(32, 76)(34, 68)(35,
51)(38, 62)(40, 44)(42, 93)(43, 60)(45, 85)(47, 127)(48, 64)(50, 88)(52, 77)(54,
69)(55, 96)(56, 81)(58, 73)(59, 105)(63, 117)(65, 128)(66, 84)(67, 87)(70,
80)(71, 98)(72, 101)(75, 79)(94, 97)(95, 108)(99, 100)(103, 110)(107, 120)(111,
116)(114, 121)(115, 119)(124, 125)(129, 131)(130, 153)(132, 135)(133, 143)(134,
163)(136, 152)(137, 249)(138, 232)(139, 198)(140, 254)(141, 142)(144, 200)(145,
164)(146, 148)(147, 228)(149, 248)(150, 179)(151, 189)(154, 227)(155, 171)(156,
222)(157, 212)(158, 173)(159, 242)(160, 209)(161, 170)(162, 202)(165, 237)(166,
210)(167, 185)(168, 203)(169, 216)(172, 251)(174, 201)(175, 188)(176, 215)(177,
240)(178, 192)(180, 186)(181, 205)(182, 245)(183, 211)(184, 246)(187, 250)(190,
223)(191, 239)(193, 255)(194, 238)(195, 207)(196, 244)(197, 243)(199, 226)(204,
236)(206, 217)(208, 229)(213, 256)(214, 220)(218, 233)(219, 253)(221, 241)(224,
225)(230, 234)(231, 252)(235, 247)
c: (1, 2, 110, 55, 25, 64, 97, 5)(3, 8, 113, 15, 9, 72, 126, 107)(4, 40, 91, 20,
65, 7, 122, 14)(6, 84, 88, 48, 69, 80, 36, 61)(10, 47, 27, 92, 24, 127, 63,
123)(11, 31, 99, 42, 26, 22, 108, 56)(12, 124, 111, 128, 71, 125, 32, 112)(13,
74, 59, 96, 106, 51, 16, 83)(17, 28, 118, 54, 109, 19, 90, 41)(18, 120, 77, 102,
33, 37, 43, 98)(21, 46, 39, 44, 45, 117, 105, 104)(23, 76, 73, 101, 50, 116, 38,
78)(29, 95, 70, 115, 35, 100, 66, 119)(30, 103, 75, 114, 34, 94, 67, 121)(49,
52, 79, 89, 57, 60, 87, 85)(53, 62, 81, 82, 68, 58, 93, 86)(129, 218, 212, 227,
208, 182, 203, 226)(130, 164, 180, 225, 176, 167, 206, 250)(131, 197, 224, 204,
229, 214, 187, 239)(132, 189, 156, 251, 194, 231, 213, 247)(133, 193, 215, 238,
171, 177, 153, 135)(134, 161, 162, 219, 192, 181, 160, 179)(136, 158, 207, 243,
244, 201, 210, 220)(137, 143, 147, 175, 246, 155, 248, 165)(138, 142, 139, 211,
190, 216, 234, 148)(140, 159, 191, 255, 241, 200, 236, 240)(141, 152, 245, 202,
169, 196, 233, 209)(144, 183, 222, 154, 242, 146, 256, 199)(145, 150, 168, 252,
185, 253, 157, 151)(149, 173, 198, 254, 228, 174, 230, 221)(163, 217, 166, 188,
178, 186, 195, 237)(170, 184, 172, 223, 205, 249, 235, 232)
C4[ 256, 148 ]
256
-1 146 234 148 230
-2 221 256 148 138
-3 198 146 137 182
-4 143 129 217 185
-5 242 234 216 174
-6 200 256 170 247
-7 182 248 150 195
-8 143 254 256 203
-9 246 183 218 230
-10 211 202 235 138
-11 145 206 217 164
-12 193 206 250 197
-13 210 221 191 196
-14 137 226 163 252
-15 144 129 174 175
-16 244 202 140 174
-17 232 247 183 162
-18 136 204 140 195
-19 179 256 194 205
-20 178 246 227 151
-21 243 134 202 173
-22 253 225 195 206
-23 159 247 193 252
-24 209 190 148 172
-25 198 211 139 183
-26 167 180 185 186
-27 170 139 216 196
-28 132 222 170 219
-29 214 193 248 218
-30 209 155 235 203
-31 166 180 150 250
-32 176 167 135 239
-33 166 244 239 241
-34 143 212 202 172
-35 177 147 182 197
-36 231 242 255 235
-37 188 200 201 131
-38 231 135 150 240
-39 254 201 162 196
-40 253 166 147 218
-41 144 213 235 161
-42 176 178 164 252
-43 210 178 236 197
-44 210 233 228 219
-45 209 220 192 174
-46 198 244 169 161
-47 232 190 169 142
-48 156 223 183 140
-49 187 210 179 186
-50 177 200 151 251
-51 243 245 228 240
-52 220 134 195 239
-53 168 247 160 171
-54 242 156 181 172
-55 144 139 173 142
-56 167 151 130 163
-57 224 217 207 219
-58 193 194 151 219
-59 209 136 173 241
-60 166 243 192 204
-61 232 146 213 241
-62 132 177 179 252
-63 234 205 152 142
-64 254 211 222 190
-65 155 145 186 208
-66 135 246 204 226
-67 205 196 175 208
-68 133 157 162 251
-69 222 159 205 251
-70 137 227 238 239
-71 177 180 214 225
-72 155 221 222 212
-73 253 189 255 238
-74 220 233 255 149
-75 165 170 129 152
-76 132 191 215 185
-77 191 214 163 207
-78 133 168 213 140
-79 136 237 161 131
-80 154 191 194 249
-81 134 189 185 153
-82 253 156 135 161
-83 201 169 159 230
-84 132 199 236 184
-85 178 201 214 160
-86 213 181 150 238
-87 188 244 181 229
-88 144 189 172 240
-89 158 162 163 197
-90 231 199 134 249
-91 188 157 212 175
-92 211 233 234 184
-93 231 145 192 215
-94 223 147 169 227
-95 165 187 212 215
-96 198 200 158 141
-97 154 190 216 228
-98 220 224 240 186
-99 188 168 225 130
-100 224 203 153 175
-101 156 157 171 241
-102 187 243 255 217
-103 232 226 248 141
-104 179 245 149 207
-105 221 158 160 152
-106 254 236 152 207
-107 165 242 173 208
-108 176 157 237 250
-109 146 223 160 251
-110 199 138 149 142
-111 204 238 130 164
-112 133 167 206 131
-113 199 147 226 228
-114 245 137 184 218
-115 143 171 131 208
-116 145 236 194 153
-117 136 181 141 230
-118 154 189 192 184
-119 133 155 129 229
-120 158 159 237 229
-121 233 246 182 249
-122 165 168 203 237
-123 245 148 139 249
-124 224 215 250 130
-125 176 187 225 153
-126 154 149 248 227
-127 223 138 216 141
-128 180 171 229 164
-129 4 15 75 119
-130 99 56 111 124
-131 79 112 37 115
-132 28 62 84 76
-133 78 68 112 119
-134 90 81 52 21
-135 66 38 82 32
-136 79 59 18 117
-137 3 14 70 114
-138 110 2 127 10
-139 55 123 25 27
-140 78 48 16 18
-141 103 127 117 96
-142 55 110 47 63
-143 34 4 115 8
-144 55 88 15 41
-145 11 93 116 65
-146 1 3 61 109
-147 35 113 94 40
-148 1 2 24 123
-149 110 104 126 74
-150 38 7 31 86
-151 56 58 50 20
-152 105 106 63 75
-153 100 81 125 116
-154 80 126 118 97
-155 72 30 119 65
-156 101 48 82 54
-157 68 101 91 108
-158 89 105 96 120
-159 23 69 83 120
-160 105 85 53 109
-161 46 79 82 41
-162 89 68 17 39
-163 77 56 89 14
-164 11 111 128 42
-165 122 95 107 75
-166 33 60 40 31
-167 56 112 26 32
-168 99 78 122 53
-169 46 47 83 94
-170 27 6 28 75
-171 101 115 128 53
-172 88 34 24 54
-173 55 59 107 21
-174 45 15 5 16
-175 67 100 91 15
-176 125 42 108 32
-177 35 71 50 62
-178 85 20 42 43
-179 49 104 62 19
-180 26 71 128 31
-181 117 86 54 87
-182 121 35 3 7
-183 25 48 17 9
-184 92 114 84 118
-185 4 26 81 76
-186 26 49 65 98
-187 102 125 49 95
-188 99 91 37 87
-189 88 81 73 118
-190 24 47 64 97
-191 77 13 80 76
-192 45 60 93 118
-193 12 23 58 29
-194 58 80 116 19
-195 22 7 18 52
-196 67 13 27 39
-197 12 89 35 43
-198 46 3 25 96
-199 110 90 113 84
-200 37 6 50 96
-201 37 39 83 85
-202 34 16 10 21
-203 100 122 8 30
-204 66 111 60 18
-205 67 69 19 63
-206 11 22 12 112
-207 77 57 104 106
-208 67 115 107 65
-209 45 24 59 30
-210 44 13 49 43
-211 25 92 64 10
-212 34 91 72 95
-213 78 61 41 86
-214 77 71 29 85
-215 124 93 95 76
-216 5 27 127 97
-217 11 57 102 4
-218 114 29 40 9
-219 44 57 58 28
-220 45 52 74 98
-221 2 13 72 105
-222 69 28 72 64
-223 48 94 127 109
-224 100 57 124 98
-225 22 99 125 71
-226 66 14 113 103
-227 70 126 94 20
-228 44 113 51 97
-229 128 119 87 120
-230 1 83 117 9
-231 90 36 38 93
-232 47 103 17 61
-233 44 121 92 74
-234 1 92 5 63
-235 36 30 41 10
-236 116 84 106 43
-237 122 79 108 120
-238 111 70 73 86
-239 33 70 52 32
-240 88 38 51 98
-241 33 101 59 61
-242 36 5 107 54
-243 102 60 51 21
-244 33 46 16 87
-245 123 114 104 51
-246 66 121 9 20
-247 23 6 17 53
-248 103 126 7 29
-249 121 90 123 80
-250 12 124 31 108
-251 68 69 50 109
-252 23 14 62 42
-253 22 82 40 73
-254 39 106 8 64
-255 36 102 73 74
-256 2 6 8 19
0