C4graphGraph forms for C4 [ 258, 2 ] = C_258(1,85)

[Home] [Table] [Glossary] [Families]

On this page are computer-accessible forms for the graph C4[ 258, 2 ] = C_258(1,85).

(I) Following is a form readable by MAGMA:

g:=Graph<258|{ {2, 3}, {256, 257}, {254, 255}, {252, 253}, {250, 251}, {248, 249}, {246, 247}, {244, 245}, {242, 243}, {240, 241}, {238, 239}, {236, 237}, {234, 235}, {232, 233}, {230, 231}, {228, 229}, {226, 227}, {224, 225}, {222, 223}, {220, 221}, {218, 219}, {216, 217}, {214, 215}, {212, 213}, {210, 211}, {208, 209}, {206, 207}, {204, 205}, {202, 203}, {200, 201}, {96, 97}, {94, 95}, {92, 93}, {90, 91}, {88, 89}, {86, 87}, {84, 85}, {82, 83}, {80, 81}, {78, 79}, {76, 77}, {74, 75}, {72, 73}, {70, 71}, {68, 69}, {66, 67}, {64, 65}, {62, 63}, {60, 61}, {58, 59}, {4, 5}, {6, 7}, {8, 9}, {10, 11}, {12, 13}, {14, 15}, {16, 17}, {18, 19}, {20, 21}, {22, 23}, {24, 25}, {26, 27}, {28, 29}, {30, 31}, {32, 33}, {34, 35}, {36, 37}, {38, 39}, {40, 41}, {42, 43}, {44, 45}, {46, 47}, {48, 49}, {50, 51}, {52, 53}, {54, 55}, {56, 57}, {98, 99}, {100, 101}, {102, 103}, {104, 105}, {106, 107}, {108, 109}, {110, 111}, {112, 113}, {114, 115}, {116, 117}, {118, 119}, {120, 121}, {122, 123}, {124, 125}, {126, 127}, {128, 129}, {130, 131}, {132, 133}, {134, 135}, {136, 137}, {138, 139}, {140, 141}, {142, 143}, {144, 145}, {146, 147}, {148, 149}, {150, 151}, {152, 153}, {154, 155}, {156, 157}, {158, 159}, {160, 161}, {162, 163}, {164, 165}, {166, 167}, {168, 169}, {170, 171}, {172, 173}, {174, 175}, {176, 177}, {178, 179}, {180, 181}, {182, 183}, {184, 185}, {186, 187}, {188, 189}, {190, 191}, {192, 193}, {194, 195}, {196, 197}, {198, 199}, {1, 2}, {257, 258}, {253, 254}, {249, 250}, {245, 246}, {241, 242}, {237, 238}, {233, 234}, {229, 230}, {225, 226}, {221, 222}, {217, 218}, {213, 214}, {209, 210}, {205, 206}, {201, 202}, {93, 94}, {89, 90}, {85, 86}, {81, 82}, {77, 78}, {73, 74}, {69, 70}, {65, 66}, {61, 62}, {5, 6}, {9, 10}, {13, 14}, {17, 18}, {21, 22}, {25, 26}, {29, 30}, {33, 34}, {37, 38}, {41, 42}, {45, 46}, {49, 50}, {53, 54}, {57, 58}, {97, 98}, {101, 102}, {105, 106}, {109, 110}, {113, 114}, {117, 118}, {121, 122}, {125, 126}, {129, 130}, {133, 134}, {137, 138}, {141, 142}, {145, 146}, {149, 150}, {153, 154}, {157, 158}, {161, 162}, {165, 166}, {169, 170}, {173, 174}, {177, 178}, {181, 182}, {185, 186}, {189, 190}, {193, 194}, {197, 198}, {3, 4}, {251, 252}, {243, 244}, {235, 236}, {227, 228}, {219, 220}, {211, 212}, {203, 204}, {91, 92}, {83, 84}, {75, 76}, {67, 68}, {59, 60}, {11, 12}, {19, 20}, {27, 28}, {35, 36}, {43, 44}, {51, 52}, {99, 100}, {107, 108}, {115, 116}, {123, 124}, {131, 132}, {139, 140}, {147, 148}, {155, 156}, {163, 164}, {171, 172}, {179, 180}, {187, 188}, {195, 196}, {7, 8}, {247, 248}, {231, 232}, {215, 216}, {199, 200}, {87, 88}, {71, 72}, {23, 24}, {39, 40}, {55, 56}, {103, 104}, {119, 120}, {135, 136}, {151, 152}, {167, 168}, {183, 184}, {15, 16}, {239, 240}, {207, 208}, {79, 80}, {47, 48}, {111, 112}, {143, 144}, {175, 176}, {31, 32}, {223, 224}, {95, 96}, {159, 160}, {2, 87}, {8, 93}, {10, 95}, {32, 117}, {34, 119}, {40, 125}, {42, 127}, {128, 213}, {130, 215}, {136, 221}, {138, 223}, {160, 245}, {162, 247}, {168, 253}, {170, 255}, {1, 86}, {9, 94}, {33, 118}, {41, 126}, {129, 214}, {137, 222}, {161, 246}, {169, 254}, {3, 88}, {7, 92}, {35, 120}, {39, 124}, {131, 216}, {135, 220}, {163, 248}, {167, 252}, {4, 89}, {6, 91}, {36, 121}, {38, 123}, {132, 217}, {134, 219}, {164, 249}, {166, 251}, {5, 90}, {37, 122}, {133, 218}, {165, 250}, {11, 96}, {15, 100}, {27, 112}, {31, 116}, {139, 224}, {143, 228}, {155, 240}, {159, 244}, {12, 97}, {14, 99}, {28, 113}, {30, 115}, {140, 225}, {142, 227}, {156, 241}, {158, 243}, {13, 98}, {29, 114}, {141, 226}, {157, 242}, {16, 101}, {18, 103}, {24, 109}, {26, 111}, {144, 229}, {146, 231}, {152, 237}, {154, 239}, {17, 102}, {25, 110}, {145, 230}, {153, 238}, {19, 104}, {23, 108}, {147, 232}, {151, 236}, {20, 105}, {22, 107}, {148, 233}, {150, 235}, {21, 106}, {63, 64}, {149, 234}, {191, 192}, {43, 128}, {63, 148}, {59, 144}, {47, 132}, {107, 192}, {111, 196}, {123, 208}, {127, 212}, {2, 175}, {82, 255}, {80, 253}, {66, 239}, {64, 237}, {62, 147}, {60, 145}, {16, 189}, {18, 191}, {44, 129}, {46, 131}, {108, 193}, {110, 195}, {124, 209}, {126, 211}, {1, 174}, {81, 254}, {65, 238}, {61, 146}, {17, 190}, {45, 130}, {109, 194}, {125, 210}, {3, 176}, {79, 252}, {75, 248}, {71, 244}, {67, 240}, {7, 180}, {11, 184}, {15, 188}, {4, 177}, {78, 251}, {76, 249}, {70, 243}, {68, 241}, {58, 143}, {6, 179}, {12, 185}, {14, 187}, {48, 133}, {50, 135}, {56, 141}, {112, 197}, {114, 199}, {120, 205}, {122, 207}, {5, 178}, {77, 250}, {69, 242}, {13, 186}, {49, 134}, {57, 142}, {113, 198}, {121, 206}, {51, 136}, {55, 140}, {115, 200}, {119, 204}, {8, 181}, {74, 247}, {72, 245}, {10, 183}, {52, 137}, {54, 139}, {116, 201}, {118, 203}, {9, 182}, {73, 246}, {53, 138}, {117, 202}, {19, 192}, {63, 236}, {59, 232}, {23, 196}, {27, 200}, {31, 204}, {51, 224}, {55, 228}, {20, 193}, {74, 159}, {72, 157}, {66, 151}, {64, 149}, {62, 235}, {60, 233}, {22, 195}, {28, 201}, {30, 203}, {52, 225}, {54, 227}, {96, 181}, {98, 183}, {104, 189}, {106, 191}, {21, 194}, {73, 158}, {65, 150}, {61, 234}, {29, 202}, {53, 226}, {97, 182}, {105, 190}, {67, 152}, {71, 156}, {99, 184}, {103, 188}, {24, 197}, {70, 155}, {68, 153}, {58, 231}, {26, 199}, {56, 229}, {100, 185}, {102, 187}, {25, 198}, {69, 154}, {57, 230}, {101, 186}, {75, 160}, {95, 180}, {91, 176}, {79, 164}, {32, 205}, {94, 179}, {92, 177}, {78, 163}, {76, 161}, {34, 207}, {48, 221}, {50, 223}, {33, 206}, {93, 178}, {77, 162}, {49, 222}, {35, 208}, {39, 212}, {43, 216}, {47, 220}, {36, 209}, {90, 175}, {88, 173}, {82, 167}, {80, 165}, {38, 211}, {44, 217}, {46, 219}, {37, 210}, {89, 174}, {81, 166}, {45, 218}, {83, 168}, {87, 172}, {40, 213}, {86, 171}, {84, 169}, {42, 215}, {41, 214}, {85, 170}, {127, 128}, {1, 258}, {83, 256}, {84, 257}, {85, 258}, {171, 256}, {172, 257}, {173, 258}, {255, 256} }>;

(II) A more general form is to represent the graph as the orbit of {2, 3} under the group generated by the following permutations:

a: (1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 95, 96, 97, 98, 99, 100, 101, 102, 103, 104, 105, 106, 107, 108, 109, 110, 111, 112, 113, 114, 115, 116, 117, 118, 119, 120, 121, 122, 123, 124, 125, 126, 127, 128, 129, 130, 131, 132, 133, 134, 135, 136, 137, 138, 139, 140, 141, 142, 143, 144, 145, 146, 147, 148, 149, 150, 151, 152, 153, 154, 155, 156, 157, 158, 159, 160, 161, 162, 163, 164, 165, 166, 167, 168, 169, 170, 171, 172, 173, 174, 175, 176, 177, 178, 179, 180, 181, 182, 183, 184, 185, 186, 187, 188, 189, 190, 191, 192, 193, 194, 195, 196, 197, 198, 199, 200, 201, 202, 203, 204, 205, 206, 207, 208, 209, 210, 211, 212, 213, 214, 215, 216, 217, 218, 219, 220, 221, 222, 223, 224, 225, 226, 227, 228, 229, 230, 231, 232, 233, 234, 235, 236, 237, 238, 239, 240, 241, 242, 243, 244, 245, 246, 247, 248, 249, 250, 251, 252, 253, 254, 255, 256, 257, 258)
b: (2, 174)(3, 89)(5, 177)(6, 92)(8, 180)(9, 95)(11, 183)(12, 98)(14, 186)(15, 101)(17, 189)(18, 104)(20, 192)(21, 107)(23, 195)(24, 110)(26, 198)(27, 113)(29, 201)(30, 116)(32, 204)(33, 119)(35, 207)(36, 122)(38, 210)(39, 125)(41, 213)(42, 128)(44, 216)(45, 131)(47, 219)(48, 134)(50, 222)(51, 137)(53, 225)(54, 140)(56, 228)(57, 143)(59, 231)(60, 146)(62, 234)(63, 149)(65, 237)(66, 152)(68, 240)(69, 155)(71, 243)(72, 158)(74, 246)(75, 161)(77, 249)(78, 164)(80, 252)(81, 167)(83, 255)(84, 170)(86, 258)(87, 173)(90, 176)(93, 179)(96, 182)(99, 185)(102, 188)(105, 191)(108, 194)(111, 197)(114, 200)(117, 203)(120, 206)(123, 209)(126, 212)(129, 215)(132, 218)(135, 221)(138, 224)(141, 227)(144, 230)(147, 233)(150, 236)(153, 239)(156, 242)(159, 245)(162, 248)(165, 251)(168, 254)(171, 257)
c: (2, 86)(3, 171)(4, 256)(5, 83)(6, 168)(7, 253)(8, 80)(9, 165)(10, 250)(11, 77)(12, 162)(13, 247)(14, 74)(15, 159)(16, 244)(17, 71)(18, 156)(19, 241)(20, 68)(21, 153)(22, 238)(23, 65)(24, 150)(25, 235)(26, 62)(27, 147)(28, 232)(29, 59)(30, 144)(31, 229)(32, 56)(33, 141)(34, 226)(35, 53)(36, 138)(37, 223)(38, 50)(39, 135)(40, 220)(41, 47)(42, 132)(43, 217)(45, 129)(46, 214)(48, 126)(49, 211)(51, 123)(52, 208)(54, 120)(55, 205)(57, 117)(58, 202)(60, 114)(61, 199)(63, 111)(64, 196)(66, 108)(67, 193)(69, 105)(70, 190)(72, 102)(73, 187)(75, 99)(76, 184)(78, 96)(79, 181)(81, 93)(82, 178)(84, 90)(85, 175)(88, 172)(89, 257)(91, 169)(92, 254)(94, 166)(95, 251)(97, 163)(98, 248)(100, 160)(101, 245)(103, 157)(104, 242)(106, 154)(107, 239)(109, 151)(110, 236)(112, 148)(113, 233)(115, 145)(116, 230)(118, 142)(119, 227)(121, 139)(122, 224)(124, 136)(125, 221)(127, 133)(128, 218)(131, 215)(134, 212)(137, 209)(140, 206)(143, 203)(146, 200)(149, 197)(152, 194)(155, 191)(158, 188)(161, 185)(164, 182)(167, 179)(170, 176)(174, 258)(177, 255)(180, 252)(183, 249)(186, 246)(189, 243)(192, 240)(195, 237)(198, 234)(201, 231)(204, 228)(207, 225)(210, 222)(213, 219)

(III) Last is Groups&Graphs. Copy everything between (not including) the lines of asterisks into a plain text file and save it as "graph.txt". Then launch G&G (Groups&Graphs) and select Read Text from the File menu.

**************

&Graph
C4[ 258, 2 ]
258
-1 2 258 86 174
-2 1 3 87 175
-3 88 176 2 4
-4 89 177 3 5
-5 90 178 4 6
-6 91 179 5 7
-7 92 180 6 8
-8 93 181 7 9
-9 94 182 8 10
-10 11 95 183 9
-11 12 96 184 10
-12 11 13 97 185
-13 12 14 98 186
-14 99 187 13 15
-15 100 188 14 16
-16 101 189 15 17
-17 102 190 16 18
-18 103 191 17 19
-19 104 192 18 20
-20 105 193 19 21
-21 22 106 194 20
-22 23 107 195 21
-23 22 24 108 196
-24 23 25 109 197
-25 110 198 24 26
-26 111 199 25 27
-27 112 200 26 28
-28 113 201 27 29
-29 114 202 28 30
-30 115 203 29 31
-31 116 204 30 32
-32 33 117 205 31
-33 34 118 206 32
-34 33 35 119 207
-35 34 36 120 208
-36 121 209 35 37
-37 122 210 36 38
-38 123 211 37 39
-39 124 212 38 40
-40 125 213 39 41
-41 126 214 40 42
-42 127 215 41 43
-43 44 128 216 42
-44 45 129 217 43
-45 44 46 130 218
-46 45 47 131 219
-47 132 220 46 48
-48 133 221 47 49
-49 134 222 48 50
-50 135 223 49 51
-51 136 224 50 52
-52 137 225 51 53
-53 138 226 52 54
-54 55 139 227 53
-55 56 140 228 54
-56 55 57 141 229
-57 56 58 142 230
-58 143 231 57 59
-59 144 232 58 60
-60 145 233 59 61
-61 146 234 60 62
-62 147 235 61 63
-63 148 236 62 64
-64 149 237 63 65
-65 66 150 238 64
-66 67 151 239 65
-67 66 68 152 240
-68 67 69 153 241
-69 154 242 68 70
-70 155 243 69 71
-71 156 244 70 72
-72 157 245 71 73
-73 158 246 72 74
-74 159 247 73 75
-75 160 248 74 76
-76 77 161 249 75
-77 78 162 250 76
-78 77 79 163 251
-79 78 80 164 252
-80 165 253 79 81
-81 166 254 80 82
-82 167 255 81 83
-83 168 256 82 84
-84 169 257 83 85
-85 170 258 84 86
-86 1 171 85 87
-87 88 2 172 86
-88 89 3 173 87
-89 88 90 4 174
-90 89 91 5 175
-91 176 90 92 6
-92 177 91 93 7
-93 178 92 94 8
-94 179 93 95 9
-95 180 94 96 10
-96 11 181 95 97
-97 12 182 96 98
-98 99 13 183 97
-99 100 14 184 98
-100 99 101 15 185
-101 100 102 16 186
-102 187 101 103 17
-103 188 102 104 18
-104 189 103 105 19
-105 190 104 106 20
-106 191 105 107 21
-107 22 192 106 108
-108 23 193 107 109
-109 110 24 194 108
-110 111 25 195 109
-111 110 112 26 196
-112 111 113 27 197
-113 198 112 114 28
-114 199 113 115 29
-115 200 114 116 30
-116 201 115 117 31
-117 202 116 118 32
-118 33 203 117 119
-119 34 204 118 120
-120 121 35 205 119
-121 122 36 206 120
-122 121 123 37 207
-123 122 124 38 208
-124 209 123 125 39
-125 210 124 126 40
-126 211 125 127 41
-127 212 126 128 42
-128 213 127 129 43
-129 44 214 128 130
-130 45 215 129 131
-131 132 46 216 130
-132 133 47 217 131
-133 132 134 48 218
-134 133 135 49 219
-135 220 134 136 50
-136 221 135 137 51
-137 222 136 138 52
-138 223 137 139 53
-139 224 138 140 54
-140 55 225 139 141
-141 56 226 140 142
-142 143 57 227 141
-143 144 58 228 142
-144 143 145 59 229
-145 144 146 60 230
-146 231 145 147 61
-147 232 146 148 62
-148 233 147 149 63
-149 234 148 150 64
-150 235 149 151 65
-151 66 236 150 152
-152 67 237 151 153
-153 154 68 238 152
-154 155 69 239 153
-155 154 156 70 240
-156 155 157 71 241
-157 242 156 158 72
-158 243 157 159 73
-159 244 158 160 74
-160 245 159 161 75
-161 246 160 162 76
-162 77 247 161 163
-163 78 248 162 164
-164 165 79 249 163
-165 166 80 250 164
-166 165 167 81 251
-167 166 168 82 252
-168 253 167 169 83
-169 254 168 170 84
-170 255 169 171 85
-171 256 170 172 86
-172 257 171 173 87
-173 88 258 172 174
-174 1 89 173 175
-175 176 2 90 174
-176 177 3 91 175
-177 176 178 4 92
-178 177 179 5 93
-179 178 180 6 94
-180 179 181 7 95
-181 180 182 8 96
-182 181 183 9 97
-183 182 184 10 98
-184 11 99 183 185
-185 12 100 184 186
-186 187 13 101 185
-187 188 14 102 186
-188 187 189 15 103
-189 188 190 16 104
-190 189 191 17 105
-191 190 192 18 106
-192 191 193 19 107
-193 192 194 20 108
-194 193 195 21 109
-195 22 110 194 196
-196 23 111 195 197
-197 198 24 112 196
-198 199 25 113 197
-199 198 200 26 114
-200 199 201 27 115
-201 200 202 28 116
-202 201 203 29 117
-203 202 204 30 118
-204 203 205 31 119
-205 204 206 32 120
-206 33 121 205 207
-207 34 122 206 208
-208 209 35 123 207
-209 210 36 124 208
-210 209 211 37 125
-211 210 212 38 126
-212 211 213 39 127
-213 212 214 40 128
-214 213 215 41 129
-215 214 216 42 130
-216 215 217 43 131
-217 44 132 216 218
-218 45 133 217 219
-219 220 46 134 218
-220 221 47 135 219
-221 220 222 48 136
-222 221 223 49 137
-223 222 224 50 138
-224 223 225 51 139
-225 224 226 52 140
-226 225 227 53 141
-227 226 228 54 142
-228 55 143 227 229
-229 56 144 228 230
-230 231 57 145 229
-231 232 58 146 230
-232 231 233 59 147
-233 232 234 60 148
-234 233 235 61 149
-235 234 236 62 150
-236 235 237 63 151
-237 236 238 64 152
-238 237 239 65 153
-239 66 154 238 240
-240 67 155 239 241
-241 242 68 156 240
-242 243 69 157 241
-243 242 244 70 158
-244 243 245 71 159
-245 244 246 72 160
-246 245 247 73 161
-247 246 248 74 162
-248 247 249 75 163
-249 248 250 76 164
-250 77 165 249 251
-251 78 166 250 252
-252 253 79 167 251
-253 254 80 168 252
-254 253 255 81 169
-255 254 256 82 170
-256 255 257 83 171
-257 256 258 84 172
-258 1 257 85 173
0

**************