[Home] [Table] [Glossary]
[Families]
On this page are computer-accessible forms for the graph C4[ 260, 2 ] =
C_260(1,51).
(I) Following is a form readable by MAGMA:
g:=Graph<260|{ {2, 3}, {258, 259}, {256, 257}, {254, 255}, {252, 253}, {250,
251}, {248, 249}, {246, 247}, {244, 245}, {242, 243}, {240, 241}, {238, 239},
{236, 237}, {234, 235}, {232, 233}, {230, 231}, {228, 229}, {226, 227}, {224,
225}, {222, 223}, {220, 221}, {218, 219}, {216, 217}, {214, 215}, {212, 213},
{210, 211}, {208, 209}, {206, 207}, {204, 205}, {202, 203}, {200, 201}, {110,
111}, {108, 109}, {106, 107}, {104, 105}, {102, 103}, {100, 101}, {98, 99}, {96,
97}, {94, 95}, {92, 93}, {90, 91}, {88, 89}, {86, 87}, {84, 85}, {82, 83}, {80,
81}, {78, 79}, {76, 77}, {74, 75}, {72, 73}, {70, 71}, {68, 69}, {66, 67}, {64,
65}, {62, 63}, {60, 61}, {58, 59}, {4, 5}, {6, 7}, {8, 9}, {10, 11}, {12, 13},
{14, 15}, {16, 17}, {18, 19}, {20, 21}, {22, 23}, {24, 25}, {26, 27}, {28, 29},
{30, 31}, {32, 33}, {34, 35}, {36, 37}, {38, 39}, {40, 41}, {42, 43}, {44, 45},
{46, 47}, {48, 49}, {50, 51}, {52, 53}, {54, 55}, {56, 57}, {112, 113}, {114,
115}, {116, 117}, {118, 119}, {120, 121}, {122, 123}, {124, 125}, {126, 127},
{128, 129}, {130, 131}, {132, 133}, {134, 135}, {136, 137}, {138, 139}, {140,
141}, {142, 143}, {144, 145}, {146, 147}, {148, 149}, {150, 151}, {152, 153},
{154, 155}, {156, 157}, {158, 159}, {160, 161}, {162, 163}, {164, 165}, {166,
167}, {168, 169}, {170, 171}, {172, 173}, {174, 175}, {176, 177}, {178, 179},
{180, 181}, {182, 183}, {184, 185}, {186, 187}, {188, 189}, {190, 191}, {192,
193}, {194, 195}, {196, 197}, {198, 199}, {1, 2}, {257, 258}, {253, 254}, {249,
250}, {245, 246}, {241, 242}, {237, 238}, {233, 234}, {229, 230}, {225, 226},
{221, 222}, {217, 218}, {213, 214}, {209, 210}, {205, 206}, {201, 202}, {109,
110}, {105, 106}, {101, 102}, {97, 98}, {93, 94}, {89, 90}, {85, 86}, {81, 82},
{77, 78}, {73, 74}, {69, 70}, {65, 66}, {61, 62}, {5, 6}, {9, 10}, {13, 14},
{17, 18}, {21, 22}, {25, 26}, {29, 30}, {33, 34}, {37, 38}, {41, 42}, {45, 46},
{49, 50}, {53, 54}, {57, 58}, {113, 114}, {117, 118}, {121, 122}, {125, 126},
{129, 130}, {133, 134}, {137, 138}, {141, 142}, {145, 146}, {149, 150}, {153,
154}, {157, 158}, {161, 162}, {165, 166}, {169, 170}, {173, 174}, {177, 178},
{181, 182}, {185, 186}, {189, 190}, {193, 194}, {197, 198}, {3, 4}, {259, 260},
{251, 252}, {243, 244}, {235, 236}, {227, 228}, {219, 220}, {211, 212}, {203,
204}, {107, 108}, {99, 100}, {91, 92}, {83, 84}, {75, 76}, {67, 68}, {59, 60},
{11, 12}, {19, 20}, {27, 28}, {35, 36}, {43, 44}, {51, 52}, {115, 116}, {123,
124}, {131, 132}, {139, 140}, {147, 148}, {155, 156}, {163, 164}, {171, 172},
{179, 180}, {187, 188}, {195, 196}, {7, 8}, {247, 248}, {231, 232}, {215, 216},
{103, 104}, {87, 88}, {71, 72}, {23, 24}, {39, 40}, {55, 56}, {119, 120}, {135,
136}, {151, 152}, {167, 168}, {183, 184}, {199, 200}, {15, 16}, {239, 240},
{207, 208}, {79, 80}, {47, 48}, {111, 112}, {143, 144}, {175, 176}, {4, 55},
{204, 255}, {200, 251}, {76, 127}, {72, 123}, {68, 119}, {64, 115}, {8, 59},
{12, 63}, {128, 179}, {132, 183}, {136, 187}, {140, 191}, {192, 243}, {196,
247}, {1, 52}, {203, 254}, {201, 252}, {75, 126}, {73, 124}, {67, 118}, {65,
116}, {3, 54}, {9, 60}, {11, 62}, {129, 180}, {131, 182}, {137, 188}, {139,
190}, {193, 244}, {195, 246}, {2, 53}, {202, 253}, {74, 125}, {66, 117}, {10,
61}, {130, 181}, {138, 189}, {194, 245}, {5, 56}, {199, 250}, {71, 122}, {69,
120}, {7, 58}, {133, 184}, {135, 186}, {197, 248}, {6, 57}, {223, 224}, {95,
96}, {70, 121}, {31, 32}, {134, 185}, {159, 160}, {198, 249}, {13, 64}, {63,
114}, {61, 112}, {15, 66}, {29, 80}, {31, 82}, {45, 96}, {47, 98}, {141, 192},
{143, 194}, {157, 208}, {159, 210}, {173, 224}, {175, 226}, {189, 240}, {191,
242}, {14, 65}, {62, 113}, {30, 81}, {46, 97}, {142, 193}, {158, 209}, {174,
225}, {190, 241}, {16, 67}, {60, 111}, {20, 71}, {24, 75}, {28, 79}, {48, 99},
{52, 103}, {56, 107}, {144, 195}, {148, 199}, {152, 203}, {156, 207}, {176,
227}, {180, 231}, {184, 235}, {188, 239}, {17, 68}, {59, 110}, {19, 70}, {25,
76}, {27, 78}, {49, 100}, {51, 102}, {57, 108}, {145, 196}, {147, 198}, {153,
204}, {155, 206}, {177, 228}, {179, 230}, {185, 236}, {187, 238}, {18, 69}, {58,
109}, {26, 77}, {50, 101}, {146, 197}, {154, 205}, {178, 229}, {186, 237}, {21,
72}, {23, 74}, {53, 104}, {55, 106}, {149, 200}, {151, 202}, {181, 232}, {183,
234}, {22, 73}, {54, 105}, {150, 201}, {182, 233}, {32, 83}, {36, 87}, {40, 91},
{44, 95}, {160, 211}, {164, 215}, {168, 219}, {172, 223}, {33, 84}, {35, 86},
{41, 92}, {43, 94}, {161, 212}, {163, 214}, {169, 220}, {171, 222}, {34, 85},
{42, 93}, {162, 213}, {170, 221}, {37, 88}, {39, 90}, {165, 216}, {167, 218},
{38, 89}, {63, 64}, {166, 217}, {191, 192}, {77, 128}, {109, 160}, {95, 146},
{93, 144}, {79, 130}, {111, 162}, {125, 176}, {127, 178}, {78, 129}, {110, 161},
{94, 145}, {126, 177}, {2, 211}, {4, 213}, {6, 215}, {8, 217}, {10, 219}, {12,
221}, {14, 223}, {32, 241}, {34, 243}, {36, 245}, {38, 247}, {40, 249}, {42,
251}, {44, 253}, {46, 255}, {1, 210}, {92, 143}, {88, 139}, {84, 135}, {80,
131}, {5, 214}, {9, 218}, {13, 222}, {33, 242}, {37, 246}, {41, 250}, {45, 254},
{112, 163}, {116, 167}, {120, 171}, {124, 175}, {81, 132}, {91, 142}, {89, 140},
{83, 134}, {113, 164}, {115, 166}, {121, 172}, {123, 174}, {3, 212}, {90, 141},
{82, 133}, {11, 220}, {35, 244}, {43, 252}, {114, 165}, {122, 173}, {85, 136},
{87, 138}, {117, 168}, {119, 170}, {7, 216}, {86, 137}, {39, 248}, {118, 169},
{15, 224}, {31, 240}, {16, 225}, {18, 227}, {20, 229}, {22, 231}, {24, 233},
{26, 235}, {28, 237}, {30, 239}, {17, 226}, {108, 159}, {104, 155}, {100, 151},
{96, 147}, {21, 230}, {25, 234}, {29, 238}, {97, 148}, {107, 158}, {105, 156},
{99, 150}, {19, 228}, {106, 157}, {98, 149}, {27, 236}, {101, 152}, {103, 154},
{23, 232}, {102, 153}, {127, 128}, {1, 260}, {47, 256}, {48, 257}, {50, 259},
{49, 258}, {51, 260}, {205, 256}, {207, 258}, {206, 257}, {208, 259}, {209,
260}, {255, 256} }>;
(II) A more general form is to represent the graph as the orbit of {2, 3}
under the group generated by the following permutations:
a: (1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21,
22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41,
42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61,
62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81,
82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 95, 96, 97, 98, 99, 100,
101, 102, 103, 104, 105, 106, 107, 108, 109, 110, 111, 112, 113, 114, 115, 116,
117, 118, 119, 120, 121, 122, 123, 124, 125, 126, 127, 128, 129, 130, 131, 132,
133, 134, 135, 136, 137, 138, 139, 140, 141, 142, 143, 144, 145, 146, 147, 148,
149, 150, 151, 152, 153, 154, 155, 156, 157, 158, 159, 160, 161, 162, 163, 164,
165, 166, 167, 168, 169, 170, 171, 172, 173, 174, 175, 176, 177, 178, 179, 180,
181, 182, 183, 184, 185, 186, 187, 188, 189, 190, 191, 192, 193, 194, 195, 196,
197, 198, 199, 200, 201, 202, 203, 204, 205, 206, 207, 208, 209, 210, 211, 212,
213, 214, 215, 216, 217, 218, 219, 220, 221, 222, 223, 224, 225, 226, 227, 228,
229, 230, 231, 232, 233, 234, 235, 236, 237, 238, 239, 240, 241, 242, 243, 244,
245, 246, 247, 248, 249, 250, 251, 252, 253, 254, 255, 256, 257, 258, 259,
260) (III) Last is Groups&Graphs. Copy everything between (not including)
the lines of asterisks into a plain text file and save it as "graph.txt". Then
launch G&G (Groups&Graphs) and select Read Text from the File menu.
**************
&Graph **************
b: (2, 210)(3, 159)(4, 108)(5, 57)(7, 215)(8, 164)(9, 113)(10, 62)(12, 220)(13,
169)(14, 118)(15, 67)(17, 225)(18, 174)(19, 123)(20, 72)(22, 230)(23, 179)(24,
128)(25, 77)(27, 235)(28, 184)(29, 133)(30, 82)(32, 240)(33, 189)(34, 138)(35,
87)(37, 245)(38, 194)(39, 143)(40, 92)(42, 250)(43, 199)(44, 148)(45, 97)(47,
255)(48, 204)(49, 153)(50, 102)(52, 260)(53, 209)(54, 158)(55, 107)(58, 214)(59,
163)(60, 112)(63, 219)(64, 168)(65, 117)(68, 224)(69, 173)(70, 122)(73, 229)(74,
178)(75, 127)(78, 234)(79, 183)(80, 132)(83, 239)(84, 188)(85, 137)(88, 244)(89,
193)(90, 142)(93, 249)(94, 198)(95, 147)(98, 254)(99, 203)(100, 152)(103,
259)(104, 208)(105, 157)(109, 213)(110, 162)(114, 218)(115, 167)(119, 223)(120,
172)(124, 228)(125, 177)(129, 233)(130, 182)(134, 238)(135, 187)(139, 243)(140,
192)(144, 248)(145, 197)(149, 253)(150, 202)(154, 258)(155, 207)(160, 212)(165,
217)(170, 222)(175, 227)(180, 232)(185, 237)(190, 242)(195, 247)(200, 252)(205,
257)
c: (2, 52)(3, 103)(4, 154)(5, 205)(6, 256)(7, 47)(8, 98)(9, 149)(10, 200)(11,
251)(12, 42)(13, 93)(14, 144)(15, 195)(16, 246)(17, 37)(18, 88)(19, 139)(20,
190)(21, 241)(22, 32)(23, 83)(24, 134)(25, 185)(26, 236)(28, 78)(29, 129)(30,
180)(31, 231)(33, 73)(34, 124)(35, 175)(36, 226)(38, 68)(39, 119)(40, 170)(41,
221)(43, 63)(44, 114)(45, 165)(46, 216)(48, 58)(49, 109)(50, 160)(51, 211)(54,
104)(55, 155)(56, 206)(57, 257)(59, 99)(60, 150)(61, 201)(62, 252)(64, 94)(65,
145)(66, 196)(67, 247)(69, 89)(70, 140)(71, 191)(72, 242)(74, 84)(75, 135)(76,
186)(77, 237)(80, 130)(81, 181)(82, 232)(85, 125)(86, 176)(87, 227)(90, 120)(91,
171)(92, 222)(95, 115)(96, 166)(97, 217)(100, 110)(101, 161)(102, 212)(106,
156)(107, 207)(108, 258)(111, 151)(112, 202)(113, 253)(116, 146)(117, 197)(118,
248)(121, 141)(122, 192)(123, 243)(126, 136)(127, 187)(128, 238)(132, 182)(133,
233)(137, 177)(138, 228)(142, 172)(143, 223)(147, 167)(148, 218)(152, 162)(153,
213)(158, 208)(159, 259)(163, 203)(164, 254)(168, 198)(169, 249)(173, 193)(174,
244)(178, 188)(179, 239)(184, 234)(189, 229)(194, 224)(199, 219)(204, 214)(210,
260)(215, 255)(220, 250)(225, 245)(230, 240)
C4[ 260, 2 ]
260
-1 210 2 260 52
-2 1 211 3 53
-3 2 212 4 54
-4 55 3 213 5
-5 56 4 214 6
-6 57 5 215 7
-7 58 6 216 8
-8 59 7 217 9
-9 60 8 218 10
-10 11 61 9 219
-11 220 12 62 10
-12 11 221 13 63
-13 12 222 14 64
-14 13 223 15 65
-15 66 14 224 16
-16 67 15 225 17
-17 68 16 226 18
-18 69 17 227 19
-19 70 18 228 20
-20 71 19 229 21
-21 22 72 20 230
-22 231 23 73 21
-23 22 232 24 74
-24 23 233 25 75
-25 24 234 26 76
-26 77 25 235 27
-27 78 26 236 28
-28 79 27 237 29
-29 80 28 238 30
-30 81 29 239 31
-31 82 30 240 32
-32 33 83 31 241
-33 242 34 84 32
-34 33 243 35 85
-35 34 244 36 86
-36 35 245 37 87
-37 88 36 246 38
-38 89 37 247 39
-39 90 38 248 40
-40 91 39 249 41
-41 92 40 250 42
-42 93 41 251 43
-43 44 94 42 252
-44 253 45 95 43
-45 44 254 46 96
-46 45 255 47 97
-47 46 256 48 98
-48 99 47 257 49
-49 100 48 258 50
-50 101 49 259 51
-51 102 50 260 52
-52 1 103 51 53
-53 2 104 52 54
-54 55 3 105 53
-55 56 4 106 54
-56 55 57 5 107
-57 56 58 6 108
-58 57 59 7 109
-59 110 58 60 8
-60 111 59 61 9
-61 112 60 62 10
-62 11 113 61 63
-63 12 114 62 64
-64 13 115 63 65
-65 66 14 116 64
-66 67 15 117 65
-67 66 68 16 118
-68 67 69 17 119
-69 68 70 18 120
-70 121 69 71 19
-71 122 70 72 20
-72 123 71 73 21
-73 22 124 72 74
-74 23 125 73 75
-75 24 126 74 76
-76 77 25 127 75
-77 78 26 128 76
-78 77 79 27 129
-79 78 80 28 130
-80 79 81 29 131
-81 132 80 82 30
-82 133 81 83 31
-83 134 82 84 32
-84 33 135 83 85
-85 34 136 84 86
-86 35 137 85 87
-87 88 36 138 86
-88 89 37 139 87
-89 88 90 38 140
-90 89 91 39 141
-91 90 92 40 142
-92 143 91 93 41
-93 144 92 94 42
-94 145 93 95 43
-95 44 146 94 96
-96 45 147 95 97
-97 46 148 96 98
-98 99 47 149 97
-99 100 48 150 98
-100 99 101 49 151
-101 100 102 50 152
-102 101 103 51 153
-103 154 102 104 52
-104 155 103 105 53
-105 156 104 106 54
-106 55 157 105 107
-107 56 158 106 108
-108 57 159 107 109
-109 110 58 160 108
-110 111 59 161 109
-111 110 112 60 162
-112 111 113 61 163
-113 112 114 62 164
-114 165 113 115 63
-115 166 114 116 64
-116 167 115 117 65
-117 66 168 116 118
-118 67 169 117 119
-119 68 170 118 120
-120 121 69 171 119
-121 122 70 172 120
-122 121 123 71 173
-123 122 124 72 174
-124 123 125 73 175
-125 176 124 126 74
-126 177 125 127 75
-127 178 126 128 76
-128 77 179 127 129
-129 78 180 128 130
-130 79 181 129 131
-131 132 80 182 130
-132 133 81 183 131
-133 132 134 82 184
-134 133 135 83 185
-135 134 136 84 186
-136 187 135 137 85
-137 188 136 138 86
-138 189 137 139 87
-139 88 190 138 140
-140 89 191 139 141
-141 90 192 140 142
-142 143 91 193 141
-143 144 92 194 142
-144 143 145 93 195
-145 144 146 94 196
-146 145 147 95 197
-147 198 146 148 96
-148 199 147 149 97
-149 200 148 150 98
-150 99 201 149 151
-151 100 202 150 152
-152 101 203 151 153
-153 154 102 204 152
-154 155 103 205 153
-155 154 156 104 206
-156 155 157 105 207
-157 156 158 106 208
-158 209 157 159 107
-159 210 158 160 108
-160 211 159 161 109
-161 110 212 160 162
-162 111 213 161 163
-163 112 214 162 164
-164 165 113 215 163
-165 166 114 216 164
-166 165 167 115 217
-167 166 168 116 218
-168 167 169 117 219
-169 220 168 170 118
-170 221 169 171 119
-171 222 170 172 120
-172 121 223 171 173
-173 122 224 172 174
-174 123 225 173 175
-175 176 124 226 174
-176 177 125 227 175
-177 176 178 126 228
-178 177 179 127 229
-179 178 180 128 230
-180 231 179 181 129
-181 232 180 182 130
-182 233 181 183 131
-183 132 234 182 184
-184 133 235 183 185
-185 134 236 184 186
-186 187 135 237 185
-187 188 136 238 186
-188 187 189 137 239
-189 188 190 138 240
-190 189 191 139 241
-191 242 190 192 140
-192 243 191 193 141
-193 244 192 194 142
-194 143 245 193 195
-195 144 246 194 196
-196 145 247 195 197
-197 198 146 248 196
-198 199 147 249 197
-199 198 200 148 250
-200 199 201 149 251
-201 200 202 150 252
-202 253 201 203 151
-203 254 202 204 152
-204 255 203 205 153
-205 154 256 204 206
-206 155 257 205 207
-207 156 258 206 208
-208 209 157 259 207
-209 210 158 260 208
-210 209 1 211 159
-211 210 2 212 160
-212 211 3 213 161
-213 212 4 214 162
-214 213 5 215 163
-215 214 6 216 164
-216 165 215 7 217
-217 166 216 8 218
-218 167 217 9 219
-219 220 168 218 10
-220 11 221 169 219
-221 220 12 222 170
-222 221 13 223 171
-223 222 14 224 172
-224 223 15 225 173
-225 224 16 226 174
-226 225 17 227 175
-227 176 226 18 228
-228 177 227 19 229
-229 178 228 20 230
-230 231 179 229 21
-231 22 232 180 230
-232 231 23 233 181
-233 232 24 234 182
-234 233 25 235 183
-235 234 26 236 184
-236 235 27 237 185
-237 236 28 238 186
-238 187 237 29 239
-239 188 238 30 240
-240 189 239 31 241
-241 242 190 240 32
-242 33 243 191 241
-243 242 34 244 192
-244 243 35 245 193
-245 244 36 246 194
-246 245 37 247 195
-247 246 38 248 196
-248 247 39 249 197
-249 198 248 40 250
-250 199 249 41 251
-251 200 250 42 252
-252 253 201 251 43
-253 44 254 202 252
-254 253 45 255 203
-255 254 46 256 204
-256 255 47 257 205
-257 256 48 258 206
-258 257 49 259 207
-259 258 50 260 208
-260 209 1 259 51
0