[Home] [Table] [Glossary]
[Families]
On this page are computer-accessible forms for the graph C4[ 260, 3 ] =
C_260(1,79).
(I) Following is a form readable by MAGMA:
g:=Graph<260|{ {2, 3}, {258, 259}, {256, 257}, {254, 255}, {252, 253}, {250,
251}, {248, 249}, {246, 247}, {244, 245}, {242, 243}, {240, 241}, {238, 239},
{236, 237}, {234, 235}, {232, 233}, {230, 231}, {228, 229}, {226, 227}, {224,
225}, {222, 223}, {220, 221}, {218, 219}, {216, 217}, {214, 215}, {212, 213},
{210, 211}, {208, 209}, {206, 207}, {204, 205}, {202, 203}, {200, 201}, {198,
199}, {196, 197}, {194, 195}, {96, 97}, {94, 95}, {92, 93}, {90, 91}, {88, 89},
{86, 87}, {84, 85}, {82, 83}, {80, 81}, {78, 79}, {76, 77}, {74, 75}, {72, 73},
{70, 71}, {68, 69}, {66, 67}, {64, 65}, {62, 63}, {60, 61}, {58, 59}, {56, 57},
{4, 5}, {6, 7}, {8, 9}, {10, 11}, {12, 13}, {14, 15}, {16, 17}, {18, 19}, {20,
21}, {22, 23}, {24, 25}, {26, 27}, {28, 29}, {30, 31}, {32, 33}, {34, 35}, {36,
37}, {38, 39}, {40, 41}, {42, 43}, {44, 45}, {46, 47}, {48, 49}, {50, 51}, {52,
53}, {54, 55}, {98, 99}, {100, 101}, {102, 103}, {104, 105}, {106, 107}, {108,
109}, {110, 111}, {112, 113}, {114, 115}, {116, 117}, {118, 119}, {120, 121},
{122, 123}, {124, 125}, {126, 127}, {128, 129}, {130, 131}, {132, 133}, {134,
135}, {136, 137}, {138, 139}, {140, 141}, {142, 143}, {144, 145}, {146, 147},
{148, 149}, {150, 151}, {152, 153}, {154, 155}, {156, 157}, {158, 159}, {160,
161}, {162, 163}, {164, 165}, {166, 167}, {168, 169}, {170, 171}, {172, 173},
{174, 175}, {176, 177}, {178, 179}, {180, 181}, {182, 183}, {184, 185}, {186,
187}, {188, 189}, {190, 191}, {192, 193}, {1, 2}, {257, 258}, {253, 254}, {249,
250}, {245, 246}, {241, 242}, {237, 238}, {233, 234}, {229, 230}, {225, 226},
{221, 222}, {217, 218}, {213, 214}, {209, 210}, {205, 206}, {201, 202}, {197,
198}, {193, 194}, {97, 98}, {93, 94}, {89, 90}, {85, 86}, {81, 82}, {77, 78},
{73, 74}, {69, 70}, {65, 66}, {61, 62}, {57, 58}, {5, 6}, {9, 10}, {13, 14},
{17, 18}, {21, 22}, {25, 26}, {29, 30}, {33, 34}, {37, 38}, {41, 42}, {45, 46},
{49, 50}, {53, 54}, {101, 102}, {105, 106}, {109, 110}, {113, 114}, {117, 118},
{121, 122}, {125, 126}, {129, 130}, {133, 134}, {137, 138}, {141, 142}, {145,
146}, {149, 150}, {153, 154}, {157, 158}, {161, 162}, {165, 166}, {169, 170},
{173, 174}, {177, 178}, {181, 182}, {185, 186}, {189, 190}, {3, 4}, {259, 260},
{251, 252}, {243, 244}, {235, 236}, {227, 228}, {219, 220}, {211, 212}, {203,
204}, {195, 196}, {91, 92}, {83, 84}, {75, 76}, {67, 68}, {59, 60}, {11, 12},
{19, 20}, {27, 28}, {35, 36}, {43, 44}, {51, 52}, {99, 100}, {107, 108}, {115,
116}, {123, 124}, {131, 132}, {139, 140}, {147, 148}, {155, 156}, {163, 164},
{171, 172}, {179, 180}, {187, 188}, {7, 8}, {247, 248}, {231, 232}, {215, 216},
{199, 200}, {87, 88}, {71, 72}, {23, 24}, {39, 40}, {55, 56}, {103, 104}, {119,
120}, {135, 136}, {151, 152}, {167, 168}, {183, 184}, {15, 16}, {239, 240},
{207, 208}, {79, 80}, {47, 48}, {111, 112}, {143, 144}, {175, 176}, {31, 32},
{223, 224}, {95, 96}, {159, 160}, {16, 95}, {32, 111}, {48, 127}, {128, 207},
{144, 223}, {160, 239}, {176, 255}, {1, 80}, {3, 82}, {5, 84}, {7, 86}, {9, 88},
{11, 90}, {13, 92}, {15, 94}, {33, 112}, {35, 114}, {37, 116}, {39, 118}, {41,
120}, {43, 122}, {45, 124}, {47, 126}, {129, 208}, {131, 210}, {133, 212}, {135,
214}, {137, 216}, {139, 218}, {141, 220}, {143, 222}, {161, 240}, {163, 242},
{165, 244}, {167, 246}, {169, 248}, {171, 250}, {173, 252}, {175, 254}, {2, 81},
{6, 85}, {10, 89}, {14, 93}, {34, 113}, {38, 117}, {42, 121}, {46, 125}, {130,
209}, {134, 213}, {138, 217}, {142, 221}, {162, 241}, {166, 245}, {170, 249},
{174, 253}, {4, 83}, {12, 91}, {36, 115}, {44, 123}, {132, 211}, {140, 219},
{164, 243}, {172, 251}, {8, 87}, {40, 119}, {136, 215}, {168, 247}, {17, 96},
{19, 98}, {21, 100}, {23, 102}, {25, 104}, {27, 106}, {29, 108}, {31, 110},
{145, 224}, {147, 226}, {149, 228}, {151, 230}, {153, 232}, {155, 234}, {157,
236}, {159, 238}, {18, 97}, {22, 101}, {26, 105}, {30, 109}, {146, 225}, {150,
229}, {154, 233}, {158, 237}, {20, 99}, {28, 107}, {148, 227}, {156, 235}, {24,
103}, {63, 64}, {152, 231}, {191, 192}, {49, 128}, {63, 142}, {61, 140}, {59,
138}, {57, 136}, {51, 130}, {53, 132}, {55, 134}, {113, 192}, {115, 194}, {117,
196}, {119, 198}, {121, 200}, {123, 202}, {125, 204}, {127, 206}, {50, 129},
{62, 141}, {58, 137}, {54, 133}, {114, 193}, {118, 197}, {122, 201}, {126, 205},
{2, 183}, {74, 255}, {72, 253}, {66, 247}, {64, 245}, {8, 189}, {10, 191}, {1,
182}, {73, 254}, {65, 246}, {60, 139}, {9, 190}, {52, 131}, {116, 195}, {124,
203}, {3, 184}, {71, 252}, {67, 248}, {7, 188}, {4, 185}, {70, 251}, {68, 249},
{6, 187}, {5, 186}, {69, 250}, {56, 135}, {120, 199}, {11, 192}, {63, 244}, {59,
240}, {15, 196}, {27, 208}, {31, 212}, {43, 224}, {47, 228}, {12, 193}, {62,
243}, {60, 241}, {14, 195}, {28, 209}, {30, 211}, {44, 225}, {46, 227}, {13,
194}, {96, 175}, {80, 159}, {64, 143}, {61, 242}, {29, 210}, {45, 226}, {112,
191}, {65, 144}, {79, 158}, {77, 156}, {75, 154}, {73, 152}, {71, 150}, {69,
148}, {67, 146}, {97, 176}, {99, 178}, {101, 180}, {103, 182}, {105, 184}, {107,
186}, {109, 188}, {111, 190}, {66, 145}, {78, 157}, {74, 153}, {70, 149}, {98,
177}, {102, 181}, {106, 185}, {110, 189}, {16, 197}, {58, 239}, {56, 237}, {18,
199}, {24, 205}, {26, 207}, {48, 229}, {50, 231}, {17, 198}, {76, 155}, {68,
147}, {57, 238}, {25, 206}, {49, 230}, {100, 179}, {108, 187}, {19, 200}, {23,
204}, {51, 232}, {55, 236}, {20, 201}, {22, 203}, {52, 233}, {54, 235}, {21,
202}, {72, 151}, {53, 234}, {104, 183}, {81, 160}, {95, 174}, {93, 172}, {91,
170}, {89, 168}, {87, 166}, {85, 164}, {83, 162}, {82, 161}, {94, 173}, {90,
169}, {86, 165}, {32, 213}, {34, 215}, {40, 221}, {42, 223}, {33, 214}, {92,
171}, {84, 163}, {41, 222}, {35, 216}, {39, 220}, {36, 217}, {38, 219}, {37,
218}, {88, 167}, {127, 128}, {1, 260}, {75, 256}, {79, 260}, {76, 257}, {78,
259}, {77, 258}, {177, 256}, {179, 258}, {181, 260}, {178, 257}, {180, 259},
{255, 256} }>;
(II) A more general form is to represent the graph as the orbit of {2, 3}
under the group generated by the following permutations:
a: (1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21,
22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41,
42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61,
62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81,
82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 95, 96, 97, 98, 99, 100,
101, 102, 103, 104, 105, 106, 107, 108, 109, 110, 111, 112, 113, 114, 115, 116,
117, 118, 119, 120, 121, 122, 123, 124, 125, 126, 127, 128, 129, 130, 131, 132,
133, 134, 135, 136, 137, 138, 139, 140, 141, 142, 143, 144, 145, 146, 147, 148,
149, 150, 151, 152, 153, 154, 155, 156, 157, 158, 159, 160, 161, 162, 163, 164,
165, 166, 167, 168, 169, 170, 171, 172, 173, 174, 175, 176, 177, 178, 179, 180,
181, 182, 183, 184, 185, 186, 187, 188, 189, 190, 191, 192, 193, 194, 195, 196,
197, 198, 199, 200, 201, 202, 203, 204, 205, 206, 207, 208, 209, 210, 211, 212,
213, 214, 215, 216, 217, 218, 219, 220, 221, 222, 223, 224, 225, 226, 227, 228,
229, 230, 231, 232, 233, 234, 235, 236, 237, 238, 239, 240, 241, 242, 243, 244,
245, 246, 247, 248, 249, 250, 251, 252, 253, 254, 255, 256, 257, 258, 259,
260) (III) Last is Groups&Graphs. Copy everything between (not including)
the lines of asterisks into a plain text file and save it as "graph.txt". Then
launch G&G (Groups&Graphs) and select Read Text from the File menu.
**************
&Graph **************
b: (2, 182)(3, 103)(4, 24)(5, 205)(6, 126)(7, 47)(8, 228)(9, 149)(10, 70)(11,
251)(12, 172)(13, 93)(15, 195)(16, 116)(17, 37)(18, 218)(19, 139)(20, 60)(21,
241)(22, 162)(23, 83)(25, 185)(26, 106)(28, 208)(29, 129)(30, 50)(31, 231)(32,
152)(33, 73)(34, 254)(35, 175)(36, 96)(38, 198)(39, 119)(41, 221)(42, 142)(43,
63)(44, 244)(45, 165)(46, 86)(48, 188)(49, 109)(51, 211)(52, 132)(54, 234)(55,
155)(56, 76)(57, 257)(58, 178)(59, 99)(61, 201)(62, 122)(64, 224)(65, 145)(67,
247)(68, 168)(69, 89)(71, 191)(72, 112)(74, 214)(75, 135)(77, 237)(78, 158)(80,
260)(81, 181)(82, 102)(84, 204)(85, 125)(87, 227)(88, 148)(90, 250)(91, 171)(94,
194)(95, 115)(97, 217)(98, 138)(100, 240)(101, 161)(104, 184)(107, 207)(108,
128)(110, 230)(111, 151)(113, 253)(114, 174)(117, 197)(120, 220)(121, 141)(123,
243)(124, 164)(127, 187)(130, 210)(133, 233)(134, 154)(136, 256)(137, 177)(140,
200)(143, 223)(146, 246)(147, 167)(150, 190)(153, 213)(156, 236)(159, 259)(160,
180)(163, 203)(166, 226)(169, 249)(173, 193)(176, 216)(179, 239)(186, 206)(189,
229)(192, 252)(199, 219)(202, 242)(212, 232)(215, 255)(225, 245)(238, 258)
c: (2, 80)(3, 159)(4, 238)(5, 57)(6, 136)(7, 215)(8, 34)(9, 113)(10, 192)(12,
90)(13, 169)(14, 248)(15, 67)(16, 146)(17, 225)(18, 44)(19, 123)(20, 202)(22,
100)(23, 179)(24, 258)(25, 77)(26, 156)(27, 235)(28, 54)(29, 133)(30, 212)(32,
110)(33, 189)(35, 87)(36, 166)(37, 245)(38, 64)(39, 143)(40, 222)(42, 120)(43,
199)(45, 97)(46, 176)(47, 255)(48, 74)(49, 153)(50, 232)(52, 130)(53, 209)(55,
107)(56, 186)(58, 84)(59, 163)(60, 242)(62, 140)(63, 219)(65, 117)(66, 196)(68,
94)(69, 173)(70, 252)(72, 150)(73, 229)(75, 127)(76, 206)(78, 104)(79, 183)(82,
160)(83, 239)(85, 137)(86, 216)(88, 114)(89, 193)(92, 170)(93, 249)(95, 147)(96,
226)(98, 124)(99, 203)(102, 180)(103, 259)(105, 157)(106, 236)(108, 134)(109,
213)(112, 190)(115, 167)(116, 246)(118, 144)(119, 223)(122, 200)(125, 177)(126,
256)(128, 154)(129, 233)(132, 210)(135, 187)(138, 164)(139, 243)(142, 220)(145,
197)(148, 174)(149, 253)(152, 230)(155, 207)(158, 184)(162, 240)(165, 217)(168,
194)(172, 250)(175, 227)(178, 204)(182, 260)(185, 237)(188, 214)(195, 247)(198,
224)(205, 257)(208, 234)(218, 244)(228, 254)
C4[ 260, 3 ]
260
-1 2 80 182 260
-2 1 3 81 183
-3 2 4 82 184
-4 3 5 83 185
-5 4 6 84 186
-6 187 5 7 85
-7 188 6 8 86
-8 189 7 9 87
-9 88 190 8 10
-10 11 89 191 9
-11 12 90 192 10
-12 11 13 91 193
-13 12 14 92 194
-14 13 15 93 195
-15 14 16 94 196
-16 15 17 95 197
-17 198 16 18 96
-18 199 17 19 97
-19 200 18 20 98
-20 99 201 19 21
-21 22 100 202 20
-22 23 101 203 21
-23 22 24 102 204
-24 23 25 103 205
-25 24 26 104 206
-26 25 27 105 207
-27 26 28 106 208
-28 209 27 29 107
-29 210 28 30 108
-30 211 29 31 109
-31 110 212 30 32
-32 33 111 213 31
-33 34 112 214 32
-34 33 35 113 215
-35 34 36 114 216
-36 35 37 115 217
-37 36 38 116 218
-38 37 39 117 219
-39 220 38 40 118
-40 221 39 41 119
-41 222 40 42 120
-42 121 223 41 43
-43 44 122 224 42
-44 45 123 225 43
-45 44 46 124 226
-46 45 47 125 227
-47 46 48 126 228
-48 47 49 127 229
-49 48 50 128 230
-50 231 49 51 129
-51 232 50 52 130
-52 233 51 53 131
-53 132 234 52 54
-54 55 133 235 53
-55 56 134 236 54
-56 55 57 135 237
-57 56 58 136 238
-58 57 59 137 239
-59 58 60 138 240
-60 59 61 139 241
-61 242 60 62 140
-62 243 61 63 141
-63 244 62 64 142
-64 143 245 63 65
-65 66 144 246 64
-66 67 145 247 65
-67 66 68 146 248
-68 67 69 147 249
-69 68 70 148 250
-70 69 71 149 251
-71 70 72 150 252
-72 253 71 73 151
-73 254 72 74 152
-74 255 73 75 153
-75 154 256 74 76
-76 77 155 257 75
-77 78 156 258 76
-78 77 79 157 259
-79 78 80 158 260
-80 1 79 81 159
-81 2 80 82 160
-82 3 81 83 161
-83 4 82 84 162
-84 5 83 85 163
-85 6 84 86 164
-86 165 7 85 87
-87 88 166 8 86
-88 89 167 9 87
-89 88 90 168 10
-90 11 89 91 169
-91 12 90 92 170
-92 13 91 93 171
-93 14 92 94 172
-94 15 93 95 173
-95 16 94 96 174
-96 17 95 97 175
-97 176 18 96 98
-98 99 177 19 97
-99 100 178 20 98
-100 99 101 179 21
-101 22 100 102 180
-102 23 101 103 181
-103 24 102 104 182
-104 25 103 105 183
-105 26 104 106 184
-106 27 105 107 185
-107 28 106 108 186
-108 187 29 107 109
-109 110 188 30 108
-110 111 189 31 109
-111 110 112 190 32
-112 33 111 113 191
-113 34 112 114 192
-114 35 113 115 193
-115 36 114 116 194
-116 37 115 117 195
-117 38 116 118 196
-118 39 117 119 197
-119 198 40 118 120
-120 121 199 41 119
-121 122 200 42 120
-122 121 123 201 43
-123 44 122 124 202
-124 45 123 125 203
-125 46 124 126 204
-126 47 125 127 205
-127 48 126 128 206
-128 49 127 129 207
-129 50 128 130 208
-130 209 51 129 131
-131 132 210 52 130
-132 133 211 53 131
-133 132 134 212 54
-134 55 133 135 213
-135 56 134 136 214
-136 57 135 137 215
-137 58 136 138 216
-138 59 137 139 217
-139 60 138 140 218
-140 61 139 141 219
-141 220 62 140 142
-142 143 221 63 141
-143 144 222 64 142
-144 143 145 223 65
-145 66 144 146 224
-146 67 145 147 225
-147 68 146 148 226
-148 69 147 149 227
-149 70 148 150 228
-150 71 149 151 229
-151 72 150 152 230
-152 231 73 151 153
-153 154 232 74 152
-154 155 233 75 153
-155 154 156 234 76
-156 77 155 157 235
-157 78 156 158 236
-158 79 157 159 237
-159 80 158 160 238
-160 81 159 161 239
-161 82 160 162 240
-162 83 161 163 241
-163 242 84 162 164
-164 165 243 85 163
-165 166 244 86 164
-166 165 167 245 87
-167 88 166 168 246
-168 89 167 169 247
-169 90 168 170 248
-170 91 169 171 249
-171 92 170 172 250
-172 93 171 173 251
-173 94 172 174 252
-174 253 95 173 175
-175 176 254 96 174
-176 177 255 97 175
-177 176 178 256 98
-178 99 177 179 257
-179 100 178 180 258
-180 101 179 181 259
-181 102 180 182 260
-182 1 103 181 183
-183 2 104 182 184
-184 3 105 183 185
-185 4 106 184 186
-186 187 5 107 185
-187 188 6 108 186
-188 187 189 7 109
-189 110 188 190 8
-190 111 189 191 9
-191 112 190 192 10
-192 11 113 191 193
-193 12 114 192 194
-194 13 115 193 195
-195 14 116 194 196
-196 15 117 195 197
-197 198 16 118 196
-198 199 17 119 197
-199 198 200 18 120
-200 121 199 201 19
-201 122 200 202 20
-202 123 201 203 21
-203 22 124 202 204
-204 23 125 203 205
-205 24 126 204 206
-206 25 127 205 207
-207 26 128 206 208
-208 209 27 129 207
-209 210 28 130 208
-210 209 211 29 131
-211 132 210 212 30
-212 133 211 213 31
-213 134 212 214 32
-214 33 135 213 215
-215 34 136 214 216
-216 35 137 215 217
-217 36 138 216 218
-218 37 139 217 219
-219 220 38 140 218
-220 221 39 141 219
-221 220 222 40 142
-222 143 221 223 41
-223 144 222 224 42
-224 145 223 225 43
-225 44 146 224 226
-226 45 147 225 227
-227 46 148 226 228
-228 47 149 227 229
-229 48 150 228 230
-230 231 49 151 229
-231 232 50 152 230
-232 231 233 51 153
-233 154 232 234 52
-234 155 233 235 53
-235 156 234 236 54
-236 55 157 235 237
-237 56 158 236 238
-238 57 159 237 239
-239 58 160 238 240
-240 59 161 239 241
-241 242 60 162 240
-242 243 61 163 241
-243 242 244 62 164
-244 165 243 245 63
-245 166 244 246 64
-246 167 245 247 65
-247 66 168 246 248
-248 67 169 247 249
-249 68 170 248 250
-250 69 171 249 251
-251 70 172 250 252
-252 253 71 173 251
-253 254 72 174 252
-254 253 255 73 175
-255 176 254 256 74
-256 177 255 257 75
-257 178 256 258 76
-258 77 179 257 259
-259 78 180 258 260
-260 1 79 181 259
0