[Home] [Table] [Glossary]
[Families]
On this page are computer-accessible forms for the graph C4[ 260, 4 ] =
{4,4}_14,8.
(I) Following is a form readable by MAGMA:
g:=Graph<260|{ {2, 3}, {258, 259}, {256, 257}, {254, 255}, {252, 253}, {250,
251}, {248, 249}, {246, 247}, {244, 245}, {242, 243}, {240, 241}, {238, 239},
{236, 237}, {234, 235}, {232, 233}, {230, 231}, {228, 229}, {226, 227}, {224,
225}, {222, 223}, {220, 221}, {218, 219}, {216, 217}, {214, 215}, {212, 213},
{210, 211}, {208, 209}, {206, 207}, {204, 205}, {202, 203}, {200, 201}, {198,
199}, {196, 197}, {194, 195}, {192, 193}, {190, 191}, {188, 189}, {186, 187},
{184, 185}, {84, 85}, {82, 83}, {80, 81}, {78, 79}, {76, 77}, {74, 75}, {72,
73}, {70, 71}, {68, 69}, {66, 67}, {64, 65}, {62, 63}, {60, 61}, {58, 59}, {56,
57}, {54, 55}, {52, 53}, {4, 5}, {6, 7}, {8, 9}, {10, 11}, {12, 13}, {14, 15},
{16, 17}, {18, 19}, {20, 21}, {22, 23}, {24, 25}, {26, 27}, {28, 29}, {30, 31},
{32, 33}, {34, 35}, {36, 37}, {38, 39}, {40, 41}, {42, 43}, {44, 45}, {46, 47},
{48, 49}, {50, 51}, {86, 87}, {88, 89}, {90, 91}, {92, 93}, {94, 95}, {96, 97},
{98, 99}, {100, 101}, {102, 103}, {104, 105}, {106, 107}, {108, 109}, {110,
111}, {112, 113}, {114, 115}, {116, 117}, {118, 119}, {120, 121}, {122, 123},
{124, 125}, {126, 127}, {128, 129}, {132, 133}, {134, 135}, {136, 137}, {138,
139}, {140, 141}, {142, 143}, {144, 145}, {146, 147}, {148, 149}, {150, 151},
{152, 153}, {154, 155}, {156, 157}, {158, 159}, {160, 161}, {162, 163}, {164,
165}, {166, 167}, {168, 169}, {170, 171}, {172, 173}, {174, 175}, {176, 177},
{178, 179}, {180, 181}, {182, 183}, {1, 2}, {257, 258}, {253, 254}, {249, 250},
{245, 246}, {241, 242}, {237, 238}, {233, 234}, {229, 230}, {225, 226}, {221,
222}, {217, 218}, {213, 214}, {209, 210}, {205, 206}, {201, 202}, {197, 198},
{193, 194}, {189, 190}, {185, 186}, {85, 86}, {81, 82}, {77, 78}, {73, 74}, {69,
70}, {65, 66}, {61, 62}, {57, 58}, {53, 54}, {5, 6}, {9, 10}, {13, 14}, {17,
18}, {21, 22}, {25, 26}, {29, 30}, {33, 34}, {37, 38}, {41, 42}, {45, 46}, {49,
50}, {89, 90}, {93, 94}, {97, 98}, {101, 102}, {105, 106}, {109, 110}, {113,
114}, {117, 118}, {121, 122}, {125, 126}, {129, 130}, {133, 134}, {137, 138},
{141, 142}, {145, 146}, {149, 150}, {153, 154}, {157, 158}, {161, 162}, {165,
166}, {169, 170}, {173, 174}, {177, 178}, {181, 182}, {3, 4}, {259, 260}, {251,
252}, {243, 244}, {235, 236}, {227, 228}, {219, 220}, {211, 212}, {203, 204},
{195, 196}, {187, 188}, {83, 84}, {75, 76}, {67, 68}, {59, 60}, {11, 12}, {19,
20}, {27, 28}, {35, 36}, {43, 44}, {51, 52}, {91, 92}, {99, 100}, {107, 108},
{115, 116}, {123, 124}, {131, 132}, {139, 140}, {147, 148}, {155, 156}, {163,
164}, {171, 172}, {179, 180}, {7, 8}, {247, 248}, {231, 232}, {215, 216}, {199,
200}, {183, 184}, {71, 72}, {55, 56}, {23, 24}, {39, 40}, {87, 88}, {103, 104},
{119, 120}, {135, 136}, {151, 152}, {167, 168}, {15, 16}, {239, 240}, {207,
208}, {79, 80}, {47, 48}, {111, 112}, {143, 144}, {175, 176}, {128, 164}, {129,
165}, {130, 166}, {31, 32}, {223, 224}, {95, 96}, {159, 160}, {63, 64}, {191,
192}, {1, 131}, {84, 214}, {81, 211}, {80, 210}, {77, 207}, {76, 206}, {73,
203}, {72, 202}, {69, 199}, {68, 198}, {65, 195}, {64, 194}, {61, 191}, {60,
190}, {57, 187}, {56, 186}, {53, 183}, {52, 182}, {4, 134}, {5, 135}, {8, 138},
{9, 139}, {12, 142}, {13, 143}, {16, 146}, {17, 147}, {20, 150}, {21, 151}, {24,
154}, {25, 155}, {28, 158}, {29, 159}, {32, 162}, {33, 163}, {36, 166}, {37,
167}, {40, 170}, {41, 171}, {44, 174}, {45, 175}, {48, 178}, {49, 179}, {85,
215}, {88, 218}, {89, 219}, {92, 222}, {93, 223}, {96, 226}, {97, 227}, {100,
230}, {101, 231}, {104, 234}, {105, 235}, {108, 238}, {109, 239}, {112, 242},
{113, 243}, {116, 246}, {117, 247}, {120, 250}, {121, 251}, {124, 254}, {125,
255}, {1, 130}, {2, 132}, {83, 213}, {82, 212}, {75, 205}, {74, 204}, {67, 197},
{66, 196}, {59, 189}, {58, 188}, {3, 133}, {10, 140}, {11, 141}, {18, 148}, {19,
149}, {26, 156}, {27, 157}, {34, 164}, {35, 165}, {42, 172}, {43, 173}, {50,
180}, {51, 181}, {90, 220}, {91, 221}, {98, 228}, {99, 229}, {106, 236}, {107,
237}, {114, 244}, {115, 245}, {122, 252}, {123, 253}, {6, 136}, {71, 201}, {70,
200}, {55, 185}, {54, 184}, {7, 137}, {22, 152}, {23, 153}, {38, 168}, {39,
169}, {86, 216}, {87, 217}, {102, 232}, {103, 233}, {118, 248}, {119, 249}, {14,
144}, {79, 209}, {78, 208}, {15, 145}, {46, 176}, {47, 177}, {110, 240}, {111,
241}, {1, 167}, {81, 247}, {80, 246}, {73, 239}, {72, 238}, {65, 231}, {64,
230}, {8, 174}, {9, 175}, {16, 182}, {17, 183}, {24, 190}, {25, 191}, {88, 254},
{89, 255}, {2, 168}, {83, 249}, {82, 248}, {71, 237}, {70, 236}, {67, 233}, {66,
232}, {3, 169}, {6, 172}, {7, 173}, {18, 184}, {19, 185}, {22, 188}, {23, 189},
{86, 252}, {87, 253}, {4, 170}, {84, 250}, {69, 235}, {68, 234}, {5, 171}, {20,
186}, {21, 187}, {85, 251}, {10, 176}, {79, 245}, {78, 244}, {75, 241}, {74,
240}, {11, 177}, {14, 180}, {15, 181}, {12, 178}, {77, 243}, {76, 242}, {13,
179}, {30, 160}, {31, 161}, {94, 224}, {95, 225}, {26, 192}, {63, 229}, {62,
228}, {59, 225}, {58, 224}, {27, 193}, {30, 196}, {31, 197}, {95, 131}, {124,
160}, {125, 161}, {126, 162}, {127, 163}, {28, 194}, {61, 227}, {60, 226}, {29,
195}, {96, 132}, {97, 133}, {98, 134}, {99, 135}, {104, 140}, {105, 141}, {106,
142}, {107, 143}, {112, 148}, {113, 149}, {114, 150}, {115, 151}, {120, 156},
{121, 157}, {122, 158}, {123, 159}, {32, 198}, {57, 223}, {56, 222}, {33, 199},
{40, 206}, {41, 207}, {48, 214}, {49, 215}, {34, 200}, {55, 221}, {54, 220},
{51, 217}, {35, 201}, {38, 204}, {39, 205}, {50, 216}, {100, 136}, {101, 137},
{102, 138}, {103, 139}, {116, 152}, {117, 153}, {118, 154}, {119, 155}, {36,
202}, {53, 219}, {52, 218}, {37, 203}, {42, 208}, {43, 209}, {46, 212}, {47,
213}, {108, 144}, {109, 145}, {110, 146}, {111, 147}, {44, 210}, {63, 193}, {62,
192}, {45, 211}, {127, 128}, {90, 256}, {91, 257}, {94, 260}, {92, 258}, {93,
259}, {126, 256}, {127, 257}, {128, 258}, {129, 259}, {130, 260}, {131, 260},
{255, 256} }>;
(II) A more general form is to represent the graph as the orbit of {2, 3}
under the group generated by the following permutations:
a: (1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21,
22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41,
42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61,
62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81,
82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 95, 96, 97, 98, 99, 100,
101, 102, 103, 104, 105, 106, 107, 108, 109, 110, 111, 112, 113, 114, 115, 116,
117, 118, 119, 120, 121, 122, 123, 124, 125, 126, 127, 128, 129, 130)(131, 132,
133, 134, 135, 136, 137, 138, 139, 140, 141, 142, 143, 144, 145, 146, 147, 148,
149, 150, 151, 152, 153, 154, 155, 156, 157, 158, 159, 160, 161, 162, 163, 164,
165, 166, 167, 168, 169, 170, 171, 172, 173, 174, 175, 176, 177, 178, 179, 180,
181, 182, 183, 184, 185, 186, 187, 188, 189, 190, 191, 192, 193, 194, 195, 196,
197, 198, 199, 200, 201, 202, 203, 204, 205, 206, 207, 208, 209, 210, 211, 212,
213, 214, 215, 216, 217, 218, 219, 220, 221, 222, 223, 224, 225, 226, 227, 228,
229, 230, 231, 232, 233, 234, 235, 236, 237, 238, 239, 240, 241, 242, 243, 244,
245, 246, 247, 248, 249, 250, 251, 252, 253, 254, 255, 256, 257, 258, 259,
260) (III) Last is Groups&Graphs. Copy everything between (not including)
the lines of asterisks into a plain text file and save it as "graph.txt". Then
launch G&G (Groups&Graphs) and select Read Text from the File menu.
**************
&Graph **************
b: (2, 130)(3, 129)(4, 128)(5, 127)(6, 126)(7, 125)(8, 124)(9, 123)(10, 122)(11,
121)(12, 120)(13, 119)(14, 118)(15, 117)(16, 116)(17, 115)(18, 114)(19, 113)(20,
112)(21, 111)(22, 110)(23, 109)(24, 108)(25, 107)(26, 106)(27, 105)(28, 104)(29,
103)(30, 102)(31, 101)(32, 100)(33, 99)(34, 98)(35, 97)(36, 96)(37, 95)(38,
94)(39, 93)(40, 92)(41, 91)(42, 90)(43, 89)(44, 88)(45, 87)(46, 86)(47, 85)(48,
84)(49, 83)(50, 82)(51, 81)(52, 80)(53, 79)(54, 78)(55, 77)(56, 76)(57, 75)(58,
74)(59, 73)(60, 72)(61, 71)(62, 70)(63, 69)(64, 68)(65, 67)(131, 167)(132,
166)(133, 165)(134, 164)(135, 163)(136, 162)(137, 161)(138, 160)(139, 159)(140,
158)(141, 157)(142, 156)(143, 155)(144, 154)(145, 153)(146, 152)(147, 151)(148,
150)(168, 260)(169, 259)(170, 258)(171, 257)(172, 256)(173, 255)(174, 254)(175,
253)(176, 252)(177, 251)(178, 250)(179, 249)(180, 248)(181, 247)(182, 246)(183,
245)(184, 244)(185, 243)(186, 242)(187, 241)(188, 240)(189, 239)(190, 238)(191,
237)(192, 236)(193, 235)(194, 234)(195, 233)(196, 232)(197, 231)(198, 230)(199,
229)(200, 228)(201, 227)(202, 226)(203, 225)(204, 224)(205, 223)(206, 222)(207,
221)(208, 220)(209, 219)(210, 218)(211, 217)(212, 216)(213, 215)
c: (2, 167, 130, 131)(3, 37, 129, 95)(4, 203, 128, 225)(5, 73, 127, 59)(6, 239,
126, 189)(7, 109, 125, 23)(8, 145, 124, 153)(9, 15, 123, 117)(10, 181, 122,
247)(11, 51, 121, 81)(12, 217, 120, 211)(13, 87, 119, 45)(14, 253, 118, 175)(16,
159, 116, 139)(17, 29, 115, 103)(18, 195, 114, 233)(19, 65, 113, 67)(20, 231,
112, 197)(21, 101, 111, 31)(22, 137, 110, 161)(24, 173, 108, 255)(25, 43, 107,
89)(26, 209, 106, 219)(27, 79, 105, 53)(28, 245, 104, 183)(30, 151, 102,
147)(32, 187, 100, 241)(33, 57, 99, 75)(34, 223, 98, 205)(35, 93, 97, 39)(36,
259, 96, 169)(38, 165, 94, 133)(40, 201, 92, 227)(41, 71, 91, 61)(42, 237, 90,
191)(44, 143, 88, 155)(46, 179, 86, 249)(47, 49, 85, 83)(48, 215, 84, 213)(50,
251, 82, 177)(52, 157, 80, 141)(54, 193, 78, 235)(55, 63, 77, 69)(56, 229, 76,
199)(58, 135, 74, 163)(60, 171, 72, 257)(62, 207, 70, 221)(64, 243, 68, 185)(66,
149)(132, 168, 166, 260)(134, 204, 164, 224)(136, 240, 162, 188)(138, 146, 160,
152)(140, 182, 158, 246)(142, 218, 156, 210)(144, 254, 154, 174)(148, 196, 150,
232)(170, 202, 258, 226)(172, 238, 256, 190)(176, 180, 252, 248)(178, 216, 250,
212)(184, 194, 244, 234)(186, 230, 242, 198)(192, 208, 236, 220)(200, 222, 228,
206)
C4[ 260, 4 ]
260
-1 2 167 130 131
-2 132 1 3 168
-3 133 2 4 169
-4 134 3 5 170
-5 135 4 6 171
-6 136 5 7 172
-7 137 6 8 173
-8 138 7 9 174
-9 139 8 10 175
-10 11 176 140 9
-11 12 177 141 10
-12 11 13 178 142
-13 143 12 14 179
-14 144 13 15 180
-15 145 14 16 181
-16 146 15 17 182
-17 147 16 18 183
-18 148 17 19 184
-19 149 18 20 185
-20 150 19 21 186
-21 22 187 151 20
-22 23 188 152 21
-23 22 24 189 153
-24 154 23 25 190
-25 155 24 26 191
-26 156 25 27 192
-27 157 26 28 193
-28 158 27 29 194
-29 159 28 30 195
-30 160 29 31 196
-31 161 30 32 197
-32 33 198 162 31
-33 34 199 163 32
-34 33 35 200 164
-35 165 34 36 201
-36 166 35 37 202
-37 167 36 38 203
-38 168 37 39 204
-39 169 38 40 205
-40 170 39 41 206
-41 171 40 42 207
-42 172 41 43 208
-43 44 209 173 42
-44 45 210 174 43
-45 44 46 211 175
-46 176 45 47 212
-47 177 46 48 213
-48 178 47 49 214
-49 179 48 50 215
-50 180 49 51 216
-51 181 50 52 217
-52 182 51 53 218
-53 183 52 54 219
-54 55 220 184 53
-55 56 221 185 54
-56 55 57 222 186
-57 187 56 58 223
-58 188 57 59 224
-59 189 58 60 225
-60 190 59 61 226
-61 191 60 62 227
-62 192 61 63 228
-63 193 62 64 229
-64 194 63 65 230
-65 66 231 195 64
-66 67 232 196 65
-67 66 68 233 197
-68 198 67 69 234
-69 199 68 70 235
-70 200 69 71 236
-71 201 70 72 237
-72 202 71 73 238
-73 203 72 74 239
-74 204 73 75 240
-75 205 74 76 241
-76 77 242 206 75
-77 78 243 207 76
-78 77 79 244 208
-79 209 78 80 245
-80 210 79 81 246
-81 211 80 82 247
-82 212 81 83 248
-83 213 82 84 249
-84 214 83 85 250
-85 215 84 86 251
-86 216 85 87 252
-87 88 253 217 86
-88 89 254 218 87
-89 88 90 255 219
-90 220 89 91 256
-91 221 90 92 257
-92 222 91 93 258
-93 223 92 94 259
-94 224 93 95 260
-95 225 94 96 131
-96 132 226 95 97
-97 133 227 96 98
-98 99 134 228 97
-99 100 135 229 98
-100 99 101 136 230
-101 231 100 102 137
-102 232 101 103 138
-103 233 102 104 139
-104 234 103 105 140
-105 235 104 106 141
-106 236 105 107 142
-107 143 237 106 108
-108 144 238 107 109
-109 110 145 239 108
-110 111 146 240 109
-111 110 112 147 241
-112 242 111 113 148
-113 243 112 114 149
-114 244 113 115 150
-115 245 114 116 151
-116 246 115 117 152
-117 247 116 118 153
-118 154 248 117 119
-119 155 249 118 120
-120 121 156 250 119
-121 122 157 251 120
-122 121 123 158 252
-123 253 122 124 159
-124 254 123 125 160
-125 255 124 126 161
-126 256 125 127 162
-127 257 126 128 163
-128 258 127 129 164
-129 165 259 128 130
-130 1 166 260 129
-131 132 1 95 260
-132 133 2 96 131
-133 132 134 3 97
-134 133 135 4 98
-135 99 134 136 5
-136 100 135 137 6
-137 101 136 138 7
-138 102 137 139 8
-139 103 138 140 9
-140 104 139 141 10
-141 11 105 140 142
-142 143 12 106 141
-143 144 13 107 142
-144 143 145 14 108
-145 144 146 15 109
-146 110 145 147 16
-147 111 146 148 17
-148 112 147 149 18
-149 113 148 150 19
-150 114 149 151 20
-151 115 150 152 21
-152 22 116 151 153
-153 154 23 117 152
-154 155 24 118 153
-155 154 156 25 119
-156 155 157 26 120
-157 121 156 158 27
-158 122 157 159 28
-159 123 158 160 29
-160 124 159 161 30
-161 125 160 162 31
-162 126 161 163 32
-163 33 127 162 164
-164 165 34 128 163
-165 166 35 129 164
-166 165 167 36 130
-167 1 166 168 37
-168 2 167 169 38
-169 3 168 170 39
-170 4 169 171 40
-171 5 170 172 41
-172 6 171 173 42
-173 7 172 174 43
-174 44 8 173 175
-175 176 45 9 174
-176 177 46 10 175
-177 11 176 178 47
-178 12 177 179 48
-179 13 178 180 49
-180 14 179 181 50
-181 15 180 182 51
-182 16 181 183 52
-183 17 182 184 53
-184 18 183 185 54
-185 55 19 184 186
-186 187 56 20 185
-187 188 57 21 186
-188 22 187 189 58
-189 23 188 190 59
-190 24 189 191 60
-191 25 190 192 61
-192 26 191 193 62
-193 27 192 194 63
-194 28 193 195 64
-195 29 194 196 65
-196 66 30 195 197
-197 198 67 31 196
-198 199 68 32 197
-199 33 198 200 69
-200 34 199 201 70
-201 35 200 202 71
-202 36 201 203 72
-203 37 202 204 73
-204 38 203 205 74
-205 39 204 206 75
-206 40 205 207 76
-207 77 41 206 208
-208 209 78 42 207
-209 210 79 43 208
-210 44 209 211 80
-211 45 210 212 81
-212 46 211 213 82
-213 47 212 214 83
-214 48 213 215 84
-215 49 214 216 85
-216 50 215 217 86
-217 51 216 218 87
-218 88 52 217 219
-219 220 89 53 218
-220 221 90 54 219
-221 55 220 222 91
-222 56 221 223 92
-223 57 222 224 93
-224 58 223 225 94
-225 59 224 226 95
-226 60 225 227 96
-227 61 226 228 97
-228 62 227 229 98
-229 99 63 228 230
-230 231 100 64 229
-231 232 101 65 230
-232 66 231 233 102
-233 67 232 234 103
-234 68 233 235 104
-235 69 234 236 105
-236 70 235 237 106
-237 71 236 238 107
-238 72 237 239 108
-239 73 238 240 109
-240 110 74 239 241
-241 242 111 75 240
-242 243 112 76 241
-243 77 242 244 113
-244 78 243 245 114
-245 79 244 246 115
-246 80 245 247 116
-247 81 246 248 117
-248 82 247 249 118
-249 83 248 250 119
-250 84 249 251 120
-251 121 85 250 252
-252 253 122 86 251
-253 254 123 87 252
-254 88 253 255 124
-255 89 254 256 125
-256 90 255 257 126
-257 91 256 258 127
-258 92 257 259 128
-259 93 258 260 129
-260 94 259 130 131
0