C4graphGraph forms for C4 [ 260, 10 ] = PS(4,65;21)

[Home] [Table] [Glossary] [Families]

On this page are computer-accessible forms for the graph C4[ 260, 10 ] = PS(4,65;21).

(I) Following is a form readable by MAGMA:

g:=Graph<260|{ {65, 66}, {192, 206}, {193, 207}, {194, 208}, {195, 209}, {128, 149}, {130, 151}, {129, 150}, {128, 172}, {129, 173}, {130, 174}, {192, 243}, {193, 244}, {195, 246}, {194, 245}, {2, 66}, {63, 127}, {62, 126}, {61, 125}, {60, 124}, {59, 123}, {58, 122}, {57, 121}, {56, 120}, {55, 119}, {54, 118}, {53, 117}, {52, 116}, {51, 115}, {50, 114}, {49, 113}, {48, 112}, {47, 111}, {46, 110}, {45, 109}, {44, 108}, {43, 107}, {42, 106}, {41, 105}, {3, 67}, {4, 68}, {5, 69}, {6, 70}, {7, 71}, {8, 72}, {9, 73}, {10, 74}, {11, 75}, {12, 76}, {13, 77}, {14, 78}, {15, 79}, {16, 80}, {17, 81}, {18, 82}, {19, 83}, {20, 84}, {21, 85}, {22, 86}, {23, 87}, {24, 88}, {25, 89}, {26, 90}, {27, 91}, {28, 92}, {29, 93}, {30, 94}, {31, 95}, {32, 96}, {33, 97}, {34, 98}, {35, 99}, {36, 100}, {37, 101}, {38, 102}, {39, 103}, {40, 104}, {1, 67}, {61, 127}, {60, 126}, {57, 123}, {56, 122}, {53, 119}, {52, 118}, {49, 115}, {48, 114}, {45, 111}, {44, 110}, {41, 107}, {4, 70}, {5, 71}, {8, 74}, {9, 75}, {12, 78}, {13, 79}, {16, 82}, {17, 83}, {20, 86}, {21, 87}, {24, 90}, {25, 91}, {28, 94}, {29, 95}, {32, 98}, {33, 99}, {36, 102}, {37, 103}, {40, 106}, {2, 68}, {59, 125}, {58, 124}, {51, 117}, {50, 116}, {43, 109}, {42, 108}, {3, 69}, {10, 76}, {11, 77}, {18, 84}, {19, 85}, {26, 92}, {27, 93}, {34, 100}, {35, 101}, {157, 208}, {191, 242}, {189, 240}, {159, 210}, {173, 224}, {175, 226}, {6, 72}, {55, 121}, {54, 120}, {7, 73}, {22, 88}, {23, 89}, {38, 104}, {39, 105}, {144, 223}, {190, 241}, {158, 209}, {160, 239}, {174, 225}, {176, 255}, {131, 210}, {133, 212}, {135, 214}, {137, 216}, {139, 218}, {141, 220}, {143, 222}, {161, 240}, {163, 242}, {165, 244}, {167, 246}, {169, 248}, {171, 250}, {173, 252}, {175, 254}, {134, 213}, {188, 239}, {184, 235}, {180, 231}, {138, 217}, {142, 221}, {148, 199}, {152, 203}, {156, 207}, {162, 241}, {166, 245}, {170, 249}, {174, 253}, {176, 227}, {145, 196}, {187, 238}, {185, 236}, {179, 230}, {147, 198}, {153, 204}, {155, 206}, {177, 228}, {132, 211}, {186, 237}, {178, 229}, {140, 219}, {146, 197}, {154, 205}, {164, 243}, {172, 251}, {149, 200}, {183, 234}, {181, 232}, {151, 202}, {14, 80}, {47, 113}, {46, 112}, {15, 81}, {136, 215}, {182, 233}, {150, 201}, {168, 247}, {145, 224}, {147, 226}, {149, 228}, {151, 230}, {153, 232}, {155, 234}, {157, 236}, {159, 238}, {182, 196}, {191, 205}, {190, 204}, {187, 201}, {186, 200}, {183, 197}, {146, 225}, {150, 229}, {154, 233}, {158, 237}, {160, 211}, {164, 215}, {168, 219}, {172, 223}, {131, 247}, {136, 252}, {137, 253}, {138, 254}, {139, 255}, {161, 212}, {163, 214}, {169, 220}, {171, 222}, {188, 202}, {189, 203}, {148, 227}, {156, 235}, {162, 213}, {170, 221}, {132, 248}, {133, 249}, {134, 250}, {135, 251}, {165, 216}, {167, 218}, {30, 96}, {185, 199}, {184, 198}, {31, 97}, {152, 231}, {166, 217}, {1, 130}, {83, 192}, {84, 193}, {86, 195}, {85, 194}, {64, 225}, {65, 226}, {64, 228}, {65, 229}, {106, 192}, {107, 193}, {108, 194}, {109, 195}, {62, 128}, {63, 129}, {64, 128}, {65, 129}, {64, 130}, {87, 131}, {92, 136}, {93, 137}, {94, 138}, {95, 139}, {116, 160}, {117, 161}, {118, 162}, {119, 163}, {124, 168}, {125, 169}, {126, 170}, {127, 171}, {72, 158}, {73, 159}, {96, 182}, {97, 183}, {104, 190}, {105, 191}, {66, 152}, {71, 157}, {70, 156}, {67, 153}, {98, 184}, {99, 185}, {102, 188}, {103, 189}, {60, 224}, {63, 227}, {62, 226}, {61, 225}, {88, 132}, {89, 133}, {90, 134}, {91, 135}, {120, 164}, {121, 165}, {122, 166}, {123, 167}, {68, 154}, {69, 155}, {100, 186}, {101, 187}, {63, 224}, {36, 197}, {62, 223}, {60, 221}, {58, 219}, {56, 217}, {54, 215}, {52, 213}, {50, 211}, {48, 209}, {46, 207}, {44, 205}, {42, 203}, {38, 199}, {40, 201}, {1, 227}, {4, 230}, {5, 231}, {8, 234}, {9, 235}, {12, 238}, {13, 239}, {16, 242}, {17, 243}, {20, 246}, {21, 247}, {24, 250}, {25, 251}, {28, 254}, {29, 255}, {37, 198}, {61, 222}, {57, 218}, {53, 214}, {49, 210}, {45, 206}, {41, 202}, {32, 196}, {59, 223}, {58, 222}, {57, 221}, {56, 220}, {51, 215}, {50, 214}, {49, 213}, {48, 212}, {43, 207}, {42, 206}, {41, 205}, {40, 204}, {33, 197}, {34, 198}, {35, 199}, {2, 231}, {8, 237}, {10, 239}, {16, 245}, {18, 247}, {24, 253}, {26, 255}, {2, 228}, {3, 229}, {10, 236}, {11, 237}, {18, 244}, {19, 245}, {26, 252}, {27, 253}, {1, 230}, {59, 220}, {51, 212}, {43, 204}, {9, 238}, {17, 246}, {25, 254}, {35, 196}, {74, 160}, {75, 161}, {78, 164}, {79, 165}, {90, 176}, {91, 177}, {94, 180}, {95, 181}, {3, 232}, {7, 236}, {19, 248}, {23, 252}, {111, 132}, {123, 144}, {127, 148}, {36, 200}, {55, 219}, {54, 218}, {53, 217}, {52, 216}, {37, 201}, {38, 202}, {39, 203}, {96, 140}, {97, 141}, {98, 142}, {99, 143}, {112, 156}, {113, 157}, {114, 158}, {115, 159}, {4, 233}, {66, 175}, {6, 235}, {20, 249}, {22, 251}, {80, 189}, {82, 191}, {110, 131}, {124, 145}, {126, 147}, {6, 232}, {7, 233}, {22, 248}, {23, 249}, {76, 162}, {77, 163}, {92, 178}, {93, 179}, {5, 234}, {55, 216}, {21, 250}, {39, 200}, {81, 190}, {125, 146}, {67, 176}, {71, 180}, {75, 184}, {79, 188}, {100, 144}, {101, 145}, {102, 146}, {103, 147}, {108, 152}, {109, 153}, {110, 154}, {111, 155}, {68, 177}, {70, 179}, {76, 185}, {78, 187}, {112, 133}, {114, 135}, {120, 141}, {122, 143}, {80, 166}, {81, 167}, {88, 174}, {89, 175}, {69, 178}, {77, 186}, {113, 134}, {121, 142}, {82, 168}, {83, 169}, {86, 172}, {87, 173}, {11, 240}, {15, 244}, {115, 136}, {119, 140}, {44, 208}, {47, 211}, {46, 210}, {45, 209}, {104, 148}, {105, 149}, {106, 150}, {107, 151}, {12, 241}, {72, 181}, {14, 243}, {74, 183}, {116, 137}, {118, 139}, {14, 240}, {15, 241}, {84, 170}, {85, 171}, {13, 242}, {47, 208}, {73, 182}, {117, 138}, {27, 256}, {31, 260}, {28, 257}, {30, 259}, {30, 256}, {31, 257}, {29, 258}, {32, 258}, {33, 259}, {34, 260}, {140, 256}, {141, 257}, {142, 258}, {143, 259}, {144, 260}, {177, 256}, {181, 260}, {179, 258}, {178, 257}, {180, 259} }>;

(II) A more general form is to represent the graph as the orbit of {65, 66} under the group generated by the following permutations:

a: (2, 65)(3, 64)(4, 63)(5, 62)(6, 61)(7, 60)(8, 59)(9, 58)(10, 57)(11, 56)(12, 55)(13, 54)(14, 53)(15, 52)(16, 51)(17, 50)(18, 49)(19, 48)(20, 47)(21, 46)(22, 45)(23, 44)(24, 43)(25, 42)(26, 41)(27, 40)(28, 39)(29, 38)(30, 37)(31, 36)(32, 35)(33, 34)(67, 130)(68, 129)(69, 128)(70, 127)(71, 126)(72, 125)(73, 124)(74, 123)(75, 122)(76, 121)(77, 120)(78, 119)(79, 118)(80, 117)(81, 116)(82, 115)(83, 114)(84, 113)(85, 112)(86, 111)(87, 110)(88, 109)(89, 108)(90, 107)(91, 106)(92, 105)(93, 104)(94, 103)(95, 102)(96, 101)(97, 100)(98, 99)(132, 195)(133, 194)(134, 193)(135, 192)(136, 191)(137, 190)(138, 189)(139, 188)(140, 187)(141, 186)(142, 185)(143, 184)(144, 183)(145, 182)(146, 181)(147, 180)(148, 179)(149, 178)(150, 177)(151, 176)(152, 175)(153, 174)(154, 173)(155, 172)(156, 171)(157, 170)(158, 169)(159, 168)(160, 167)(161, 166)(162, 165)(163, 164)(197, 260)(198, 259)(199, 258)(200, 257)(201, 256)(202, 255)(203, 254)(204, 253)(205, 252)(206, 251)(207, 250)(208, 249)(209, 248)(210, 247)(211, 246)(212, 245)(213, 244)(214, 243)(215, 242)(216, 241)(217, 240)(218, 239)(219, 238)(220, 237)(221, 236)(222, 235)(223, 234)(224, 233)(225, 232)(226, 231)(227, 230)(228, 229)
b: (1, 66, 131, 196)(2, 87, 182, 227)(3, 108, 168, 258)(4, 129, 154, 224)(5, 85, 140, 255)(6, 106, 191, 221)(7, 127, 177, 252)(8, 83, 163, 218)(9, 104, 149, 249)(10, 125, 135, 215)(11, 81, 186, 246)(12, 102, 172, 212)(13, 123, 158, 243)(14, 79, 144, 209)(15, 100, 195, 240)(16, 121, 181, 206)(17, 77, 167, 237)(18, 98, 153, 203)(19, 119, 139, 234)(20, 75, 190, 200)(21, 96, 176, 231)(22, 117, 162, 197)(23, 73, 148, 228)(24, 94, 134, 259)(25, 115, 185, 225)(26, 71, 171, 256)(27, 92, 157, 222)(28, 113, 143, 253)(29, 69, 194, 219)(30, 90, 180, 250)(31, 111, 166, 216)(32, 67, 152, 247)(33, 88, 138, 213)(34, 109, 189, 244)(35, 130, 175, 210)(36, 86, 161, 241)(37, 107, 147, 207)(38, 128, 133, 238)(39, 84, 184, 204)(40, 105, 170, 235)(41, 126, 156, 201)(42, 82, 142, 232)(43, 103, 193, 198)(44, 124, 179, 229)(45, 80, 165, 260)(46, 101, 151, 226)(47, 122, 137, 257)(48, 78, 188, 223)(49, 99, 174, 254)(50, 120, 160, 220)(51, 76, 146, 251)(52, 97, 132, 217)(53, 118, 183, 248)(54, 74, 169, 214)(55, 95, 155, 245)(56, 116, 141, 211)(57, 72, 192, 242)(58, 93, 178, 208)(59, 114, 164, 239)(60, 70, 150, 205)(61, 91, 136, 236)(62, 112, 187, 202)(63, 68, 173, 233)(64, 89, 159, 199)(65, 110, 145, 230)
c: (1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65)(66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 95, 96, 97, 98, 99, 100, 101, 102, 103, 104, 105, 106, 107, 108, 109, 110, 111, 112, 113, 114, 115, 116, 117, 118, 119, 120, 121, 122, 123, 124, 125, 126, 127, 128, 129, 130)(131, 132, 133, 134, 135, 136, 137, 138, 139, 140, 141, 142, 143, 144, 145, 146, 147, 148, 149, 150, 151, 152, 153, 154, 155, 156, 157, 158, 159, 160, 161, 162, 163, 164, 165, 166, 167, 168, 169, 170, 171, 172, 173, 174, 175, 176, 177, 178, 179, 180, 181, 182, 183, 184, 185, 186, 187, 188, 189, 190, 191, 192, 193, 194, 195)(196, 197, 198, 199, 200, 201, 202, 203, 204, 205, 206, 207, 208, 209, 210, 211, 212, 213, 214, 215, 216, 217, 218, 219, 220, 221, 222, 223, 224, 225, 226, 227, 228, 229, 230, 231, 232, 233, 234, 235, 236, 237, 238, 239, 240, 241, 242, 243, 244, 245, 246, 247, 248, 249, 250, 251, 252, 253, 254, 255, 256, 257, 258, 259, 260)

(III) Last is Groups&Graphs. Copy everything between (not including) the lines of asterisks into a plain text file and save it as "graph.txt". Then launch G&G (Groups&Graphs) and select Read Text from the File menu.

**************

&Graph
C4[ 260, 10 ]
260
-1 67 227 130 230
-2 66 231 68 228
-3 67 232 69 229
-4 68 233 70 230
-5 231 69 234 71
-6 232 70 235 72
-7 233 71 236 73
-8 234 72 237 74
-9 235 73 238 75
-10 236 74 239 76
-11 77 237 75 240
-12 78 238 76 241
-13 77 242 79 239
-14 78 243 80 240
-15 79 244 81 241
-16 242 80 245 82
-17 243 81 246 83
-18 244 82 247 84
-19 245 83 248 85
-20 246 84 249 86
-21 247 85 250 87
-22 88 248 86 251
-23 89 249 87 252
-24 88 253 90 250
-25 89 254 91 251
-26 90 255 92 252
-27 253 91 256 93
-28 254 92 257 94
-29 255 93 258 95
-30 256 94 259 96
-31 257 95 260 97
-32 258 96 196 98
-33 99 259 97 197
-34 198 100 260 98
-35 99 199 101 196
-36 100 200 102 197
-37 198 101 201 103
-38 199 102 202 104
-39 200 103 203 105
-40 201 104 204 106
-41 202 105 205 107
-42 203 106 206 108
-43 204 107 207 109
-44 110 205 108 208
-45 209 111 206 109
-46 110 210 112 207
-47 111 211 113 208
-48 209 112 212 114
-49 210 113 213 115
-50 211 114 214 116
-51 212 115 215 117
-52 213 116 216 118
-53 214 117 217 119
-54 215 118 218 120
-55 121 216 119 219
-56 220 122 217 120
-57 121 221 123 218
-58 122 222 124 219
-59 220 123 223 125
-60 221 124 224 126
-61 222 125 225 127
-62 223 126 226 128
-63 224 127 227 129
-64 225 128 228 130
-65 66 226 129 229
-66 2 152 65 175
-67 176 1 3 153
-68 154 177 2 4
-69 155 178 3 5
-70 156 179 4 6
-71 157 180 5 7
-72 158 181 6 8
-73 159 182 7 9
-74 160 183 8 10
-75 11 161 184 9
-76 12 162 185 10
-77 11 13 163 186
-78 187 12 14 164
-79 165 188 13 15
-80 166 189 14 16
-81 167 190 15 17
-82 168 191 16 18
-83 169 192 17 19
-84 170 193 18 20
-85 171 194 19 21
-86 22 172 195 20
-87 23 173 21 131
-88 22 132 24 174
-89 23 133 25 175
-90 176 24 134 26
-91 177 25 135 27
-92 178 26 136 28
-93 179 27 137 29
-94 180 28 138 30
-95 181 29 139 31
-96 182 30 140 32
-97 33 183 31 141
-98 34 184 32 142
-99 33 143 35 185
-100 34 144 36 186
-101 187 35 145 37
-102 188 36 146 38
-103 189 37 147 39
-104 190 38 148 40
-105 191 39 149 41
-106 192 40 150 42
-107 193 41 151 43
-108 44 194 42 152
-109 45 195 43 153
-110 44 154 46 131
-111 132 45 155 47
-112 133 46 156 48
-113 134 47 157 49
-114 135 48 158 50
-115 136 49 159 51
-116 137 50 160 52
-117 138 51 161 53
-118 139 52 162 54
-119 55 140 53 163
-120 56 141 54 164
-121 55 165 57 142
-122 143 56 166 58
-123 144 57 167 59
-124 145 58 168 60
-125 146 59 169 61
-126 147 60 170 62
-127 148 61 171 63
-128 149 62 172 64
-129 150 63 173 65
-130 1 151 64 174
-131 110 210 247 87
-132 88 111 211 248
-133 89 112 212 249
-134 90 113 213 250
-135 91 114 214 251
-136 92 115 215 252
-137 253 93 116 216
-138 254 94 117 217
-139 255 95 118 218
-140 256 96 119 219
-141 220 257 97 120
-142 121 221 258 98
-143 99 122 222 259
-144 100 123 223 260
-145 101 124 224 196
-146 102 125 225 197
-147 198 103 126 226
-148 199 104 127 227
-149 200 105 128 228
-150 201 106 129 229
-151 202 107 130 230
-152 66 231 203 108
-153 67 232 204 109
-154 110 68 233 205
-155 111 69 234 206
-156 112 70 235 207
-157 113 71 236 208
-158 209 114 72 237
-159 210 115 73 238
-160 211 116 74 239
-161 212 117 75 240
-162 213 118 76 241
-163 77 242 214 119
-164 78 243 215 120
-165 121 79 244 216
-166 122 80 245 217
-167 123 81 246 218
-168 124 82 247 219
-169 220 125 83 248
-170 221 126 84 249
-171 222 127 85 250
-172 223 128 86 251
-173 224 129 87 252
-174 88 253 225 130
-175 66 89 254 226
-176 67 90 255 227
-177 68 91 256 228
-178 69 92 257 229
-179 70 93 258 230
-180 231 71 94 259
-181 232 72 95 260
-182 233 73 96 196
-183 234 74 97 197
-184 198 235 75 98
-185 99 199 236 76
-186 77 100 200 237
-187 78 101 201 238
-188 79 102 202 239
-189 80 103 203 240
-190 81 104 204 241
-191 242 82 105 205
-192 243 83 106 206
-193 244 84 107 207
-194 245 85 108 208
-195 209 246 86 109
-196 35 145 182 32
-197 33 36 146 183
-198 34 37 147 184
-199 35 38 148 185
-200 36 39 149 186
-201 187 37 40 150
-202 188 38 41 151
-203 189 39 42 152
-204 190 40 43 153
-205 44 154 191 41
-206 45 155 192 42
-207 46 156 193 43
-208 44 47 157 194
-209 45 48 158 195
-210 46 49 159 131
-211 132 47 50 160
-212 133 48 51 161
-213 134 49 52 162
-214 135 50 53 163
-215 136 51 54 164
-216 55 165 137 52
-217 56 166 138 53
-218 57 167 139 54
-219 55 58 168 140
-220 56 59 169 141
-221 57 60 170 142
-222 143 58 61 171
-223 144 59 62 172
-224 145 60 63 173
-225 146 61 64 174
-226 147 62 65 175
-227 176 1 148 63
-228 177 2 149 64
-229 178 3 150 65
-230 1 179 4 151
-231 2 180 5 152
-232 3 181 6 153
-233 154 4 182 7
-234 155 5 183 8
-235 156 6 184 9
-236 157 7 185 10
-237 11 158 8 186
-238 187 12 159 9
-239 188 13 160 10
-240 11 189 14 161
-241 12 190 15 162
-242 13 191 16 163
-243 14 192 17 164
-244 165 15 193 18
-245 166 16 194 19
-246 167 17 195 20
-247 168 18 21 131
-248 22 132 169 19
-249 23 133 170 20
-250 24 134 171 21
-251 22 25 135 172
-252 23 26 136 173
-253 24 27 137 174
-254 25 28 138 175
-255 176 26 29 139
-256 177 27 30 140
-257 178 28 31 141
-258 179 29 32 142
-259 33 143 180 30
-260 34 144 181 31
0

**************